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APPLICATION OF A SECOND ORDER vsc 
TO NONLINEAR SYSTEMS IN MULTI-INPUT 
PARAMETRIC-PURE-FEEDBACK FORM 

ANTONELLA FERRARA AND L U I S A G I A C O M I N I 

The use of a multi-input control design procedure for uncertain nonlinear systems ex
pressible in multi-input parametric-pure feedback form to determine the control law for 
a class of mechanical systems is described in this paper. The proposed procedure, based 
on the well-known backstepping design technique, relies on the possibility of extending 
to multi-input uncertain systems a second order sliding mode control approach recently 
developed, thus reducing the computational load, as well as increasing robustness. 

1. INTRODUCTION 

Recently, the attention of some researchers has been focused on the possibility of 
generating higher order sliding modes (Levant [9]) and appreciable results have been 
attained in case of sliding regimes [15] of the second order (i. e., S = S = 0 in finite 
time, with only S measurable and a control discontinuous on S directly affecting S) 
(see Bartolini t t al [3] and Levant [10]). To be more specific, a second order sliding 
mode control (SOSMC) problem is that of steering to zero asymptotically the state 
of the uncertain system described by 

{ ii = a?t+i, i = l , . . . , n - 1 

xn = (j>o(xu...,xn) +po(x\,...,xn)u 

with 0o(*)> Po(') uncertain scalar functions with known upper and lower bounds 
(Po(') with known sign), and unmeasurable xn. Yet, if the system to control in
stead of being expressible in the form (1) has uncertainties of more general type, 
for instance appearing at each state equation, the solution procedure suggested in 
Bartolini et al [2] is no more directly applicable. In case the system, though nonlin
ear and with some degree of uncertainty, is expressible in the so-called parametric-
strict or parametric-pure feedback forms [6, 11, 12], then a combined backstep-
ping/SOSMC design procedure can be conceived to solve the problem, as indicated 
in Bartolini et al [1]. 
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The aim of this paper is to extend the results of Bartolini et al [1] to the case 
of multi-input nonlinear systems with parameter uncertainties, making reference, in 
particular, to some common mechanical systems typically expressible in the multi-
input parametric-pure feedback form. As outlined in Kokotovic et al [8], the adaptive 
backstepping design can be easily extended to this class of systems provided that the 
matrix which pre-multiplies the control vector (i.e., the control matrix) is nonsingu-
lar and known. In particular cases of a certain applicative significance, the solution 
to the multi-input SOSMC problem appears to be particularly simple [4] and suit
able to be exploited within a backstepping framework. It is the case of positive (or 
negative) definite and dominant diagonal control matrix. 

The overall control design procedure for multi-input uncertain nonlinear systems 
we propose consists in a modified state transformation which retains pi — 1 trans
formed state equations (pi being the number of equations of each block of the original 
system form), for each block, equal to those obtained via the backstepping proce
dure, coupling them with two auxiliary equations, obtained by selecting, for each 
block, a suitably sliding manifold, and considering its first and second derivative. 
By grouping the auxiliary equations associated with each block, an uncertain sec
ond order multi-input nonlinear auxiliary system is obtained belonging to the class 
of systems to which the extension to the multi-input case of the SOSMC strategy 
indicated in Bartolini et al [4] is applicable. In particular, if the control matrix, 
apart from being positive definite, is also dominant diagonal, then m single-input 
SOSM control signals (m being the number of blocks) need to be used to attain the 
finite time reaching of the origin of the auxiliary system state space, and the same 
convergence results as in the multi-input purely backstepping design are obtained, 
even if the type of uncertainty dealt with is more general than that tractable via the 
backstepping procedure. 

To show the effectiveness of the proposed control design procedure, the applica
tion to a two-link robotic arm with flexible joints is dealt with in this paper [5]. Such 
a system turns out to be expressible in multi-input parametric-pure feedback form. 
If some uncertainties, apart from the parameters vector components, are allowed, 
the basic backstepping procedure does not apply, while the procedure proposed in 
this paper can be used, provided some bounds on the relevant uncertain quantities 
are determinable. Note that the resulting control vector signal is not affected by 
the chattering effect since it results in being continuous, though with discontinuous 
derivatives of its components. 

