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TWO DIMENSIONAL PROBABILITIES 
WITH A GIVEN CONDITIONAL STRUCTURE 

JOSEF STEPAN1 AND DANIEL HLUBINKA 

A properly measurable set V C X x M\ (Y) (where X, Y are Polish spaces and M\ (Y) is 
the space of Borel probability measures on Y) is considered. Given a probability distribution 
A £ Mi (X) the paper treats the problem of the existence of X x Y-valued random vector 
(£, 77) for which C(£) = A and C(rj\£ = x) £ Vx A-almost surely that possesses moreover 
some other properties such as "£(£, 77) has the maximal possible support" or "C(rj\£ = x)'s 
are extremal measures in Vx's

n> The paper continues the research started in [7]. 

1. INTRODUCTION 

To clarify the purpose of the paper consider the following model for a transport 
that starts randomly at a locality x G X and reaches a random locality y G Y: If 
(£,77) denotes the (X x Y)-valued random vector which value (f (u), rj(uj)) = (x.y) 
designates the particular transport from x to y, we ask the probability distribution 
of the (£, 77) to respect in the first place that 

(i) the conditional distribution of terminals y given a departure point x should be 
subjected to a restriction C(r)\£ = x) G Vx almost surely, where Vx is a set of 
(admissible) probability distributions for the transport that originates at the x, 
while the departure distribution is given by a fixed probability distribution A. 

Moreover, we may venture to ask £(£,77) to follow some additional rules on the top 
of (J): 

(ii) For each x G X there is a prescribed terminal region A r c Y and the transport 
should made as many localities y G Ax as possible accessible from the starting 
point x i.e., we ask for a transport (£, 77) such that with the probability one the 
conditional distribution C(r)\£ = x) is supported by the set Ax and it possesses 
the maximal possible support. 

(iii) If F(x)fi) is the payoff we receive for the transport that originates at an x G X 
using a target probability distribution /i G Vx we ask for a transport (£,77) 

1 The paper was prepared with the support of Grant Agency of Charles University under contract 
3051-10/716. 
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that provides the maximal payoff with the probability one, i.e. C(r)\£ = x) = 
argmax{i r(x,//),/i £ Vx] almost surely. 

(iv) If TVs are convex sets of probability distributions we wish to design a simple 
(discrete) transport (£,77) such that C(rj\£ = x) is an extremal distribution in 
Vx almost surely, or, on the contrary, 

(v) having a measure m on the target space Y we prefer an m-continuous solution 
(£,77), i.e. such that £(r/|£ -= x) is a distribution absolutely continuous with 
respect to m almost surely. 

If we interpret the TVs in (i) as the sections of a Borel set V in X x Mi(Y) we 
are able to prove (Theorem 1) the existence of a transport (£,77) that respects (i) 
whatever probability distribution A supported by pr x (P) we may prescribe for the 
random variable f. If we interpret the Ax's in (ii) as the values of a multifunction 
A : X —• 21 which graph is a Borel set in X x Y, Theorems 2 and 3 propose 
sufficient conditions for the existence of a transport that respects both (i) and (ii). 
The Corollaries 2,3 and 4 deal with a possibility to construct a transport (£, 77) that 
satisfies the rules (i,iii), (i,iv) and (i,v), respectively. 

A typical example of a set V we have on mind is a set V C X each of which 
sections TVs is defined as a moment problem. The Corollary 1 treats the situation. 

The techniques used in our proofs depend heavily on the results coming from 
the theory of the analytic sets, on its cross-section theorems in the first place. We 
refer to [3] for the elements of the theory. The paper introduces also a concept 
of an universally measurable (closed valued) multifunction to generalize that of a 
lower semicontinuous multifunction (see [1]). A characterization of the universal 
measurability, given by our Lemma 1 may be of some interest by itself. 

Generally, the paper is a contribution to the research on a possibility to construct 
a probability distribution with given moments, marginals and a conditional struc
ture, see [2] for the latest developments. Actually, the paper continues and in a way 
completes the research started in [7]. Most importantly, the present paper clarifies 
the problem met in [7] when trying to construct the transports with the properties 
(i) and (ii) and introduces further nontrivial examples of the 'P-sets the theory may 
be applied to (Corollaries 2 and 4). 

2. DEFINITIONS AND RESULTS 

Fix first metric spaces X and Y and denote by <?r(X),^(X), #(X),.y4(X), and W(X) 
all closed, open, Borel, analytic, and universally measurable sets in X. Recall that a 
set A C X is analytic if there exists a Polish space 7L and continuous map <j> : Z —> X 
such that A = <^(Z), that 

£(X) C A(X) C tf (X) and 

£(X x Y) = #(X) ® B(Y) C U(X)®U(Y) C U(K x Y) 

and also recall that 

u(X) = {U C X : V/i € Mi(X) 3 5 ! CU CB2, B. G 0(X)./i(B2 \BX) = 0}, 
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where we have denoted the space of all Borel probability measures on X by Mi(X) . 
Let us agree that having a / i E Mi(X), we denote by /i also its uniquely determined 
extension from #(X) to U(K). Moreover, using the notation A* for outer measures, 
we denote 

M{(B) = {A e Mi(X) : X*(B) = 1} for a B C X. 

