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KYBERNETIKA — VOLUME 35 ( 1 9 9 9 ) , NUMBER 2, PAGES 1 9 5 - 2 0 7 

P R O B A B I L I S T I C P R O P O S I T I O N A L C A L C U L U S 

WITH DOUBLED NONSTANDARD SEMANTICS1 

IVAN KRAMOSIL 

The classical prepositional language is evaluated in such a way that truthvalues are 
subsets of the set of all positive integers. Such an evaluation is projected in two different 
ways into the unit interval of real numbers so that two real-valued evaluations are obtained. 
The set of tautologies is proved to be identical, in all the three cases, with the set of clas­
sical propositional tautologies, but the induced evaluations meet some natural properties 
of probability measures with respect to nonstandard supremum and infimum operations 
induced in the unit interval of real numbers. 

1. INTRODUCTION 

Even if there are the probability theory, and the mathematical statistics based on this 
theory, which have been playing, since the 18th century, the role of the dominant 
mathematical tool for uncertainty quantification and processing, the attempts to 
build alternative mathematical apparata for these sakes, paradigmatically more close 
to formalized logical deductive calculi, are also numerous, important and interesting. 
The resulting mathematical models are usually subsumed under the common general 
notion "non-classical logics" and can be divided, roughly speaking, into three groups. 

(i) Modal logics follow the pattern which emphasize rather the qualitative than the 
quantitative aspects of the notions like possibility or necessity. This goal is reached 
by enriching the language of an appropriate logical calculus by new symbols for the 
functors like "it is possible t h a t . . . " or "it is necessary t h a t . . . " , and by choosing a 
collection of axioms for the original as well as for the new, modal functors. Such a 
choice leads, as a rule, to a compromise between the intuitions and the common lan­
guage feelings and conotations behind the modal functors, and the methodological 
(meta-logical) demands which must be obeyed when creating a deductive formalized 
system. The qualitative character of modal logics is also demonstrated by the fact 
that when defining semantical models of these logics based on the space of possible 
worlds (Kripke semantics), what matters is the fact whether the subsets of possible 

1 This work has been sponsored by the grant No. A1030803 of the Grant Agency of the Academy 
of Sciences of the Czech Republic. 
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worlds, corresponding to some formulas, are empty or finite, or whether their com­
plements possess these qualitative properties. However, if these subsets are beyond 
the scope of these extremal cases, their relative or absolute sizes (extends), measured 
by some quantitative numerical measure, do not play any important role. 

(ii) Fuzzy logics are oriented toward quantification and processing of the notions 
like vagueness, impreciseness or fuzziness. They are based on the idea that formulas 
of the formalized language in question may be interpreted as taking not only the 
two qualitative values "true" and "false", but also some values "between these two 
ones". From the formal point of view this goal is reached in such a way that the 
classical qualitative truthvalues are identified with the extremal points 1 (true) and 
0 (false) of the unit interval of real numbers, and the formulas are supposed to 
be able to take also truthvalues identified with (some or all) real numbers from 
the inside of the unit interval, i.e., from (0,1). There are numerous variants of 
such formalized calculi based on different systems of functors and quantifies and 
on different ways of interpretations of these functors and quantifiers as functions 
from the truthvalues of the composing more elementary formula(s) to the truthvalue 
of the resulting composed formula. In every case, two aspects are emphasized by 
fuzzy logics: (1) the extensional character of all functors and quantifiers, i.e., as 
just mentioned, truthvalues of composed formulas are functions of truthvalues of 
their components, and (2) the notions of vagueness, impreciseness or fuzziness, to 
the description and processing of which fuzzy logics are applied, are supposed to 
be qualitatively different from the notions of uncertainty and randomness described 
and processed by probabilistic and statistical tools, and they are also supposed to 
be of extensional character or at least to be allowed to be processed by formal tools 
preserving the extensional character of functors. 

(iii) Probabilistic logics copy fuzzy logics as far as the truthvalues ranging over 
the unit interval of real numbers are concerned. However, probabilistic logics insist 
on the possibility to understand these values as probabilities, even if this demand im­
plies the non-extensionality of the used functions (contrary to fuzzy logics when the 
possibility to interprete truthvalues as probabilities is abandoned in every case when 
it conflicts the demand of extensionality of all functions and quantifiers). Hence, 
probabilistic logics can be seen as alternative apparata, if related to probability the­
ory and mathematical statistics, for uncertainty and randomness quantification and 
processing based rather on the paradigmatical and methodological grounds of deduc­
tive formalized systems than on the grounds of measure theory, real functions and 
integral calculus, as it is the case of probability theory and mathematical statistics. 