2. PROBLEM STATEMENT 

A multi-input dynamical system can be described by the system of differential equa
tions 

x(t) = f(x(t)t t) + <l>x(x(t)t t)
T6 + (b(x(t)t t) + q(x(t)t t)T6) u(t) (2) 

where x(t) G Mn, u G -Rm, f(x(t)t t) G Mn, b(x(t)t t) G Mnxm, and <)>x(x(t), t)t 

q(x(t), t) belonging to Mpxn are known smooth matrix functions, while the constant 
vector 0 G MP represents some parametric uncertainties; 6 = [0...6] G Mpxm. 
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The general form can be transformed into an equivalent one, more suitable for the 
determination of the solution to the control problem, using an almost algorithmic 
procedure by Su et al [14]. The transformed state vector can be suitably partitioned 
in m subsystems (blocks), each of order pi, YlJLi Pi = n- Thus, the multi-input 
pure-feedback form can be expressed as 

c 7 i+ i == ^ 7 i + i + 1 + ^ 7 , + i v ^ i j • •• > ^ P i - p i + i + i ) • • • > 
X 7 m + D ' • • > ^ 7 m + l - t> l+i + 1)0 (3) 

*7.+i = £ r = i ( # j ( * ) + ^ 

with i = l , . . . , m , j k = YliZi Pu where x(t) = [xi(t),..., xlrn(t))
T G -Rn, 9 = 

[01,... ,0p]
T G 1RP vector of constant unknown parameters, and <t>yi+1(x(t)) £ ^ p -

Let us define 

" ßí.l + q[лV ... ßl,m+qïtmV 

ß(x(t),v)= : . . . : 

. ßm,l + Чm,lv ••• ßm,m+qm,mv 

ЄR" 

where /3ij are known smooth nonlinear functions (note that in the definition of 
f3(x(t), v) it has been used the variable v G JRP to be substituted in the sequel either 
by 0 or by the adapted vector 6). Moreover ft(x(t),6) is non singular. Note also 
that the assumption of perfect knowledge of /?,-j will be dispensed with later. 

The control objective is to make the output signals #v2(t) = xli+\(t), i = 1,. .., m, 
track the smooth reference trajectories yi)T(t) (tracking objective). 

3. SOME PRELIMINARIES ON THE MULTI-INPUT BACKSTEPPING 
DESIGN PROCEDURE 

The backstepping design procedure in the case of multi-input systems and with refer
ence to a tracking objective consists in the step-by-step construction of a transformed 
system with state 

*7.+i+1 = *7,+i+1 - y\3} - a 7,+i ( 4) 

i = 1,..., m, j = 0, . . . , pi — 1, where a 7 t + ; is the so-called virtual control signal at 
the design step ji+j, and yfj is the derivative of order j of the signal yi)T, which is the 
reference for the output V{ = xli+\ (note that, for the sake of brevity, from now on 
the dependence on t may be sometimes omitted). With this state transformation the 
original tracking problem is transformed into a stabilization problem, i.e., ocli+j is 
computed at step 7,- + j to drive z = [zx,..., zn]

T to the equilibrium state [0, . . . , 0] T . 
This latter is proved to be stable through a standard Lyapunov analysis. 

For the reader's convenience, let us recall the relevant relationships of the back-
stepping procedure for systems in multi-input pure-feedback form at step 7,* + j as 
in Kokotovic et al [8], i.e., 

*7.+i+1 = * 7 . + i + i - y\>) - c*7.+ i (5) 
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7.+І 
vъ+j = EІzl + Uê- )тг-Ҷê- ) 

k = l 

a 7 . + І = ~ 2 7 i + І - l - ( C 7i+І + S 7 i + i ) Z 7 . + І + w
7 i + í 

/ 7 . + І - 1 

£-Sг-'-£ 
ď a 7 á + j - i 

ðXjfc 
Яfc+i 

7І+І + 1 
д<*7.+І- l Ł , Ö ^ Ъ + І - 1 

+ Xľ дlV-i * Уt> + — T Ѓ - ^ T І І + І 
k=l Чr 

S7.+І = /C.Л 7.+Лu'7.+ІІ2 

ôa-» 
ш. 7.+І - ^ .«-Ľ^'-* 

ib = l 
dxk 

Г 7 . +І - Г z 7 . +І ^ 7 . +І + Г 7 . +І - 1 

Z 7 . +І = - Z7< +І - 1 - C7i +І Z 7 . +І + 2 7 ł +І +1 + W 7 i +І ^ 

i - i 

+Zlz*+ i 

t = l 

дa-Гi+} Г, , ð a 7 f c 

— 1— * ШІІ+З Zя~ 
(ЋІ+І - ) 