Whenever speaking about a topology on Mi(X) we mean its standard weak topology 
that makes the space metric and Polish if the space X has the property. 

Agree that any map A : X —• 2^ will be referred to as a multifunction from X to 
Y, we shall write A : X z=t Y in this case and denote 

Graph(A) := {(*, y) G X x Y : y e Ax}y 

where Ax C Y is the value of .A at a point x g X . 

Define A : X =3 Y to be U-measurable and strongly U-measurable if 

{* e X : Ar fl G ± 0} e W(X), V G e S(Y) and 
{* e X : Ax H S ?-: 0} e W(X), V 5 G B(Y)y respectively. 

Observe that if we fix V e G(Y) and Z C X, Z g Z/(X), put A r = V for x £ Z, 
j4r = V7 for z e Z, we have exhibited an example of a multifunction A = (AX} x e X) 
that is U-measurable but not strongly U-measurable. 

A multifunction F : X =4 Y will be called a closed valued multifunction (CVM) 
if F r e ^"(Y) for all x e X and a iower semicontinuous multifunction if it is closed 
valued and {x e X : Fx n G £ 0} e (7(X) for all G G G(Y). We refer to Lemma 1 
for a necessary and sufficient condition for a CVM F to be (strongly) U-measurable, 
and observe that a multifunction A : X =4 Y is U-measurable iff the CVM Ac := 
{Ar, x e X} has the property. Thus 

Graph(A) e -4(X x Y) => G r a p h i c ) G W(X) ® £(Y) (1) 

according to Lemma 1 (iv) and (i). Especially, we observe that 

Graph(A) G -4(X x Y), Ax G F(Y) for x G X => Graph(A) G Z/(X) ® tf(Y) (2) 

Putting S^ = supp(/i) for /i G Mi(Y) where Y is a separable metric space we get 
an example of CVM 5 = (S^, fi G MX(Y)) from Mi(Y) to Y that is obviously lower 
semicontinuous. Recall that for a finite Borel measure /i on Y we define 

supp(/i) := f){F,Fer{Y),pi(F) = v(Y)} 

= {yeY:n(G)>0,VG<=Q(Y),yeG}. 

For the rest of the paper we shall assume the fixed spaces X and Y to be Polish. 
Our results concern subsets P i n X x M\(Y) such that 

V G .4(X x Mt(Y)) Uu(X) ® B(Mt(Y)) 
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mostly. To such a set we may attach naturally a set Output V C X x Y defined by2 

Outputs := {(x,») E X x Y:3fieVx, y G supp(/i)}, i.e. 

(OutputP)* = | J { s u p p ( / i ) , / i G ^ } , x G l 

See Lemma 2 for a result that claims a topological stability of the V —• Output P 
operation. 

To illustrate this, consider a multifunction .4 : X =3 Y with A-. G W(Y) and put 
P A := {(-c,/i) G X x Mi(Y) : fi(Ax) = 1}. It is easy to verify that O u t p u t ^ = Ac. 
Hence Lemma 4 (ii), (iii) together with Lemma 2 (ii), (iii) state that 

Graph(A) G A(X x Y) => VA € A(X x Mi(Y)) 
=>• Output T,t G u(X) ® B(Y) 

Graph(A) 6 u(X) ® £(Y) => T^ G u(X) <g> B(Mi (Y)) 
=> OutputTA G u(X) ® z3(Y). 

(3) 

Frequently we need P C X x Mi(Y) such that ((Output P)* , z G X) is a closed 
valued multifunction X =} Y. We can achieve that assuming a weak form of convexity 
for all the sections Vx's (see [7] and our Lemma 3). We shall say that a V C 
X x Mi(Y) satisfies CS-condition if 

( OO oo \ 

an>0,J]an = l :^]an / inG^) . 
A typical example of a V C X x Mi(Y) our results may be applied to is a set V 

each of its sections is defined by a moment problem: 

Vx := L G Mi(Y) : / / , (* , y)fi(dy) = a(x), i G / } , x G X, (4) 

where I ^ 0 is an index set and for i G / /-\ 
/,- : X x Y —• [0, +oo], C{ : X —• [0, +oo] are Borel measurable functions. 

Remark that if I is at most countable set then such a V belongs to B(X X M I ( Y ) ) 

by Lemma 4(i). If / , ' s are bounded continuous, c,-'s continuous then regardless the 
cardinality of the set J , ? G ^ ( X x Mi(Y)) . Either situation provides a V for which 
the CS-condition holds. 