In what follows, we shall try to propose and develop probabilistic proposition-
al calculus with a boolean-valued semantic. This semantic will induce two real-
valued semantics, one of them being extensional, the other one being intensional 
(i.e. non-extensional), but conserving and copying the flexibility of probabilistic 
measures when various kinds and degrees of stochastical (statistical) dependence 
among propositions taken as random events are considered. 
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2. CLASSICAL SYNTAX AND BOOLEAN-VALUED SEMANTICS 
FOR PROPOSITIONAL CALCULUS 

Let us briefly recall the syntax of the classical propositional calculus. There are 
numerous alternative and equivalent presentations of this syntax, just for the sake 
of unambiguity let us choose the well-known formalization introduced by Church 
injl] . 

There is an infinite sequence p\,p2,... of propositional variables, by conven­
tion we shall write also q, r, s, q\, r i , s\, q2,... instead of p2, P3 , . . . The set of all 
propositional variables will be denoted by Var. There is one unary functor -« called 
negation and one binary functor —• called implication. The only auxiliary symbols 
are brackets ( and ), by convenience also other types of brackets will be used. 

Each propositional variable is a well-formed formula (w.f.f.). If A and B are 
w.f.f.'s, then (~^A) and (A —• B) are also w.f.f.'s. By convention, the outermost 
pair of brackets can be omitted. In order to abbreviate our notation we shall write 
A V B instead of (-vl) - • B, AAB instead of -»((-«-4) V (-.#)) and A = B instead 
of (A -> B) A (B -> A). Let C denote the set of all w. f. f.'s. 

The three following w.f.f.'s, namely 

p-*(q-+ p), (1) 

(p -+ (q -+ r)) — ((p ->q)-+(p-+ r)), 

(-19 - > -«p) - * ( p - + <1) 

are called axioms. All axioms are also theorems. Moreover, if w.f.f.'s A —» B and A 
are theorems, then B is also theorem (the so called modus ponens deduction rule). 
If a w.f.f. A is theorem and B is a w.f.f., then the w.f.f. SP

D A, resulting when all 
occurrences of the propositional variable p in A are replaced by the w.f.f. B, is also 
a theorem. The set of all theorems will be denoted by Ded. 

A sequence A\, A2,.. . ,An of w. f. f.'s is called proof, if for each i < n either At 

is an axiom, or there is j < i, p G Var and w. f. f. B such that A{ is SV
B Aj, or there 

are indices 3, k < i such that Aj is Ak —• -4j. Evidently, a w.f.f. A is a theorem 
(or: deducible formula, or: provable formula), iff there is a proof such that A is the 
last formula in this proof. 

The classical semantics for the propositional calculus (for the language C) is 
defined as follows. A (classical) evaluation of C is a mapping e* : Var —• {0,1} (with 
the interpretation 0 = false, 1 = true) uniquely extended to e : C —• {0,1}, setting 
e(p) = e*(p) for p G Var, e(-iA) = 1 - e(;4), and e(A - • fl) = max{l - e(A)t e(B)}, 
i.e. e(-iA) = 1 iff e(A) = 0, and e(A — B) = 0 iff e(A) = 1 and e(5) = 0. A 
w.f.f. A G £ is called a (classical) tautology, if e(A) = 1 for each e* : Var —• {0,1}, 
obviously, e* is the restriction of e to Var, in symbols e* = e \ Var. The set of 
all (classical) tautologies will be denoted by Tautci. The well-known elementary 
completeness theorem for propositional calculus reads that Taufcci = Ded, cf. [1] or 
any elementary textbook on mathematical logic. 

A Boolean-valued semantics for C can be introduced in this way. Let JV = 
{0, 1,2,...} be the set of all non-negative integers, let JV+ = N — {0} = {1, 2 , . . . } , 
let VQ = V(N*) be the power-set of all sets of positive integers. A Boolean-valued, 
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or a Vo-valued, to be more correct, evaluation of £ is a mapping e* = Var —• Vo 
uniquely extended to e : C —> VQ, setting e(p) = e*(p) for p G Var, e(-^A) = 
JV+ - e(A), and e(A - • B) = (JV+ - e(^l)) U e(B). A w.f.f. A G C is called 
Boolean tautology or Vo-tautology, if e(A) = JV+ for each e* : Var —• TV The set 
of all ^-tautologies will be denoted by Taut*,. As in the classical case, obviously 
e* = e \ Var. 