(6) 

(7) 

(8) 

(9) 

(10) 

with % = 1,. . . , m, j = 0, . . . , pi — 1, a 7 i = 0, ro = [0, . . . , 0] T € 1R?• The terms c7.+j 
are design constants, while r7.+y is the so-called tuning function at step ji + j . 

Note that, each time one reaches the equation relevant to xyi+j (since a7 i = 0) 
the iterative procedure considers z^+i = -P7J+1 — 2/t,r-

4. THE PROPOSED MODIFIED STATE TRANSFORMATION 

The standard multi-input backstepping procedure requires that the computations 
relevant to step 7; + j are repeated n times, so that, at step n, one obtains the 
actual control 

u(t) = P(x(t),9)-1a(x(t)) + yi*\t) 

ß(x(t),v) = 

(i-^A-I^S^A 

(i-^A.-E^fegJ-A 

with /?. »th row of 0(x(t)), yP = [y[p;\t) yti?\t)]T, and 

a.-(ET-.if i^A). 
ã(x(t)) = 

[--(EГ-ЄSA)-

( Ц ) 

(12) 

(13) 
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In the modified design procedure we propose, the procedure (5)-(10) is instead 
stopped m times, each time at step 7.+1 — 1, computing a7 .+ 1_i, and the transformed 
state is completed to obtain 7m+i + ra state variables with the 2ra auxiliary variables 

yi,i = Z7.+1 - 2/»>° - a.7.+i-i + ^ i + i - l ^ i + i - l (14) 

_/»\2 = y.\i, i = l , . . . - r n (15) 

where c7-+1_i are constants to be suitably choosen since they affect the dynamics 
of z7 i + 1_i, and, together with other constants, the stability performances of the 
controlled system, as it will become apparent in the sequel. With this transformation 

^ i + i - l = - * 7 i + i - 2 - ( C 7 i + i - l + S 7 . + 1 - 1 + £ У _ - l ) 2 7 i + i - l + Z/І.1 

д 
Pi-4 

+ £^.+*%±r_VM_1. (16) 
fc=i d° 

This allows us to write the modified transformed system state space representation 
as , 

f i = A(z,0)z + W(z,0)T0 + D(z,0)T$ + by 

\ y = F(y,z,0,0,u) + B(y,z,9,0)u 

where z = [zlt..., z7i+1_i,.?-,,+.+n • • • > ^™+i- i f l V = IVi.i. • • • - Vm.U 1/1,2. • • •. 2/m,2]T 

_ ^ 2 m , A(z,0) e jR(7-.+i-m)x(7»+i-m)> w ( Z j 0). D(z,^), F(y,z,0,0,u) suitable 
functions vectors, B(y,z,0,0) = [OmXm /?T(s(j)-0)]T> and 

6T = 

0(pi- l )x2m 1 ••• O(pm- l)x2m Olx(2m-1) 

with O/x/i null matrix of dimension / x h. By selecting the adaptation mechanism 
as 0 = r7 m + 1_i = TW(z)0)zi with r7i = [0,. . . ,0] G -Rp, equation (17) reduces to 
the closed loop form z = Az(z,0)z + W(z)9)T6 + by, Az such that AT + Az is a 
diagonal matrix. 

5. THE ROLE OF MULTI-INPUT SOSMC 

Now, consider system (17). Let S := yi = [yi , i , . . . , y m , i ] T , _/i = _/2 = [2/1,2,.., 
2/m,2]T € Rm and x = [y T , z T , 0 T , 0 T ] T - Then, the second order equation in (17) 
can be written in a more compact form as 

{ (18) 
И = F(x,u) + B(x)й. 
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The control problem can be restated as that of steering 2/1, 2/2 to zero in finite time 
in spite of the uncertainties in the vector field PXx, u) and in the matrix -B(x), and 
of the non availability of the vector 2/2- Note that S = 0 can be regarded as an 
m-dimensional sliding manifold. Thus, the problem is a second order sliding mode 
control problem, according to the definition mentioned in the Introduction. 