Recall that a map H : X —• Y is called universally measurable if it is a map that 
is measurable with respect to the (j-algebras W(X) and U(Y) which is as to say that 
it is measurable w.r.t. the cr-algebras U(K) and B(Y) according to Lemma 8.4.6. in 
[3]. A universally measurable map x —> Px from X into Mi(Y) will be called here 
a universally measurable Markov kernel (UMK). Note that x —•• Px is a UMK if 

2 We denote by Ax the section of A C X X Y at a point x £ X 
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and only if x —• PX(B) is a universally measurable (u---->') function for all B G B(Y). 
Indeed since 

x
 u^ p*^x

 u-5 p°(B), V 5 G £(Y) => x u ^ ' P r ( / ) , V / G Cb(Y) => x u^ Px , 

where the first implication follows by the well known fact that /i —• fi(B) are for 
all B G B(Y) (B(M1))B) measurable, the second implication can be verified by 
approximating / G Cb by Borel step functions and the third follows by separability 
of Mi Of) that implies B(M^Y)) = a{fi : | / i ( / ) - j i 0 ( / ) | < e\e > 0,L/0 G M ^ Y ) , / G 
Cb}. Hence, for a A G Mi(X) and a UMK x -> P r we define correctly a probability 
measure PA G Mi(X x Y) by 

PX(A xB)= f PX(B) \(dx) where Ax Be B(X) ® tf(Y). 
JA 

Remark 1. Let / : X x Y -> [0,+oo] be a universally measurable function. Then 
the sections /(.?,•), x G X and x —• fYf(x,y)Px(dy) are universally measurable 
functions in the sense Y —• [0,oo] and X —> [0,oo], respectively. Moreover, if A G 
Mi (X) then . . . 

/ fdPx= f(x)V)Px(dy)\(dx) (6) 
JSx¥ JXJY 

especially, PA(C7) = / x PX(UX) A(dx), U G W(X x Y) defines the extension of PA from 
B(Xx Y) t oW(XxY) . 

The universal measurability of the sections f(x} •) is an obvious statement. To 
verify the rest assume first that / is Borel measurable. Then the map Hf : x —+ 
fYf(x,y)Px(dy) is received by substituting x -» (x, Px) from X into X x Mi(Y) to 
(x,/i) —• fYf(x,y)n(dy) from X x Mi(Y) into [0,oo]. The former of the maps is 
easily seen to be measurable w.r.t. the (7-algebras t/(X) and B(X X M\(Y)) because 
x —• Px is a UMK, while the latter one is a Borel measurable map by Lemma 4 (i) 
in Section 3. Hence the map Hf is universally measurable which implies, putting 
/ = Ic that PA(C) = f^Px(Cx)\(dx) for C G B(X x Y). A standard procedure 
extends the latter definition of PA to the equality (6). For a general / and A G Mi(X) 
there are Borel measurable functions / i < / < /2 such that f\ = /2 [A]-almost surely. 
Then Hfl < Hf < Hf2 on X, Hfx = Hf2 [A]-almost surely according to (6) applied 
to / i and /2 . Hence, the Hf is universally measurable and 

/ /dPA = / /idP* = / / /iO,»)P*(dy) A(dx) = / / f(x,y)Px(dy)X(dx) 
JXxY JXxY JXJY JXJY 

according to the first part of our argument. 

Let us agree that whenever we shall speak about an (X x Y)-valued vector (£, r)) we 
mean a map defined on a probability space (fi,£, P) that is measurable with respect 
to the cr-algebras £ and U(K x Y). This definition makes the random variables £ 
and 7] to be measurable w.r.t. the cr-algebras U(K) and t/(Y), respectively and it 
presents no loss of generality (see Lemma 8.4.6. in [3], again). Recall that if we have 
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an (X x Y)-valued random vector (f, 77), then a UMK x -+ Px from X into Mi(Y) is 
called a regular conditional distribution of rj given the values of f if 

P[teA,rieB]= I P r(£)A(dx), A e £(X), fl E B(Y), where A = £(£). (7) 
JA 

It is a well known fact that a regular conditional distribution of r) given the values 
of f exists and it is determined uniquely almost surely w.r.t. C(£) provided that X 
and Y are Polish spaces (see [8], p. 126). We shall denote as usual P r = C(r)\£ = x) 
for any regular conditional distribution x —* Px of r) given the values of f. 

Obviously we may paraphrase Remark 1 as 

Remark 2. If (f, 77) is an (X x Y)-valued random vector such that 

C(i) = A and C(r)\Z = x) = Px A-almost surely (8) 

holds for a A G MX(X) and a UMK x — Px then 

£(£, v)) = PA and E[/(£, rj)\i = x] = f / (x , y)Px(dy) A-almost surely 
JY 

holds for any universally measurable function / E Li(PA). 

A reverse statement to Remark 2 is provided by 

Remark 3. Given a UMK x -> Px and a A E Mi(X) there is an (X x Y)-valued 
random vector (£,r)) such that (8) holds. 

To construct a vector (£,r)) possessing the properties (8) put (ft, T, P) := (X x 
Y,W(X x Y),PA) and f := prx , 77 := prY, where prx : X x Y -* X denotes the 
canonical projection of X x Y onto X. 

More generally, given a V C X x Mi(Y) and A E Mi(X) our results concern 
mainly the existence of an (X x Y)-valued random vector (f, r)) such that 

C(£) = A and C(r)\£ = x) eVx almost surely w.r.t. A. (9) 

A random vector (£,r)) with properties (9) shall be called a (V, A)-vector. Observe 
that the random vector (£,77) the existence of which is stated by Remark 3 is in 
fact (V, A)-vector with V = Graph(x —* Px). A simple argument verifies that 
V E W(X) ® #(Mi(Y)) in this case as a consequence of the universal measurability 
ofx — P r . 