3. COMPLETENESS THEOREM FOR PROPOSITIONAL CALCULUS 
WITH BOOLEAN-VALUED SEMANTICS 

Lemma 1. For each propositional w.f.f. A, A G Ded iff e(A) = yV+ for all 'Pry-
valued evaluations e : C —• Vo such that e*(p) G {0,-^+} holds for each p G Var, 
here 0 denotes the empty subset of JV+. 

P r o o f . Let e* : Var —• {0, 1} be a classical evaluation, let F(e*) : Var —» {0,JV+} 
be defined in such a way that F(e*)(p) = JV+, if e*(p) = 1, and F(e*)(p) = 0, if 
e*(p) = 0. An easy verification of the evaluation rules for -» and —* yields that 
for each A G £, e(A) = 1 iff F(e)(A) = yV+, here F(c) extends F(e*) from Var 
to C and F is obviously a one-to-one mapping between {0, l } ^ a r and {0,«/V+}^ar. 
Hence, e(A) = JV+ for all e* : Var -> {0,7V+} iff e(A) = 1 for all e* : Var — {0,1}, 
so that e(A) = yV+ for all e* : Var -> {0,JV+} iff _4 G Tautd . But Tautd = Ded, so 
that the proof is completed. D 

Lemma 2. If A is an axiom of the classical propositional calculus, i.e., one of the 
formulas in (1), then for each Vo-valued evaluation e* : Var —> Vo> e(A) = JV+. 
In other notation, if A is an axiom of the classical propositional calculus, then 
A G Taut6. 

P r o o f . Given e* : Var — 7>0, let P = e*(p), Q = e*(q)) Q = e*(r), Pc = 
AT+ - P = e(-.p), P - Q = Pc U Q = (yV+ - e*(p)) U e*(g) = e(p - <?), e tc , be 
abbreviated notations for the corresponding subsets of JV+. Then 

e ( p - > ( < z - p ) ) = P - ( Q - P ) = P c U Q c U P = N+, (2) 

e((p - (q - r))) -> ((p - , ) ) - (p -» r))) (3) 
= ( P _ > ( Q _ , i 2 ) ) _ , ( ( p . - Q ) _ , ( j > _ > / 2 ) ) 

= (Pc U Qc U J2) — ((Pc U Q) — (Pc U B)) 
= (PCUQCUP)CU((PCUQYU(PCUP)) 
= (P n Q n pc) u ((P n Qc) u P c u R) 

= ((Pr\Qr)Rc))U(Pf)Qc)UPc\JR 

D ( P n R c ) u P c u R = N+, 
e((-,g _ -,p) - (p - g)) = (Qc _> Pc) - (P - Q) (4) 

= (Q U Pc) -> (Pc U Q) = (0, U Pc)c U P c U Q = (Qc n P) U P c U Q = N+. 

The assertion is proved. D 
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L e m m a 3 . Let A G Tautbl let A —• B G Tautb. Then B G T a u ^ . Let A G T a u ^ , 
let p G Var, let B £ C. Then S 6

p j lE Tautb. On other words, the set T a u ^ C £ is 
closed with respect to both the deduction rules of the classical propositional calculus 
(modus ponens and subst i tut ion). 

P r o o f . Let A G Taut*, let A -> B G Taufc6, let e* : Var -> TV Then e(yi) = 
JV+, e(.A — B) = (Af+ - e(i4)) Ue(B) = JV+, hence, c ( 5 ) = yV+. Let 4 , i? G £ , 
let p G Var, let e : Var —» TV I-et c^ : Var —> "Po be defined in such a way that 
e\(p) = e(B) , e^((/) = e*(q) for all a G Var, q ^ p. Due to the extensionality of the 
mapping e, e ( 5 ^ yl) depends on B only through e(j0), namely, e(Sp

B A) = e i ( / l ) . If 
A G Taufc6, then ei(yl) = W + , hence, e (S^ J4) = vV+ as well, so that SP

B A G T a u ^ . 
The assertion is proved. • 

T h e o r e m 1. (Completeness theorem for propositional calculus with TVvalued 
semantics) 

Ded = Tautb. (5) 

Verbally, each w.f. f. A of the classical propositional calculus is deducible (is a 
theorem) iff e(A) = yV+ for all e* : Var -> VQ = P( jV+) . 

