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KYBERNETIKA — VOLUME 34 (1998), NUMBER 5, PAGES 555-564

A SPECTRAL CHARACTERIZATION OF THE
BEHAVIOR OF DISCRETE TIME AR-REPRESENTATIONS
OVER A FINITE TIME INTERVAL

E.N. AnTONIOU, A.I. G. VARDULAKIS AND N.P. KARAMPETAKIS

In this paper we investigate the behavior of the discrete time AR (Auto Regressive) rep-
resentations over a finite time interval, in terms of the finite and infinite spectral structure
of the polynomial matrix involved in the AR-equation. A boundary mapping equation and
a closed formula for the determination of the solution, in terms of the boundary conditions,
are also gived.

1. INTRODUCTION

The class of discrete time descriptor systems has been the subject of several studies
in the recent years (see for example [1, 2, 3, 4, 5, 6]). The main reason for this is that
descriptor equations naturally represent a very wide class of physical, economic or
social systems. One of the most interesting features of discrete time singular systems
is without doubt their non causal behavior, while their counterpart in continuous
time exhibit impulsive behavior.

However, descriptor systems can be considered as a special — first order case
of a more general Auto Regressive Moving Average (ARMA) multivariable model
and thus the study of this more general case can be proved to be very important.
Such models (known also as polynomial matrix descriptions or PMDs) have been
extensively studied in the continuous time case by several authors. In this note
we investigate some structural properties of the discrete time autoregressive (AR)-
representation, as a first step towards the generalization of the descriptor systems
theory to the higher order case.

Consider the discrete time AR equation

Aqu+q + Aq_lxk+q_1 +...+ Az =0 (1.1)
where £ =0,1,2,..., N — g, or equivalently '
A(@)zr =0, k£=0,1,2,...,N—¢q (1.2)

where A(0) = Aqo?+Aq_1097 1 +. ..+ Ag € R"*"[0] is a regular polynomial matrix,
L.e. det A(o) # 0 for almost every o, zx € R", k=0,1,2,..., N is a vector sequence
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and o denotes the forward shift operator oz = zp41. Notice that we are interested
for the behavior of (1.2) over a specified time interval ¥ = 0,1,2,..., N and not

over Zt.

The matrix A, is not in general invertible which means that (1.1) can not be solved
by iterating forward, i.e. given zo, 21, ..., 24— determine successively x4, Zg41,.. ..
This is the main reason why we treat this equation as a boundary condition problem,
where both the initial and final conditions should be given. This naturally leads to
the restriction of the time domain to a finite interval instead of Zt.The results of
the present paper should be compared to [1, 2, 3, 4, 5, 6] where similar problems for
systems in descriptor form, are treated in a similar manner.

Finally, following the notation of [12] we define the behavior of (1.2) as

B = {zx |z € N", ) satisfies (1.2)} (1.3)

where £k =0,1,2,..., N.

2. PRELIMINARIES — NOTATION

The mathematical background required for this note comes mainly from [7, 8, 9, 10]
and [11]. By R™*"[¢] we denote the set of m x n polynomial matrices with real
coefficients and indeterminate 0. A square polynomial A(c) = Aj0? + Aq_laq‘l +
...+ Ag € R"*"[0] matrix is called regular iff det A(c) # 0 for almost every o. The
(finite) eigenvalues of A(c) are defined as the roots of the equation det A(¢c) = 0.
Let

Shtey = diag{(c = X)™, ..., (e = 2)™"}

be the local Smith form of A(¢s) at & = A; and A; is an eigenvalue of A(c), where
0 <my; <myy <...<myr. The terms (6 — A;)™7 are called the (finite) elementary
divisors of A(c) at o = A;, myj j =1,2,...,r are the partial multiplicities of A; and
m; = ZJ'-=1 m;; is the multiplicity of A;.

The dual matrix of A(c) is defined as A(c) = 07A(c~!) = Ago? + Ajod~ ...+
A,. The infinite elementary divisors of A(c) are the finite elementary divisors of the
dual A(c) at o = 0. The total number of elementary divisors (finite and infinite) of
A(0) is equal to the product r x ¢, where r is the dimension and q is the degree of
A(o).

A pair of matrices X; € R7*™i J; € R™i*X™i where J; is in Jordan form and J; is
an eigenvalue of A(c)of multiplicity m; is called an eigenpair of A(o) corresponding

to A; iff

q
Z ApXiJF =0, rankcol(X;JF)Mig! =m; (2.1)
k=0
where
Xi
X;J;

col(X; JF)pist =
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The matrix J; consists of Jordan blocks with sizes equal to the partial multlphcmes
of A;.