R e m a r k 4. If A : X .={ Y is a multifunction with Graph(A) E £/(X x Y) and 
A E Mi (X) then 

(i) (Z,r)) is<i(VAi\yvectoT. 

(ii) P[(£, rj) E Graph(A)|f = x] = 1 A-almost surely. 
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(iii) P[(t,v) G Graph(A)] = 1 

are equivalent statements because P[(f,*7) G Graph(.A)|£ = x] = PX(AX) according 
to Remark 2. 

Finally, we shall say that a (V, A)-vector is maximally supported if 

supp(£(77|f = x)) D supp(£(.7/|£/ = x))A-a.s. for any (P,A)-vector (£',77'). 

Note that if a (P, A)-vector is maximally supported then according to Lemma 5 in 
Section 3 supp(£(£, rj)) D supp(£(£', rj')) for any (V, A)-vector (£ /,^ /) and that the 
implication can not be reversed according the counterexample that follows the proof 
of the lemma. 

Our main results are 

Theorem 1. Consider Q C X x Mi(Y), a multifunction A : X =t Y and A G 
M{(D(Q,A)), where £>(Q,-4) : = { x G X : B L / G Q*,Ai*(-4*) = 1}- Then 
either Q G -4(X x Mi(Y)), Graph(,4) G w4(X x Y) 

or Q G W(X) ® 5(Mi(Y)) , Graph(^l) G Z/(X) ® £(Y) 

implies that there is a (<2 n VA, ^)-vector (£,17). 

Observe that according to Remark 4 the theorem states exactly that there is a 
(Q,A)-vector (£,17) such that P[(f, i|) G Graph(yl)] = 1. 

Theorem 2. Assume that P G U(K) ® #(Mi(Y)) satisfies the CS-condition and 
is such that O u t p u t s G W(X) ® #(Y). Then for each A G M;(pr x P) there exists a 
(7?, A)-vector (£,77) such that 

supp(£(.7|£ = x)) = (Output 7 % A-almost surely. (10) 

Remark that a (7*, A)-vector (£,77) that possesses the property (10) is maximally 
supported. We do not know whether the implications V G W(X) ® Z?(Mi(Y)) => 
Outpu t s G W(X) ® B(Y) is true or not. Observe (3) for the positive answer for a 
very simple choice of V. 

Theorem 3. Assume that n C X x Mi(Y) and a multifunction A : X z4 Y are 
such that 

Graph(,4) G .4(X x Y) n W(X) ® £(Y), 
ft G -4(X x Mi(Y)) nt f (X) ® B(Mi(Y)) and satisfies the CS-condition. ^ ' 

Then for each A G M{(D(n,A)) := Mx*{x G X : 3/x G ̂ r,/i(-4.r) = 1} there exists 
a maximally supported (7£ n VA> A)-vector (£, 77). 

Observe that Theorem 3 may be applied to n and A such that both n and 
Graph(yl) are simply Borel sets and that, in this situation, provides a generalization 
to the second part of Theorem 1 in [7]. 
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3. PROOFS 

Lemma 1. Let F : X =t Y be a CVM, and A : X =J Y a multifunction. Then 

(i) F U-measurable 

(ii) Graph(F) G W(X) ® B(Y) 

(iii) F strongly U-measurable, 

are equivalent statements. 
Moreover 

(iv) Graph(yl) G A(K x Y)UW(X) ® #(Y) => -4 is strongly U-measurable. 

(v) F lower semicontinuous => Graph(F) G B(K x Y). 

P r o o f . It is sufficient to verify (i)--->(ii), (iv), (v). 
(i)--->(ii): To verify this we simply write 

XxY\Graph(F) = { ( x , y ) : y g F r } = ( J {x : FxnG = 0}xG G U(X)®B(Y) (12) 
GGV 

where V is a countable topological base in Y. 

(iv): Let B G B(Y). Then {x : Ax 0 B £ 0} = prx[Graph(,4) n (X x B)] G tf(X) by 
8.4.4. and 8.4.6. in [3] because Graph(jl) n (X x B) G -4(X x Y)UW(X) ® tf(Y) 

(v): It follows by (12) because {x : F r n G = 0} = X \ {x : Fx n G £ 0} G ^r(x) for 
G G (/(Y) as F is lower semicontinuous. • 

Lemma 2. (see also Lemma in [7] for the implication (i) below) 

(i) V G -4(X x Afi(Y)) => O u t p u t s G -4(X x Y) 

(ii) 7> G tf (X) ® tf(Mi (Y)) => Output 7> G tf (X x Y) 

(iii) VeA(XxMi(Y)), (OutputV) x eT(Y) for all a?eX => Output7>GW(X)®#(Y). 