Assume that, the vector field FT(x)u) = [Fi(x,u), . . . , Fm(x,u)] is uncertain 
but such that its components result in being bounded by known functions in such 
a way that the second order sliding mode control problem relevant to the auxiliary 
single input system 

( * • ' = 9 " 2 . (19) 
t ma = Fi(xyu) + r]i 

(i.e., the problem of steering yi}\ and 2/̂ 2 to zero in finite time by measuring only 
2/ifi) has a solution. This problem has been dealt with in the cited papers, [2, 3] 
taking into account different types of uncertainty bounds, and, accordingly, different 
operating procedure to implement the control strategy. In this paper, to keep the 
treatment easier, it is assumed that 

\Fi(X,u)\<Fi (20) 

where Fi is a known constant. 
Matrix B(x) (and, consequently, matrix (3(x(t))) is assumed, from now on, to be 

uncertain, but with known bounds on its entries 6,j, and, for the sake of simplicity, 
positive definite. Actually, more general cases could be dealt with: at least all those 
indicated in Bartolini et al [4] to which the extension of SOSMC to the multi-input 
case is feasible. Moreover, since it is sufficient for the applications we are interested 
in, we suppose that B(x) is not only positive definite but also dominant diagonal, 
i.e. 

m 

0< Y. \bij\<bu i = l , . . . ,m. (21) 
i=i.i^» 

Then, equation (18) can be rewritten, component-wise, as 

m 

Vi}2 = Fi(x, u)+ Y bijtij + buiii. (22) 

In Bartolini et al [2] it is proved that, in the case of a SISO second order uncertain 
systems with incomplete state measure, the control u(t) can be chosen as a bang-bang 
control, [7] switching between two values —UMax, +E!Max> relying on a commutation 
logic based on the available state only. So, if instead of equation (22) we had 

yi,2 = Fi(x,u) + ba(x)ui (23) 

with Pi(x,u) as in (20), the second order sliding mode would be attained, for in
stance, by means of the following algorithm, based on the assumption of having the 
capability of detecting the extremal values of ?/»fi (e. g., by means of peak detectors). 
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Algorithm 1. 

i) Set 6f G (0,1] n fO, -g^-J, where B\i > 0, 5 2 . > Hi, are known lower and 

upper bounds of the quantity bn. 

ii) Set y M M a x = y,-fi(0). 

Repeat, for any t > 0, the following steps. 

iii) If [yi,i(0 - JW.IM Jtw.iMa* - Wfi(0] > ° t h e n s e t 5i = 6i e l s e s e t 6i = L 

iv) If yifi(<) is extremal value then set yi,iMax = yiti(t). 

v) Apply the control law 

ui(t) = - ^ ^ M a x s ign | y i , i ( 0 - 2»»M M . x } • ( 2 4 ) 

Until the end of the control time interval. 

Note that in (24), according to Bartolini et al, [2] 

u"->m^{wt:'w"-s-BJ- ( 2 5 > 
Then, consider equation (22) and remember the assumption of diagonal dominance 
(21). By analogy with (24), one can assume that any control signal in in (22) has 
the form • 1 x 

iii = -(5iU M ax s ign I yiA(t) - - y i , i M a x \ . (26) 

As a result, one obtains 

Уi,2 Fi(x,«) - J 3 M i ^ M a x sign | yjA(t) - -y,-,iM„ [ 

- buSiUMzx sign | !H,i(t) - -y,-,iM„ j- (27) 

or, analogously, 

y.,2 = Ei(x,") - <7»(x) *i£!MBx sign | y,-,i(0 - -y t-,iMu | (28) 

where 0..(x) < <7.(x) < 5,-2(x) with 
m 

9h(x) = bum- J2 \b*iJ (29) 
i=i,iv-«' 

m 

<7.2(x) = 6.>м + E Nмl (30) 
І = l,І?-i 
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where 6,w < ba < &..• , kj , &,••• known. Note that a value of UMax valid for 
J tn —-• * J __ *J M J m J M # 

any „,- (UMax = maxi<»<m ^iM«) c a n b e derived taking into account the following 
expressions 