Let A1, Az,...,Ap be the distinct finite eigenvalues of A(c), and (Xj, J;) their
corresponding eigenpairs. The total number of finite elementary divisors is equal to

the determinantal degree of A(c), i.e. n = deg(det A(¢)) = ) i, mi. The pair of
matrices
Xr = [Xl,Xg,...,X,,]eW"" (2.2)
Jr = diag{/1,Js,...,Jp} € R™*" (2.3)
is defined as a finite spectral pair of A(c) and satisfies the following
q
EAkXFJﬁ‘ =0, rankcol(XrJE)Pza = n. (2.4)
k=0

An eigenpair of the dual matrix Z(a’) corresponding to the eigenvalue X=0is
defined as an infinite spectral pair of A(¢), and satisfies the following

g
ZAkXongo'k =0, rankcol(XeoJE )42 =p (2.5)
k=0

where Xoo € R™XH, Joo € REAXH,

3. MAIN RESULTS

Consider the AR-representation (1.2) and a ﬂmte spectral pair (Xp,Jr) of A(0).

In the continuous time case, i.e. where o = a is the differential operator instead

of the forward shift operator, finite spectral pairs give rise to linearly independent
solutions. A similar situation occurs in our case. We state the following theorem

Theorem 1. If (Xp,JF) is a finite (If (X, Joo) is an infinite) spectral pair of
A(o) of dimensions r x n,n x n (r X p, p x p) respectively where n = deg|A(0)|
(¢ is the multiplicity of the eigenvalue at ¢ = oo of A(¢)) then the columns of the
matrix

Up(k) = XpJE, £=0,1,2,...,N (3.1)
(Yoo (k) = Xeo JR¥, k=0,1,2,...,N) (3.2)

are linearly independent solutions of (1.2) for N > n (N > p).

Proof. Let (X, Jr) be a finite spectral pair of A(c) . We have

ZAXF k+z

1=0

q
= (ZA; Xr J;L) JE &

1=0

A(o) XpJE
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for k =0,1,2,...,N — ¢ and from the second equation of (2.4) it is obvious that
the columns of XpJ} are linearly independent sequences over any interval k =

0,1,2,..., N > n. The proof of (3.2) follows similarly if we take into account (2.5).
a

The above theorem proves that we can form solutions of (1.2) as linear combina-
tions of the columns of the matrices ¥ (k) and Woo (k). It remains to show that the
columns of these two matrices are enough to span the entire solution space of the
equation over a finite interval £ =0,1,2,..., N.

Consider equation (1.2) or equivalently the more detailed form (1.1). Then one
can write this equation in the following form

Rny1(A)ZNg1 =0 (3.3)

where Ry +1(A) is the resultant matrix of A(¢) having N + 1 block columns

A Ay -+ A, 0O - 0
Ryy1(4) = 0 fqo 1.41 A ' (3.4)
0 0 A A A
where Ryy1(A) € RrV-atOxr(N+) and gy = [z 2T ... ... 2L T €

Rr(N+1) Obviously equations (1.2) and (1.1) are equivalent to (3.3) in the specified
time interval £ = 0,1,2,..., N.

With this simple remark and using the theory for the kernels of resultant matrices
of a polynomial matrix, we can state the following very important

Theorem 2. The behavior of the AR-representation (1.2) over the finite time
interval k =0,1,2,...,N is

B = span[Xr, XooJ{JE ® JY ¥} (3.5)
and
dimB =rq

where r, ¢ are respectively the dimension of A(¢) and the maximum order of ¢ in
A(0), (XF, JF) is a finite spectral pair of A(¢) and (Xoo, Joo) is an infinite spectral
pair of A(0).