P r o o f , (iii) follows by (iv) and by [(iii)=->(ii)] in Lemma 1 as x —+ (Output V)x 

represents a closed valued multifunction X z4 Y. 
We shall prove (i) and (ii): Put D := {(s.y-ji) G X x Y x Mi(Y) : (x,/i) eV,y e 
supp(/i)}, observe that O u t p u t s = prXx^(£>), and D = (*P x Y) n (X x Graph(S)), 
where 5 : Mi(Y) =4 Y is the closed valued correspondence defined by S^ = supp(^). 
Because S is easily seen to be lower semicontinuous it follows by (v) in Lemma 1 
that 

V G -4(X x Mi(Y)) =>DG -4(X x Y x Mi(Y)) => prXxY(D) G .4(X x Y) 

and 

V G Z/(X) ® B(MX(Y)) =>De tf (X) ® #(Y x Afi(Y)) =-> prXxY(£>) G W(X x Y) 

(again by 8.4.4. and 8.4.6. in [3]). ° 
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Lemma 3. Let V C X x MX(Y) satisfies the CS-condition. Then 

V i G p r x P 3/ix G Vx such that supp(/ix) = (Output V)x 

and therefore x —> (Output V)x is a closed valued multifunction X =t Y. 

To verify the statement it is sufficient to read carefully the first part of the proof 
of Theorem 2 in [7]. We shall do it for the sake of completeness of our presentation. 

P r o o f . Let x G pr^P and {/ii,/z2, • • •} a dense set in Vx. By the CS-condition 
we have / i r = ^ J ° anHn G Vx for some an > 0, Yy? an = 1- Obviously supp(/i r) C 
(Output V)X1 to verify the reverse inclusion choose y G (Output V)x and Vy G 
G(Y) its arbitrary neighbourhood. There is a v G Vx such that y G supp(l/). If 
/infc —• i/ weakly then for an arbitrary open neighbourhood Vy oft/ limsup/infc(Vy) > 
limsupi/(Vy) > 0. Thus, Hnk(Vy) > 0 for a k G N, hence fix(\/y) > J2anktink(^y)> 
0. It follows that y G supp(/i r). D 

Lemma 4. Let / : X x Y -> [0, oo] be a (i/(X) ® #(Y), B(M+) measurable function 
and A : X =4 Y a multifunction. Then 

(i) (x, /i) -+ fY / (x , y)/i(dy) is a tf(X) ® tf(Mi(Y))-measurable map from X x Mi(Y) 
into [0,oo]. Moreover, the Borel measurability of / implies that the map is Borel 
measurable. 

(ii) If Graph(^l) G W(X) ® B(Y) then P A G Z/(X) ® tf(Mi(Y)). 

(iii) If Graph(i4) G -4(X x Y) then VAeA(^x MX(YJ). 

(iv) If Graph(A) G Z/(X) ® #(Y) then3 

VA)s := {(-r,/i) G X x MX(Y) : ji(;4r) = l,supp(/i|>lr) = Ax} 

is a set inW(X)® .6(Mi(Y)). 

Observe that j4r G #(Y) and A r G U(Y) if Graph(A) G tf(X) ® £(Y) and 
Graph(A) G *4(X x Y), respectively. Hence the sets VA, VA,S are defined correctly. 
Observe also that we miss an analogue of (iv) when Graph(A) G -4(X x Y). 

P roof , (i) Assume first that / = IUxB where U G W(X), B G B(Y). Then 
fYf(x,y)fi(dy) = fi(B)Iu(x) for x G X and (i) follows easily observing that \x —* 
,/i(B) is a Borel measurable map Mi(Y) —> IR. Theorem 1.2.20 in [5] now extends the 
validity of (i) to / ' s that are bounded and W(X) ® #(Y)-measurable, which in fact 
verifies (i) generally. The "moreover part" of (i) may be proved in a similar way. 
(ii) is an immediate consequence of (i) putting f(x)y) = Iax(t/). 
(iii) Because Graph(A) is universally measurable in X x Y it follows that 

fi(Ax) = (ex ® Ix)(Graph(A)) for x G X, 

3 As usual if n G Mi (Y) and A G W(Y), (A-|-4) denotes the restriction of /i to the Borel a-algebra 
13(A), hence supp(/x|A) G F(A) is the set defined equivalently by supp(/x|A) = {y G A : ̂ (GnA) > 
O V G G ^ ( Y ) , yeG}. 
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where ex denotes the probability measure that degenerates at x, hence 

VA = {(x,/i) : (ex ® fi)(Gmph(A)) = 1}. 

Thus, VA is seen to be inverse image of M{ (Graph(yl)) with respect to the con
tinuous map (x,fi) —• (ex 0 /i) that maps X x Mi(Y) into Mi(X x Y). Because 
Mi* (Graph(i4)) is an analytic set in Mi(X x Y) by Theorem 7, p. 385 in [6]4, (iii) 
follows directly by 8.2.6. in [3]. 
(iv) According to (iii) we have to prove that Vs '•— {(x^) '• supp(/i|ylr) = Ax) is a 
set in £/(X) ® B(M\(Y)). TO see that we write Vs as the intersection of the sets 

[({* : GnAx ± 0}xMi(Y)n{(x,/i) : fi(GnAx) > 0})u({x : GnAx = 0}xMi(Y))] 

where the G's are running through a countable topological base in Y. To verify the 
above equality observe that 

supp(fi\Ax) = Ax iff [G n Ax ^ ^.G £ V => fi(Gn Ax) > 0], a; E X. 

To complete the proof apply (i) to see that 

{(*, /i) : KG n Ax) > 0} e W(X) ® B(MX(Y)) 

and (iv) in Lemma 1 to see that {x : G fl Ax ^ 0} and {x : G fl Ax = 0} are sets in 
W(X). • 

Lemma 5. Let (£, rj) be a maximally supported (V, A)-vector for a V C X x Mi(Y) 
and A e Mi(X). Then 

supp(£(£,?)) D supp (£(£', 77')) for any (V, A)-vector (£', i/). 