P r o o f . Lemmas 2 and 3 immediately yield tha t Ded C Tautb. If .4 G Taut*,, 
then e(y4) = JV+ for each e* : Var —+ 'Po, in particular, e(A) = A/^ for each 
e* : Var —* {0,JV+ }. So, yl G Taufcci by Lemma 1, but Tautc] = Ded by the 
completeness theorem for the propositional calculus with the classical semantics . 
Hence, Taut* = Ded. • 

We must admit tha t all the s ta tements presented and proved till now are rather 
trivial consequences of the fact tha t set-theoretic operations of complement, union 
and intersection are defined in such a way that the Boolean algebra of all subsets 
of a basic space copies (or: translates) the Boolean algebra of propositions defined 
by the classical propositional functors. In the next chapter we shall take profit of 
the fact tha t in the case of VQ (the Boolean algebra of all subsets of the set J\f~*~ of 
positive integers), the elements of Po can be uniquely encoded by real numbers from 
the (Cantor subset of the) unit interval (0,1) . 

4. T W O NONSTANDARD NUMERICAL SEMANTICS 
FOR PROPOSITIONAL CALCULUS INDUCED 
BY BOOLEAN-VALUED SEMANTICS 

Let B = {0,1}°° be the set of all infinite binary sequences, let C be the well-known 
Cantor subset of the unit interval of real numbers; let us recall tha t C is the set of all 
numbers x G (0,1) for which there exists a ternary decomposition (decomposition to 
the base 3), not containing any occurrence of the numeral 1. Let x : VQ = V(N+) —• 
B be defined in such a way tha t x(A) = (x(A) (1), x(-4) (2 ) , . . . ) and X(A) (i) = 1 
iff i G A. Hence, x ( ^ ) - s ^ n e characteristic function or identifier of the set A of 



200 I. KRAMOSIL 

non-negative integers. Let tp : VQ —•> C be defined in such a way that 

oo 

^ 4 ) = X > ( y l ) ( j ) 3 - \ (6) 
1 = 1 

we shall also take p as p : B —• C and write p(x(A)) instead of <p(A). Both the 
mappings x a n ( I V> a r e obviously one-to-one mappings between VQ and B (VQ and C, 
resp.). Set also 

n 

ii;(A)= I im ( l / „ )£ \ ( j4 ) (0 , (7) 
i = l 

if this limit value is defined, w(A) being undefined otherwise . 

As p : VQ —*• C is one-to-one, the inverse mapping <p~l : C -^ VQ is uniquely 
defined, so tha t the following three operations over the Cantor set C are defined for 
each a\ y E C: 

XLX = <p{Ar+-<p-l(x))t (8) 
xV y = ^ - 1 ( x ) U ^ - 1 ( y ) ) 

x A y = p(p~l(x)np-l(y)). 

An easy calculation yields tha t 1—x agrees with 1 — x for the usual subtract ion 
but, in general, x V y / max{ .r ,y} and x A t / / minjj;,?;} for the usual operations 
max and min in (0, 1). In more detail, if x, y £ C are such that their correspond­
ing (and obviously uniquely defined) ternary decompositions not containing 1 are 
(xu x2i...) e {0,2}°° and (y1: y2)..) € {0,2}°°, then xVy is defined by the ternary 
decomposition (zi , z2) • . .) such tha t Zi = max{.r,-, ?/,•} for each i ~ A^+ , consequent­
ly, x V y = J Z ^ ^ m a x l a r i , ?/,•}) 3"*, similarly xAy = Y,Hi(min{xi, Vi}) 3 _ l - E - g > 
if x = 1/3 = 0, 0 2 2 2 . . . and y = 2 /3 = 0, 2000 . . . , then x V y = \ and x A y = Q 
(their alternative decompositions x = 0,1000 . . . and y = 0, 1 2 2 2 . . . do not meet the 
condition not to contain any occurrence of 1). 

Nonstandard c-valued evaluations of w.f .f . 's of the propositional calculus can be 
defined in two ways which are evidently equivalent . Let e* : Var —+ V be given. 
Then the mapping ec : C —» C defined by ec(yl) = <p(e(A)) for each w.f. f. A £ C 
is called (nonstandard) c-valued evaluation of C. Equivalently, let e* : Var —• C 
be a mapping ascribing to each variable p a real number e*(p) from the Cantor 
set, let ec : C —» C be uniquely defined in such a way tha t ec(p) = e*c(p) for each 
p e Var, ec(-u4) = l - e c ( y l ) , and ec(A - * B) = ( l - e c ( , 4 ) ) V e c ( B ) for each A, B e C. 
Then ec is a (nonstandard) c-valued evaluation of C. Obviously, e* = ec [ Var. 