Proof. Consider equation (3.3). Obviously the solution space of this equation
is the kernel of Ry41(A). Then the behavior of (1.2) is clearly isomorphic to the

solution space of (3.3), i.e.
B ~ Ker Rn4+1(A). (3.6)

But from Theorem 1.1 in [10] we have as a special case that

Ker Ry41(A) = Im col(XpJ5)iLo ® Imcol(Xoo JX )N, (3.7)
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The dimensions of Xp, Jr, Xoo, Joo are r X n, n x n, r x g and p X p respectively,
where n = deg|A(c)| is the total number of finite elementary divisors, p is the
total number of infinite elementary divisors (multiplicities encountered for in both
cases) and n + u = rq (see [8]). Furthermore it is known [8] that the columns
of col(XpJh, XooJX )N, are linearly independent. On the other hand from the
regularity assumption of A(c) we have

rank Ry41(A) = (N —gq+ 1)r
(this is a well known result, see for example [11] exercise 4.10) and thus
dimKer Ry41(A) = rq. (3.8)
Obviously (3.6),(3.7) and (3.8) prove that the columns of the matrix
[Xr, Xeol{J5 ® I}
form indeed a basis of B and consequently dim B = rq. 0

It is clear that the solution space B can be decomposed into two subspaces the one
corresponding to the finite eigenstructure of the polynomial matrix and the other
corresponding to the infinite one, i.e.

B=Br®Bp

where Br = Im col(XpJ5 )X, and Bg = Im col(Xoo JY~¥)X (the subscripts F, B
are the initials of the words Forward and Backward)

The first part Br gives rise to solutions moving in the forward direction of time
and reflects the forward propagation of the initial conditions zg, zy,...,z4-1, while
the second part Bp gives solutions moving backwards in time, i.e. from N to 0.

This discussion should be compared to that in [1, 2, 3]. Notice that the above de-
composition of the solution space into forward and backward subspaces, corresponds
to a maximal forward decomposition of the descriptor space in [3].

A very interesting problem is to determine a closed formula for the solution of
(1.2) when boundary condition are given. The reason why we have to choose both
initial and final conditions is obvious, after the above discussion about the behavior
of (1.2).

Theorem 3. Given the initial conditions vector Zr = [ z§ =27 ... .’BZ‘_I 1T e
R4 and the final conditions vector Zr = [ }_,41 Th_g42 - Zn |7 € R,
(1.2) has the unique solution
T
T = [ XFJ}‘-MF Xoo']o}g_kMoo ] [ 5; ] (3.9)

for k=0,1,2,..., N, iff the vectors Z1,Zp satisfy the compatibility boundary con-

dition .
zr Jp It Mp —Mp
[ o ] Eker[ oM JN-aH (3.10)
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where Mp € Rnxra M € RHX7T are defined by

MFp

Iy ] = (col(Xrdp !, Xoo JLF)izy) ™t € RTOXT, (3.11)

Proof. Every solution z, k= 0,1,2,..., N of (1.2) will be a linear combination
of the basis of B, i.e. there exists a vector ¢ € ®"? such that

ze=[ Xr Xo |{JE@JIX K (3.12)

for k=0,1,2,..., N. Our aim is to determine ¢ in terms of the given initial — final
conditions. The initial conditions vector will be given by (3.12) fork = 0,1,2,...,9—

1. Thus . ey
&1 = col (XpJ*, XeoJN )12, ¢

or equivalently

&= Q[ b Jgf’m ]c (3.13)

where the matrix Q = col(XrJy !, XooJ4){_, in the above equation is invertible
(see decomposable pairs in [8]). At this point it would be useful to partition { =
[ ¢F ¢L )7, where {r and ( have appropriate dimensions. Now from (3.13) using
the definition of Mr, My in (3.11) we obtain

(r = Mrz (3.14)
Jolg_q+1Coo = Moo?EI

Notice that (3.14) determines {r but not (.. Following similar lines for the final
conditions vector we obtain

JF™r = Mpdr

Similarly (3.15) determines (o but not (r. Now using the first equations in (3.14)

and (315) we obta.in
<oo 0 1\400 B o

which in view of (3.12) gives the solution formula (3.9), and combining the second
equations in (3.14) and (3.15) we obtain the boundary compatibility condition

Jp~ ™My —Mp 2r]_,
—My JN-ati M, zp | T

which is obviously identical to (3.10). _ 0

Notice that equation (3.10) plays the role of the boundary mapping equation in [2]
and it can be considered as a direct generalization of it. Equation (3.10) summarizes
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the restrictions posed at both end points of the time interval by the system and with
an appropriate choice of boundary conditions by (3.9) we can determine uniquely
all the intermediate values of zj.

For simplicity of notation and following similar lines with [2], we set

TR Mp —Mp

20,N) = [ —My JN-a+ipr

] € §qux2rq
and we prove the following

Theorem 4. rankZ(0,N) = rq.