P r o o f . Denote P* = C(r]\£ = x) and Q* = C{rf\£' = x). It follows by Remark 1 
in Section 2 that / x P*[(suppPA)/] A(dx) = PA[suppPA] = 1. Hence the sections 
(suppPA)x G F(Y) are such that P*[(suppPA)r] = 1 almost surely w.r.t. A and 
therefore (suppPA)a: D supp(P r) . Observe that the latter inclusion and Remark 1 
imply that 

QA(suppPA) = / Q* [(suppPA) J A(dx) > [ Qx [suppP*] A(dx) 
Jx Jx 

> /Q x [suppQ r ]A(dx) = l 
Jx 

because suppP* D suppQ* a.s [A]. Thus suppPA D suppQA which, according to 
Remark 2, concludes the proof. • 

4 T h e theorem states exactly that Mi (Graph(A)) € A(X X M i ( Y ) ) , but M* (Graph(A)) is 

easily seen to be the image of the former set w.r.t. the continuous map A —• lGraph(_4) o A where 

lQraph(>l) '• Graph(A) -*• X X Y is the identity map. Hence M* (Graph(A)) G >l(X X Af i (Y)) . 
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It might be of some interest to note that the reverse implication to that of pre
sented by Lemma 5 is not true: put Q r = ex for x G [0,1] and Px = ex for x G [0,1), 
P1 = £n and A = | ( m + e\) where m is Lebesgue measure on [0,1]. Obviously, we 

supp(QA) = Diag([0,l]2),supp(PA) = Diag([0, l]2) U {(1,0)} 

hence 
supp(QA) C supp(PA), supp(P1) = 0 and supp(Q1) = {1}. 

Putting V = Graph(x -> Pr)UGraph(x -> Q*), C(r)\£ = x) = Px, C(rf\? = x) = Qx, 
C(£) = C(£') = A we observe that the (£, rj) is a (V, A)-vector which distribution has 
the maximal support but it is not maximally supported. 

We are prepared to complete our proofs. 

P r o o f of T h e o r e m 1. Put V := QC\VA- It follows by Lemma 4 (iii) and (ii) 
that either V G -4(Xx MX(Y)) or V G U(K)®B(M1(Y)) which in both cases implies 
that D(Q}A) = p r x P G U(X) (8.4.1., 8.2.6. and 8.4.4. in [3]). The cross section 
theorem (either 8.5.3.(b) or 8.5.4.(b) in [3]) verifies that there is a map x —• Px 

from D(Q,A) into Mi(Y) which is measurable w.r.t. the cr-algebras i/(X)flF)(Q, A) 
and £(Mi(Y)) such that Px G Vx holds on D(Q,A), i.e. A-almost surely. The 
map x —> P r can be obviously extended (e.g. by any constant) to an universally 
measurable Markov kernel x —* Px from X into Mi(Y) and according to Remark (3) 
in Section 2 there exists a (X x Y)-valued vector (£,rj) such that (8) holds. This of 
course means that the (£, rj) is an (Q C\VA, A)-vector. • 

P r o o f of T h e o r e m 2. Put Q :=VDVS, where Vs := {(X.JI) G X x MX(Y) : 
supp(/i) = (Output V)x}. Because (OutputV)x G ^(Y) for each x G X according 
to Lemma 3, we may apply Lemma 4 (iv) with A = {(Output V)X) x G X} to verify 
that Vs G W(X)®.6(Mi(Y)). Hence Q belongs to the cr-algebra also and Theorem 1, 
applied to the Q and to the CVM A with Graph(.A) = X x Y, implies that there is a 
(Q, A)-vector (£,.7) because pr xQ = p r ^ according to Lemma 3 again. Hence, the 
(£,77) is a (V, A)-vector such that (10) holds. • 

P r o o f of T h e o r e m 3. We plan to apply Theorem 2 to V = H C\VA, where 
VA and hence also V belong to .4(X x Mi(Y)) fl W(X) ® B(MX(Y)) according to 
Lemma 4 (ii) and (iii). It is obvious that V satisfies the CS-condition and therefore 
Outpu t s is in t/(X) ® B(Y) according to Lemma 3 and Lemma 2 (iii). Because 
D(7l}A) = p r x P , it follows by Theorem 2 that there is a (V, A)-vector (£,77) such 
that (10) holds. It follows directly from the definition of the set O u t p u t s that the 
(f, rj) is a maximally supported (11 C\ VA, A)-vector. D 

4. COROLLARIES 

Using Theorem 1 and 3 we are able to generalize Corollary 1 in [7], namely to remove 
the requirement on the local compactness of the space Y. 
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Corollary 1. Assume that /,(x, y),c t(x) satisfy (5) for i G I, I being an at most 
countable set. Consider A G A(K x Y)UU(X) ® B(Y) and put 

D(f,c,A) := | x G X : 3/i G Mi(Y),/i(>l r) = 1, / f{(x,y)^t(dy) = c,(x),i G I| . 