T h e o r e m 2. (Completeness theorem for propositional calculus with nonstandard 
c-valued semantics) 

Let Tautc be the set of all w.f.f.'s A from C such that ec(_4) = 1 for each 
(nonstandard) c-valued evaluation e* : Var —• C. Then Tautc = Ded. 

P r o o f . Due to Theorem 1, the only we have to prove is tha t Taut c = Tautb. 

Clearly, A G Tautb iff e(A) = jV+ for each e* : Var — Vo, hence, iff <p(e(A)) = 1 
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for each such e*, as (p *(1) = JV+. As there is an obvious 1 — 1 mapping between 

P^T and C ^ a r , we can conclude that A G Tautb iff cp(e(A)) = ec(A) = 1 for each 

e* : Var —> C, i.e., iff A C Tautc. The assertion is proved. • 

Theorem 2 is nothing else than a rather trivial consequence of the fact tha t the 
projection (p of the power-set Vo of all subsets of Af+ into the unit interval of real 
numbers has been defined rather with the aim to encode unambiguously subsets of 
Af+ by reals than to quantify somehow their respective sizes. We have paid for such 
an encoding projection by the fact tha t the binary relation <* on C, defined for each 
x, y G C by x <* y iff x\/y = y (or, what can be proved to be the same, iff xAy = x). 
i.e., the relation with respect to which V and A fulfill the properties of supremum 
and infimum operations, is just a partial ordering on C, copying the partial ordering 
of Vo by the relation of set-theoretic inclusion. As can be easily proved, x <* y 
holds iff Xi < yi holds for each i G vV+, where ( z i , x-2,...) and (y\, ?I2> • • •) a r e ^ n e 

corresponding ternary decompositions from {0,1}°°. It follows immediately, tha t 
for each x) y G C, x <* y implies that x < y for the usual (linear) ordering < in 
(0,1) but not, in general, vice versa, e.g., neither 1/3 <* 2 /3 nor 2 /3 <• 1/3 hold. 
Nevertheless, the following s ta tement can be proved. 

L e m m a 4 . (i) For each w. f. f.'s yl, B G C, and for each TV valued evaluation 
e* : Var — Vo, e(A -> B) = Af+ iff e(A) C e(B), 

(ii) For each w.f .f . 's / l , B G £ , and for each c-valucd evaluation e* : ya r —• C, 
ec(A — B) = 1 iff ec(A) <* ec(B). Hence, if ec(A -> B) = 1, then ec(A) < ec(B). 

P r o o f . Let A, B G £ , let e* : yar — Vo- then e(A — B) = (Af+ - c(A)) U 
e ( 5 ) = JV+ yields tha t e(/l) C e ( « ) , at the same time, e(A) C e(I7) yields tha t 
e(yl -* B) = A r+. Let e* : yar -> C, let c : yar -+ P 0 be the TV valued evaluation 
such that ec(D) = <p(c(D)) for all D E C. Hence, ec(;4 -^ B) = 1 iff c(i4 -+ 
B) = AT+, and this holds by (i) iff e(A) C e( / i ) . However, c(.4) C e(B) holds iff 
V?(e(^l)) = ec(jl) <* (p(c(B)) = ec(H) holds. The assertion is proved. • 

Given a "Po-valued evaluation e* : yar —> Vo, there exists still another way how 
to project the subsets of JV"1" into (0, 1) than the mapping (p. Namely, (nonstandard) 
w-evaluation of w. f. f.'s of the propositional language £ is a mapping ew : C —• (0,1) 
such that there exists a Vo-valued evaluation e* : Var —> Vo with this property: 
for each A G C the value w(\(e(A))) = l i m r l _ 0 0 ( l / n ) ^ " = 1 x(€(A)) (i) exists and 
ew(A) = w(x(e(A))). In order to simplify our notation we shall write w(e(A)) 
instead of w(x(e(A))). Nonstandard ut-evaluations differ substantially from the Vo~ 
valued and c-valued ones, as they cannot be defined in the recurrent way beginning 
from evaluations of variables and extended recurrently (inductively) to all w.f . f . ' s 
using rules for all functors. In other words, 7Vvalued and c-valued evaluations 
are extensional, bu t uv-evaluations are not, hence, they are intensional. E .g . , if 
e(A) = {1, 3, 5, 7, 9 , . . . } for a w.f.f. A G £ , then e(-^A) = {2 ,4 , 6, 8 , . . . } , hence, 
w(e(A)) = w(e(-*A)) = 1/2, but w(e(A V (-.A))) = uv(JV+) = 1, and w(e(A V A)) = 
w(e(A)) = 1/2, so tha t w(e(AVB)) is not defined, in general, by the values w(e(A)) 
and w(e(B)). 
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Setting 