/ % „ = . W Fi (31) 

1 - • • ( 3 2 ) 

M a x K t < m 

max < i 
ì<i<m { 

p = max < max 6*git ' 3ff,-. - 6*gh 

6* e (0 ; 1] D f 0 ; min -^-M (33) 

that is UMax > P-̂ Max' 
Then, a control vector with components as in (26), and UMax satisfying inequal

ities (31)-(33), is sufficient to steer the vectors y\ and y\ = t/2 to zero in finite 
time. Summing up, it has been observed that if matrix B(x) 1s positive definite and 
dominant diagonal, then the multi-input auxiliary system can be splitted into m 
single-input systems to which the single-input SOSMC approach described in Bar-
tolini et al [3] can be applied. 

Note: The multi-input strategy just recalled, contained in Bartolini et al [4], is 
applicable to systems in the double-integrator form (18). Systems in multi-input 
parametric-feedback form are not suitable to be controlled through that strategy, 
because of the presence of the unmatched uncertainties (j)JO, i = l , . . . , m . The 
backstepping procedure is used to generate, from a multi-input parametric-feedback 
form, an auxiliary system that has a double-integrator form, to which Algorithm 1 
is applicable. 

Then, on the whole, the design procedure we propose to solve the control problem 
in question can be expressed in algorithmic form as follows. 

Algorithm 2. 

i) Stop the backstepping procedure for m times at step 7i+i — 1 and compute 

the quantities a 7 l + 1 - i , Z7l+1_i, T7t+1~i. Set 9 = r7 m + 1_i = TW(zJ)z. 

ii) Define the vectors 

Z = [ * / > l - l l - 1T 

Č = [Čpi-li- * * ) C 7 t + l - 1 ' * • • » C 7 m + 1-1J 

(5 = [ " P i - Ь . . . , Q ; 7 i + 1 _ i , . . . , ü . 7 m + 1 _ i j 

X = [xPl, . . . 1T 
, x 7 . + 1 , . . . , я 7 m + 1 J 

Чr = [Ä°.- ЛPi) yiйmЬT 
' * ' ^ í , r ' * • * ' Уm,r J 

and compute S — y\ =cz + x — yr—a. 

iii) Compute the upper bounds of the relevant functions in (17) to obtain the 
bounds Fit giy and gi2J i— 1, . . . , m. 
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iv) Apply Algorithm 1 to determine each component xii of the control vector, with 
^Max = ^ M a x a s i n ( 3 1 ) - ( 3 3 ) . 

If Algorithm 2 is applicable, the reaching of the origin of the auxiliary system state 
space is guaranteed. Now, the behaviour of the remainder of the transformed system 
(namely (17)) needs to be analyzed. To this end, choose, as a Lyapunov function, 
V = \(zTz + (9- 9)TT"1(9 - §)). The derivative of V with the virtual functions as 

synthetized in procedure (5) — (11), and 6 replaced by TW(z, 9) z results 

2 2 2 2 

= zT(^±^-)z + zTby. (34) 

Due to the skew-symmetry of the matrix Az, Az +AT is a negative definite diagonal 
matrix, whose elements are functions of cz- and Cj. Defining en = minz- ct- and en = 
mini Ci, and recalling that by = yi, it yields 

V<-co\z\2
2-co\z\l + zT

yi (35) 

where | • I2 is the Euclidean norm. Then, there exists a ball centered at the origin of 
the 2-state space, of radius ^ r , out of which V is surely negative [8] (note that, for 
sufficiently high c,-, i = 1 , . . . , n, the first derivative of V could be negative in all the 
state space). In the case of f3(x(t)) positive definite and dominant diagonal, vector 
yi is guaranteed to converge to zero in finite time. So, in such a case, the ball will 
collapse to the origin in finite time as well. 