Then to each A G M* (-D(/, c, „4)) such that c, G £i(A) for i G I there exists an 
(X x Y)-valued random vector (f, rj) for which 

A O = \ ?[(£, V) e .4] = 1, E[/itf, 17)] < oo, E[L(£, *7)|.!] = c,(0, • G I (13) 

holds. 
If moreover .A G -4(X x Y) n W(X) ® #(Y) then a random vector (£, 7/) with the 

properties (13) may be chosen such that supp(£(f, 77)) D supp(£(£', 77')) for any 
other random vector (f',7/') that satisfies (13). 

P r o o f . Put Q = {(x , /z )GXx M I ( Y ) : fYfi(x,y)ii(dy) = c,(x),2 G I} and con
sider the multifunction B : X =4 Y with Graph(I?) = A Then, using the notation 
introduced in Theorem 1, we have D( / , c,A) = D(Q} B) and Q G #(X x A/i(Y)) ac
cording to Lemma 4 (i). Observe also, that for a random vector (£, 7/), the properties 
(13) state equivalently that the (£, 77) is a (Q O P B , A)-vector. The equivalence is an 
easy consequence of Remark 2 and 4 in Section 2 using the integrability of c,'s with 
respect to A. Because the set Q satisfies obviously the CS-condition, Theorem 1 and 
Theorem 3 verify the statements of our Corollary. • 

Remark that for a finite index set I 

D(f,c,A) = {x G X : (x) G c o ( f ( x , ^ ) ) } , c = (a,i G I),f = (/,-,i G I), 

where co denotes the convex hull (see [4], for example). 
The theory we have presented is designed mostly with the purpose to prove the 

existence of a (V, A)-vector with the maximal support of its probability distribution. 
The rest of our corollaries suggests some other possible applications. 

Corollary 2. Consider a set V G U(X)®B(M\(Y)) and an upper bounded function 
F :Xx Mi(Y)->R that is Z/(X) <g> #(Mi(Y))-measurable. Denote 

SF(x) := sup{F(x,/i),/i G Vx} for x G X (i.e. SF(x) = - 0 0 for x $ pr x (P)) 
D(V, F) := {x G X : SF(x) = F(x, /z) for some /i G Vx}. 

Consider moreover a measure A G M*(D(V,F)). Then there exists a (V, A)-vector 

(f, 77) such that 

F(x, £(T7|£ = x)) = SF(x) holds A-almost surely. (14) 

P r o o f . Obviously, the random vector (£,r)) which existence is stated is equiva
lently defined as a (Q, A)-vector, where 
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Q:=VHSF, where SF := {(x,/i) : F(x,/x) = SF(x)}. 

Because pr xQ = D(V,F), we could use Theorem 1 (with A : X =t Y, such that 
Graph(i4) = X x Y) to prove the existence of a (Q, A)-vector (£, 77) if «S/n would be 
a set in i/(X) ® B(M\(Y)). TO verify this, it is sufficient to show that the function 
SF : X —> [—00, +00) is universally measurable: Fix a G JR. and observe that 

{x : SF(x) >a} = {x:3fieVx, F(x, /1) > a} = prx(7> n [F > a]), 

where [F > a] = {(#,//) : F(x,fi) > a}. Thus {.r : SF(x) > a} is the projection of a 
set in i/(X) ® #(Mi(Y)) and therefore a universally measurable set in X according 
to 8.4.4. in [3]. • 

An obvious choice for the function F(x,fi) is given by 

F(x,n) := fYf(x,y)fi(dy), x G X, fi e Mi(Y), 

where / : X x Y —» E is an upper bounded Z/(X)<g>5(Y)-measurable function. A more 
sophisticated choice of the F allows to enrich the result given by Theorem 3 in [7]: 
For a V C X x Mi(Y) such that all its sections Vx are convex sets we denote 
V6 := {(x,fi) EV.fiE exVx} where exVx denotes as usual the set of all extremal 
measures in Vx (might be an empty set). Theorem 4 in [7] states the existence of a 
(V6, A)-vector (£,rj) (i.e. C(rj\£ = x) is an extremal measure in Vx A-almost surely), 
provided that the V is a closed set in X x Mi(Y) and A G M*(prx(P)). 

Corollary 3. Let V G U(X)®B(M\(Y)) is a set such that Vx is a compact convex 
set in Mi(Y) for all x G X and A a measure in M*(pr^(V)). Then there exists a 
(V, A)-vector (£,77) such that C(n\Z = x) G exVx A-almost surely. 