Tautw = {A G C : w(e(A)) is defined and (9) 

w(e(A)) = 1 for each e* : Var —• VQ} 

we obtain easily that Tautb C Tautw holds, as if e(A) = A^+, then trivially w(e(A)) 
= 1. The inverse inclusion Tautw C Tautb can be also easily proved. By contradic­
tion, let A G Tautw —Tautb. Then there exists e* : Var —> VQ such that w(e(A)) = 1, 
but e(A) 7-- M* and _4 ^ Tau£ci (= Tautb). So, there exists a classical evaluation 
e*j : Var —• {0,1} such that ec\(A) = 0. Consequently, if e* : Var —* Po is such that 
e*(p) = y\f+, if e*,(p) = 1, and e*(p) = 0 (the empty subset of ,!V+), if e*,(p) = 0 
for all p G Var, then e(A) = 0, hence, w(e(A))) = 0. So, A $_ Tautw, as there 
exists e* : Var —• VQ with tv(e(yl)) ^ 1. We have arrived at a contradiction, so that 
Tautw C Tautb. 

In fact, we have proved more than the equality Tautw = Tautb. Our notion of 
tv-tautology can be (seemingly) weakened by setting 

T a u ^ = {A e C : w(e(A)) is defined and (10) 

w(e(A)) > 0 for each c* : Var -> VQ}. 

What we have proved can be cxplicitely stated as follows. 

Theorem 3. (Completeness theorem for propositional calculus with respect to 
classical, boolean and nonstandard semantics) 

Under the notations introduced above, 

Tautww = Tautw = Tautb = Tautc = Tautc\ = Dcd. (11) 

5. NONSTANDARD SEMANTICS AND THEIR RELATION 
TO PROBABILISTIC AND POSS1BILISTIC MEASURES 

As it is well-known, probability measure is not extensional, hence, there is no func­
tion G : (0,1) x (0,1) —• (0,1) such that, for a probability space (Q,A, P) and for 
all A) B G A the equalities 

P(AUB) = G(P(A),P(B)) (12) 

P(AHB) = P ( n - ( ( f l - i 4 ) U ( f i - f l ) ) ) = l - G ( l - . P ( i 4 ) l l - P ( f l ) ) (13) 

would hold. Obviously, when P(A) = 1/2, then P(Q - A) = 1/2 as well, but 
P(AUA) = 1/2 / 1 = P(AU(Q — A)). So, looking for an appropriate mathematical 
tool for uncertainty quantification and processing, we are at the very beginning of 
our considerations faced to the necessity to choose between the intensionality of 
probabilistic measures and the extensionality of some other models, comparing the 
relative advantages and disadvantages of both the approaches. However, the ideas 
and results explained above bring us to the conclusion that the ultimate character 
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of this choice is closely related to the classical linear ordering of the unit interval of 
real numbers and to the resulting operations of supremum and infimum, and that 
using the nonstandard ordering and operations presented in the foregoing chapter 
we could combine the extensional and the probabilistic properties of the numerical 
uncertainty degrees in a much large extent than in the case of the classical structures 
over (0,1). 

Theorem 4. Let A, B G C be w.f.f.'s, let e* : Var -+ V0 be a TVvalued 
evaluation of £, let ew(A), ew(B) and ew(A A B) be defined (let us recall that 
ew(A) = w(X(e(A))) = \hnn^(l/n)^=lX(c(A))(i)), let ec(A) = <p(e(A)) = 
E ^ 2 x ( e ( i 4 ) ) ( * ) 3 - \ T h c n 

ec( .4VB) = ec(A) + ec(B)-ec(AAB), (14) 

ew(AV B) = ew(A) + ew(B)-ew(AAB). (15) 

In particular, if ->(A A B) (E Tautci, then 

ec(AVB) = ec(A) + ec(B), (16) 
ew(AvB) = ettl(yT) + e l0(B) l (17) 

and 

ec(T) = ew(T) = l (18) 

for each T G Taufcci- Hence, ec and ew both possess the properties of finite additive 
probability measures. 