Proof. We set .
N = col(XpJit, Xoo I,

then from (3.11) we have
Mg | I, 0
MW]N_[ . I,‘]' (3.16)

Now, post-multiply Z(0, N) by diag{ N, N} which has obviously full rank and use
(3.16). We have

N 0 Jp o0 - 0
Z(O'N)[o N]z[ R A Jolg—q+1]-

Obviously the matrix on the right hand side of the above equation has full row
rank and hence '

rank Z(0, N) = rq. (3.17)
=]

This result should be compared to Theorem 1 in [2], where it is proved that
a boundary mapping matrix of full rank exists if and only if the corresponding
descriptor system is solvable and conditionable. In our case the system is obviously
solvable, since we have already determined a solution and conditionable since we
have proved that the boundary conditions satisfying (3.10) characterize uniquely
the solution. However solvability and conditionability of (1.2) can be easily checked
using rank tests as in [1], but in our case this would be trivial due the regularity of
A(o).

It is important to notice here that (3.17) implies

dimker Z(0, N) = r¢ = dimB

which means that the initial and final conditions vectors are chosen from a r¢—dimen-
sional vector space. Thus rq is the total number of arbitrarily assigned values,

distributed at both end points of the time interval. The connection between
dimker Z(0, N) and dim B is obvious.
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4. EXAMPLE

In order to illustrate the above results we shall give an example which exhibits only
backward behavior. This is done for brevity reasons, while it is well known that the
finite eigenstructure of A(c) gives rise to forward linearly independent solutions (see
for example [8]). Consider the unimodular polynomial matrix

1@=5 7]

Obviously there are no finite elementary divisors and thus no finite spectral pairs,
since det A(o) = 1. Consider also the AR equation

A(o)zr =0

for k=0,1,2,...,N — q. According to the notation used earlier we have ¢ = 2 and
r = 2 and thus we have to expect

dimB = rq = 4.

Indeed, consider an infinite spectral pair of A(c)

0100
[10 0 o ~loo 10
X°°—[00—10]’ To=19 0 01
0000

Then according to Theorem 3, a basis of B = Bp is formed by the columns of the
matrix

- Sn_k ON-k_1 6 §
- N-k _ | ON-k ON-k-1 éN_k-2 ON-k-3
Vk) = Xoo oo™ = [ 0 0 =Nk —6N-k-1 ]

where 8; = 0 for i # 0 and 6y = 1. The boundary mapping equation will be
Z(0,N) = [-Mw, JOIX—9+1M°°]

since there is no finite spectral pair. Now we can see that

0 0 1 o

|1 0 o0 o

Meo=19 0 0 -1

0 -1 0 o

and thus for N > 4, we have J¥-1+1 =
0 0 -1 00000
-10 0 00000
Z(0,N) =

@M=1%9 00 1000 0
0 1.0 00000
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which has full row rank. Obviously by (3.10) the final conditions can be freely
assigned while for N > 4 the initial conditions must be zero. This is natural because,
the infinite spectral pair of A(o) gives rise to reversed in time deadbeat modes, which
after four steps of backward propagation of the final conditions, become zero. The
intermediate solution formula can be obtained by (3.9)

5 -5 Sn_p —b
_ Nekpy = _ | ON-k=1 N—k-3 ON-k N-k-2 | ~
2k = XooJN* Moo = [ I ] Ep,

where no initial conditions are involved because there is no finite spectral pair of

A(o).

5. CONCLUSIONS

In this note we have determined the solution space or the behavior B of the discrete
time Auto-Regressive representations having the form A(¢) i = 0, where the matrix
A(o) is a square regular polynomial matrix and zj is a vector sequence over a finite
time interval k = 0,1,2,..., N. The solution space B is proved to be a linear vector
space, of-dimension equal to the product of the dimension r of the matrix A(o) and
the highest degree of o occurring in the polynomial matrix.

It is also shown that the behavior can be decomposed into a direct sum of the
forward and backward subspace, which corresponds to a maximal F /B decomposition
of the descriptor space in [3]. We have also determined a basis for the solution space,
using a construction based on both the finite and infinite spectral structure of A(c).

We introduce the notion of the dual AR representation which is simply the same
system but with reversed time direction. Finally, a generalization of the boundary
mapping defined for first order systems in [2], to the higher order case is given and
it is shown that such a boundary mapping can be obtained in terms of the spectral
pairs of A(o).

(Received January 23, 1997.)
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