P roo f . It is a well known fact that there exists a bounded continuous strictly 
convex function A : MX(Y) —• 1 . For its construction we may refer to [8] (p.40) or 

simply suggest to put A((i) := Y^Li 2 " n (hf^t1) >l* € Mi(Y), where 0 < fn < 1 
are continuous functions defined on Y such that fYfndfi = fYfndi/, n G N implies 
that fi = v for \x,v G Mi(Y). Applying Corollary 2 to the continuous bounded 
function 

F : X x Mi(Y) -* E defined by F(x,ix) = A(/i) for (x,^) G X x Mi(Y), 

observing that D(V, F) = pr^C^) in this case (F(x, -J's are continuous on compacts 
"Px's) we prove the existence of a (V, A)-vector (£,77) that possesses the property 
(14). It means that ^(£(77^ = x)) = max{.A(/i) : /i G Vx} A-almost surely, hence 
C(rj\£ = x) G ex'Px A-almost surely because yl is a strictly convex function. O 

Observe that Corollary 3 may be applied to a set V defined by 

V = | ( x , / i ) G X x Mi(Y) : J fi(x,y)ii(dy) = a(x),i G Flj , 
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where Y is a compact metric space and /,• : X x Y - > [ 0 , oo), c,- : X —• [0, oo] are Borel 
measurable such tha t fi(x, •) is a bounded continuous for each i G l 

We shall close our presentation by a simple observation on the existence of (V, A)-
vectors (f, rj) with the C(rj\£ = x)'s tha t are absolutely continuous with respect to a 
cr-finite Borel measure on the space Y. 

Coro l la ry 4. Let V is a set in Z/(X) ® B(M\(Y)) and m a cr-finite Borel measure 
on Y. Denote 

D(V,m) := { x e X : 3 / / G P x , ^ « m } 

and consider A G M{(D(V,m)). Then there exists a (P,A)-vector (£,77) such tha t 

£(77|f = x) <C m [A] a.s. or equivalently £(£ , 77) <C A ® m. (15) 

If V E U(X) ® B(Mi(Y)) n^4 (X x Mi (Y) ) satisfies moreover the CS-condition then 
there is a ('P, A)-vector such tha t (15) holds and such tha t 

supp(£(£,i7)) D supp (£(£ ' , r / ) ) V (V, A)-vector (£ ' ,?/) with the property (15). 

P r o o f . We shall use Theorem 1 and Theorem 3 with Q = V n Am and 7£ = 
VnAm, respectively and also with A : X =t Y such tha t Graph(A) = X x Y, denoting 
-4m := {(*,/*) G X x M i ( Y ) : // < m } . Observe tha t F>(7> n . 4 m , - 4 ) = D(V,m) = 
P rxC^ ^ - 4 m ) in this case. We state tha t Am is a Borel set in X x M i ( Y ) : Observe 
first tha t Z = {/ G L\(m) : f > 0 m-almost everywhere, JYfdm = l } is a closed, 
hence a Borel set in Li(rn) tha t is a Polish space in its s tandard norm topology. 
Put t ing H(f) = mj, where / G L\(m) and dmj = / d m , it follows easily tha t 
H : Z —• Mi (Y) is a continuous injective map such tha t Am = X x H(Z). Hence, 
. 4 m G B(X x Mi (Y) ) according to 8.3.7. in [3]. 

Thus, V C)Am is a set tha t satisfies the measurability requirement of Theorem 1 
if V G Z/(X) ® # ( M i ( Y ) ) and tha t of Theorem 3 if V G Z/(X) ® S ( M i ( Y ) ) n -4(X x 
M i ( Y ) ) . Moreover, the set VOAm obviously satisfies the CS-condition if the set V 
does. Hence, for a V in W(X) ® /5(Mi(Y)) there exists a ('P n ^ l m , A)-vector (c;, rj) 
according to Theorem 1 and for V G W ( X ) ® # ( M i ( Y ) ) n . 4 ( X x MX(Y)) there exists 
a maximally supported (V C\ Amr A)-vector (^,7;) according to Theorem 3 which 
concludes the proof because 

(£, r/) is an (Am, A)-vector iff £ (£ , 77) <C A ® m 

according to Remark 1 in Section 2. • 

(Received August 5, 1997.) 

REFERENCES 

[1] J.-P. Aubin and H. Frankowska: Set Valued Analysis. Birkhauser, Boston 1990. 
[2] V. Benes and J. Stepan (eds.): Distributions with Given Marginals and Moment Prob

lems. Kluwer, Dordrecht 1997. 



Two Dimensional Probabilities with a Given Conditional Structure 381 

[3] D. L. Cohn: Measure Theory. Birkhauser, Boston 1980. 
[4] J . H . B . Kempermann: The general moment problem, a geometric approach. Ann. 

Math. Statist. 39 (1968), 93-122. 
[5] P. A. Meyer: Probability and Potentials. Blaisdell, Waltham 1966. 
[6] L. Schwarz: Radon Measures on Arbitrary Topological Spaces and Cylindrical Mea

sures. Oxford University Press, Oxford 1973. 
[7] J. Stepan: How to construct two dimensional random vector with given marginal 

structure. In: Distributions with Given Marginals and Moment Problems (V. Benes 
and J. Stepan, eds.), Kluwer, Dordrecht 1997, pp. 161-171, 

[8] G. Winkler: Choquet Order and Simplices. (Lectures Notes in Mathematics 1145.) 
Springer-Verlag, Berlin 1985. 

Prof. RNDr. Josef Štěpán, DrSc. and Mgr. Daniel Hlubinka, Ph.D., Department of 
Probability and Statistics, Faculty of Mathematics and Physics - Charles University, 
Sokolovská 83, 18600 Praha 8. Czech Republic. 
e-mails: stepan@karlin.mff.cuni.cz, hlubinka@karlin.mff.cuni.cz 


		webmaster@dml.cz
	2015-03-27T09:40:00+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document