P r o o f . Let A, B E C, let e* : Var->V0. then 

oo 

ec(A) = <p(e(A)) = Y,'>(x(e(A))(i))3-i= £ 2 - 3 - ' , (19) 
- = 1 t'6e(A) 

as x(e(A))(i) = 1, if i e e(A), x(e(A)) (i) = 0 otherwise. If A, .S are such that 
-•(.A A B ) G Tautci, then -i(A A B) G Taut&, so that N+ - e(A A B) = Af+ and 
e(A A 5 ) = 0. But e(A A 5 ) = e(A) n e(5), so that, for A V B 

e c(AV£) = 5Z 2 3 " t = £ 2'3""X (20) 
i£e(AvB) i£e(A)Ue(B) 

= J2 2 - 3 - " + ^ 2 - 3 - = ec(A) + ec(S) 
«Ge(A) tee(B ) 

and (16) is proved. Moreover, if A <-+ 1? G Tautci, then A —• B G Taufcci and 
B —» A G Tautci, so that, by Lemma 4, e(A) C e(5) and e(Z?) C e(A), hence, 
e(A) = e(B). Considering a general case of A, B G £ and applying the results just 
obtained to the formulas (A A -*B) V (A A B) and (B A -*A) V (A V B), we obtain 
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immediately that 

->((AA->B)A(AAB))eTautd, (21) 

-.((B A -v4) A (A A B)) € Tautd , 

((A A ->£) V (.4 A B)) <- A £ Tautci, 

((B A ^A) V(AAB))~Be Tautd, 

((A A - .5) V(BA^A)A(AAB))~AVBe Tautcl, 

so that 

ec(AvB) = J2 2-3-*'= £ 2-3-' (22) 
iee(AVZJ) iee(-4A-.B) 

+ 5Z 2-3-'+ ]T 2-3-
iee(.4AO) »'ee(Z?A-.4) 

^ 2-3-'+ J^ 2-3-
^»'6e(.4A-.B) iee(.4AB) 

+ ( E 2-3 _ , '+ £ 2 - 3 - ' ) - E 2-3~*' 
\iGc(BA--A) iGe(AAD) / iGe(AA.O) 

= 53 2 '3"'+ J2 2-3":- 53 2'3"2 

iGe(A) i€e(B) iGe(AAB) 

= ec(.4) + e c ( . S ) - e c ( ^ A 5 ) 

and (14) is proved. 

The proof for ew is similar. If-i(j4AJB) E Tautc\, then (c(i4)n[n])n(e(fl)n[n]) = 0 
for each n £ ./V"*", where [n] = {1, 2 , . . . , n} is the initial segment of N+ of the length 
n. So, -»(.<4 A .0) £ Tautcl implies that 

e , ( /4AB) = l i m ( l / n ) V x ( e ( ^ V H ) ) ( 0 (23) 
n—>oo * J 

i - \ 

= lim (1/n) card{i < n : i £ e(.A V £)} 
n—• oo 

= lim (1/n) card(e(_4 VB)fl [n]) 
n—•oo 

= lim (1 /n ) [card(e(,4) n [n]) + card(e(jB) n [n])] 
n— ôo 

= lim (1 /n ) card(e(.4) n [n]) + lim (1 /n ) ca rd (e (£ ) n [n]) 
n—*oo n—>oo 

= ew (A) + ew(B), 

supposing that ew(A) and ew(B) are defined, so that (17) holds. Considering the 
general case of formulas A, B £ £, supposing that the values ew(A), ew(B) and 
ew(A A B) are defined, and applying (23) to the formulas A A -».B, B A -IJ4, and 



Probabilistic Propositional Calculus with Doubled Nonstandard Semantics 205 

A A B, we obtain in the same way as above, that 

card(e(_4 V B) n [n]) = card(e(_4 A -n£) n [n]) (24) 

+card(e(5 A -.A) n [n]) + card(e(A A B) 0 [n]) 

= card(e(A) n [n]) + card(e(£) n [n]) - card(e(_4 A JB) n [n]), 

so that (15) immediately follows when all the limit values are defined. As e(T) = Af~*~ 
for each T G Tautc\, (18) immediately follows, so that the theorem is proved. D 

As can be almost obviously seen, but as it is perhaps worth being stated explicitly, 
Theorem 4 can be generalized to the case of finite disjunctions; let us limit to 
the case of logically disjoint components. Let A\, A2)... }An be w.f. f.'s of C such 
that ->(.Aj A Aj) 6 Tautc\ holds for each i, j < n, i / j , let V?=i ^« abbreviate 
.Ai VA2 V---V.A„. Then 

e c ( \ / ^ i ) = X>(* )> (25) 
\ t = i / i = i 

and supposing that ew(A{) for each i < n is defined, also ew (V?=i -4i) *s defined and 

c«,fy^)=2c-(^)- (26) 

Generalized forms of (14) and (15) can be also deduced. However, the situation 
differs principially when considering the a-additivity (the countable additivity) of 
the evaluations ec and ew. As the language C does not allow to define disjunctions 
of infinitely many formulas, we have to formalize the next statement in a slightly 
modified way. 