6. COMPUTATIONAL LOAD 

The overall number of steps required by Algorithm 2 are n, as in the standard 
backstepping procedure, but the total number of on-line computations required is 
reduced. For convenience, S has been written as cz + x — yr — a, but, the reader 
could easily see that x — yr — a is the expression of [zPl,..., Z7i+1,..., 2 7 m + 1 ] T , i- e. 
the z transformation of the backstepping is completely done also in the combined 
procedure. What differs is the computation of the control law. In the backstepping 
procedure, the on-line computational load required to obtain u is equivalent to that 
required to obtain the vector [ a P l _ i , . . . , a 7 i + 1 _ i , . . . , a 7 m + 1 _ i ] T . In the combined 
procedure the control law is realized through a peak detector and a signum function. 

The calculation previously required off-line (i. e., in the design of the control law) 
and on-line (i.e., to generate the control law) are now required off-line only. 

7. APPLICATION OF THE CONTROL DESIGN PROCEDURE 
TO A TWO-LINK ROBOTIC ARM WITH JOINT FLEXIBILITY 

As an example of application, in this section, we consider a two link non planar 
robotic arm with flexibility [13] between each joint and the corresponding actuating 
device as in Diong et al [5] (Figure 1), i.e., J(x)x = g(x), 



72 A. FERRARA AND L. GIACOMINI 

Fig. 1. Double link robotic arm with joint flexibility. 

where 
x2 

-kxxi + ki/nix3 + m2s2li(xl + 2x2x$) 
sin(#5) + m2s2g cos(#i + x$) 

+(mi$i + m2lx)g cos(xx) 
xA 

ki/(jmini)xi - ki/(jmin\) x3 - bmJjmix4 

g(x)={ +l/jmiui (36) 
^6 

-k2x$ + k2/n2x7 + m2s2lix%sin(x$) 
+771252^ COs(^i +X$) 

xs 
k2/(jm2n2) X5 - k2/(2m2n\) x7 - bm2/jm2x8 

+ l/jm2u2 

Jjj(x) = !>i = 1,3,4,5,7,8, J2,2(x) =ji+h + m2(sl+lj) + misl + 2m2s2licos(xs), 
J2tß(x) = Je,2(x) = h + m2s\ + m2s2li cos(z5), Je,e(x) = j 2 + m2s\, all other terms 
are zero. 

link masses mi = 5, 

h = 0.5, 

si = 0.25, 

h = 0.125, 

j m i = 0.025, 

Jbi = 1000, 

TU = 10, 

bmi = 0 . 1 , 

m2 = b 

l2 = 0.5 link lengths 

52 = 0.29167 centre of masses 

h = 0-15 

j m 2 = 0.025 

k2 = 1000 

n2 = 10 

bm3 = 0.1 

link inertias 

rotor inertias 

joint stiffness 

gear ratios 

rotor damping 

(37) 

jmu jm2, ki, k2} bmi) bm2 are supposed unknown constant to the controller, but 
known in bounds. In this particular case the control matrix is diagonal. The trans
formed state vector according to the proposed design procedure is {zi, z2, z3, z5, ZQ, Z7, 
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2/1,1,2/1,2,2/2,1,2/2,2}. The reference quantities, 2/i,r(0> • • • > 2/2,r(0> c o m e f r o m a linear 
reference model of suitable order. As for the variable structure part of the controller, 
the sliding manifold is 

x4 - yg> + 10z3 

*8 - 2/§ + 10*7 
S = yi = (38) 

This special choice of the manifold (i.e., the fact that x4 and x& are used instead of z4 

and zs) is motivated by the fact that £3 and #7 are not affected by uncertain terms. 
In Figures 2,3,4,5 some signals showing the good performance of the controlled 
system are reported. Note that, the control signals have been zoomed to show that 
they are continuous. 

Fig. 2. xi, £5 trajectories versus reference trajectories. 

0 1 2 3 4 5 6 7 8 9 

Fig. 3. S\ in the proposed multi-input SOSMC procedure. 