Theorem 5. Let A\, A2}... be an infinite sequence of formulas of £, such that 
-"(.Aj A Aj) e Tautc\ holds for each i, j > 1, i ^ j} let e* : Var —• Vo be a Vo-
evaluation of C. Then 

( oo \ oo oo 

(Je(A) =5>(e(it.))--5>(-4.). (27) 
i = l / i = l i = l 

Hence, the difference is that the value V3 (Ui= î e (^ i ) ) cannot be written as 
ec (Vi^i A{) because of the fact that Vi=i ^* *s n o^ a w-ff- °f £• 

P r o o f . Like as in the proof of Theorem 4 we obtain that e(Ai) fl e(Aj) = 0 for 
each iy j > 1, i ̂  j , so that 

( oo \ oo / oo \ 

(J e(A,)J = X > ( U e(^) j (OS"' (28) 
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= £ 2.3-=Y, £ 2-3-' 

CO OO OO 

t = i j = i t=i 

and the assertion is proved. • 

For the evaluation eW) however, an analogy of (27) does not hold. Or, let 
A\y Ai,... G £, and e* : Var —> ^o be such that e(ylt) = {i} for each i G W+ . 
Then e^^, ) = limn^oo(l/n) = 0 for each i G Af+, but (J ,^ e(Ai) = Af+, so that 
^(Ui=i e(^*)) = - ^ ]C*=i ^ ( A ) - Such J4I, ^ 2 , . . . G C and e* always exist, take 
simply Ai = pt G Var, e(j4t) = e*(pt) = {i} G VQ. Cf. [2] for more details con­
cerning the conditions when finitely additive measures can be extended uniquely to 
cr-additive ones. 

As a matter of fact, it was just our aim to arrive at the cr-additivity of the mapping 
ec, taken as mapping from VQ into (0,1), what forced us to take the mapping (p as 
a one-to-one mapping between {0,1}°° and the set of its values,namely between 
{0,1}°° and the Cantor subset of (0,1). What we have to pay is the consequence 
that not every real number from the unit interval can be ascribed by ec to a w.f.f. 
from £, e.g., for no w.f.f. A the equality ec(A) = 1/2 can hold, as 1/2 £ C. All the 
unit interval as the space of truthvalues can be ranged, in a sense, by the evaluation 
ew which is, on the other side, intensional. Let us describe this solution very briefly, 
referring to [3] or [4] for more detail. 

Lemma 5. Let 0 < gt < 1, i G JV+, be a probability distribution on Af+, so that 
X^i=i ft = 1- Then there exist real numbers atJ-, i, j G Af+, atJ- {0,1}, such that 

(i) if qi = 1, then atJ- = 1 for each j G A/'-1", 

(ii) if qi = 0, then atJ- = 0 for each j G Af+, 

(iii) if 0 < qi < 1, then limn_>oo(l/n) £ ? = 1 atJ- = qi} 

(iv) for each j G Af+ there is just one i G Af+ such that at;- = 1. 

Proof . Cf. Theorem 4 in [4]. • 

Let us recall that the condition that atJ- = 1 (= 0, resp.) for all j G JV+ if 
qi = 1 (= 0, resp.) is substantial and cannot be replaced by a weaker condition 
that limn_oo(l/n)$3^=1

 aij = 1 (= 0, resp.). In other terms, the extremal points 
of the unit interval of real numbers must be represented by the "standard" 1 and 
"standard" 0, not by some of their nonstandard variants. 

Theorem 6. Let (gi, 92 , - . ) be a probability distribution on N*'. Then there 
exists a VQ-valued evaluation e* : Var —*• VQ such that e*(pt) = qi for each i G Af+, 
here Var = {pi ,p 2 , - . . } -
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P r o o f . Obvious, the only we have to do is to set e*(pi) = {j G JV+ : a t ; = 1} 
where {<*ij}^i is a sequence satisfying Lemma 5 with respect to (gi, q2,...). ---

The approach applied here in the most elementary case of propositional calculus 
can be extended also to the case of first-order predicate calculus, cf. [5] 

(Received July 4, 1997.) 
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