8. CONCLUSIONS 

In the paper, a tracking control problem is considered consisting in forcing the Tri
dimensional output of a nonlinear uncertain system to track an m-dimensional ref-
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0 1 2 3 4 5 6 7 8 9 

Fig. 4. S2 in the proposed multi-input SOSMC procedure. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
tlsec] 

Fig. 5. «i, «2 signals in the proposed multi-input SOSMC procedure. 

erence vector signal with the first pi derivatives of each component known, bounded 
and piece-wise continuous. Such an objective is attained designing a suitable control 
vector on the basis of a procedure which goes through the construction of a trans
formed system characterized by pi — 1 per block differential equations (pi being the 
number of equations of the block of the multi-input pure-feedback form considered) 
analogous to those attainable via a purely multi-input backstepping design, coupled 
with an uncertain nonlinear multi-input second order auxiliary system. Under suit
able assumptions on the control matrix, the control is chosen to be the extension 
to the multi-input case of a SOSMC algorithm, so as to force the transformed state 
variables involved in the second order auxiliary system to zero in finite time. The 
remainder of the transformed system turns out to be a reduced order system for 
which the same results valid for a purely backstepping controller still hold. 

(Received December 11, 1998.) 



Application of a Second Order VSC to Nonlinear Systems... 75 

R E F E R E N C E S  

[1] G. Bartolini, A. Ferrara, L. Giacomini and E. Usai: A combined backstepping/second 
order sliding mode approach to control a class of nonlinear systems. In: Proc. IEEE 
International Workshop on Variable Structure Systems. Tokyo 1996. 

[2] G. Bartolini, A. Ferrara and E. Usai: Applications of a suboptimal discontinuous 
control algorithm for uncertain second order systems. Internat. J. Robust Nonlin. 
Control 7(1997), 299-320. 

[3] G. Bartolini, A. Ferrara and E. Usai: Chattering avoidance by second-order sliding 
modes control. IEEE Trans. Automat. Control 34 (1998), 2, 241-246. 

[4] G. Bartolini, A. Ferrara, E. Usai and V. I. Utkin: Second order chattering-free sliding 
mode control for some classes of multi-input uncertain nonlinear systems. In: Proc. 
of the 6th IEEE Mediterranean Conference on Control and Systems. Alghero 1998. 

[5] B. M. Diong and J. V. Medanic: Simplex-type variable structure controllers for sys
tems with non-matching disturbances and uncertainties. Internat. J. Control 68 
(1997), 625-656. 

[6] I. Kanellakopoulos, P. V. Kokotovic and A. S. Morse: Systematic design of adaptive 
controllers for feedback linearizable systems. IEEE Trans. Automat. Control 36 (1991), 
1241-1253. 

[7] D.E. Kirk: Optimal control theory. Prentice Hall, Englewood Cliffs, N.J. 1970. 
[8] P. V. Kokotovic, M. Krstic and I. Kanellakopoulos: Nonlinear and Adaptive Control 

Design. Wiley, New York 1995. 
[9] A. Levant: Sliding order and sliding accuracy in sliding mode control. Internat. J. 

Control 58 (1993), 1247-1263. 
[10] A. Levant: Higher order sliding: collection of design tools. In: European Control 

Conference, Bruxelles 1997. 
[11] K. Nam and A. Arapostathis: A model reference adaptive control scheme for pure-

feedback non-linear systems. IEEE Trans. Automat. Control 33 (1988), 803-811. 
[12] D. Seto, A. M. Annaswamy, and J. Baillieul: Adaptive control of a class of nonlinear 

systems with a triangular structure. IEEE Trans. Automat. Control 39 (1994), 1411— 
1428. 

[13] M.W. Spong and M. Vidyasagar: Robot Dynamics and Control. Wiley, New York 
1989. 

[14] R. Su and L. R. Hunt: A canonical expansion for nonlinear systems. IEEE Trans. 
Automat. Control 31 (1986), 670-673. 

[15] V.I. Utkin: Sliding Modes in Control and Optimization. Springer-Verlag, Berlin 1992. 

Prof. Antonella Ferrara, Department of Computer Engineering and Systems Science -
University of Pavia, Via Ferrata 1, 27100 Pavia. Italy, 
e-mail: antonella.ferrara@unipv.it 

Dr. Luisa Giacomini, Department of Electronic Engineering - Aston University, Aston 
Triangle, B4 7ET Birmingham. United Kingdom, 
e-mail: l.giacomini@aston.ac.uk 


		webmaster@dml.cz
	2015-03-26T21:08:24+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document




