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CONTINUOUS-TIME PERIODIC SYSTEMS 
IN H2 AND Hoc 
Part I: Theoretical Aspects 

PATRIZIO COLANERI 

The paper is divided in two parts. In the first part a deep investigation is made on some 
system theoretical aspects of periodic systems and control, including the notions of 112 
and 1Ioo norms, the parametrization of stabilizing controllers, and the existence of periodic 
solutions to Riccati differential equations and/or inequalities. All these aspects are useful 
in the second part, where some parametrization and control problems in 1J2 and Hoo are 
introduced and solved. 

1. INTRODUCTION AND PROBLEM POSITION 

The analysis and design problems for periodic systems have a long history in the 
scientific literature, although only recently various issues concerning theoretical as
pects have been succesfully clarified: see the survey paper [1] for an overview on 
the structural properties of periodic systems, [2] for the properties of periodic solu
tions to periodic Riccati equations and [3] for the study of the periodic Lyapunov 
equations. 

The paper benefits from the development of the theory of Hoo control for shift-
invariant systems. In this regard, specially important is the celebrated paper [4], the 
additional parametrization results given in [5], the parametrization of memoryless 
state-feedback controllers via LMI and the mixed H2/H00 control results in [6]. 
The application of the above theory to periodic systems is far from being trivial, 
since it requires, besides non standard results on the differential periodic Riccati 
equations, an appropriate extension of the mathematical machinery concerning sys
tem theoretical aspects such as spectral properties, Youla-Kucera parametrization, 
small gain results, H2 and Hoo norm, BIBO stability of feedback systems and so on 
so forth. Presenting new results concerning the theory of periodic systems is one of 
the scopes of the paper. Part of the work is inspired by the recent definition, for 
continuous-time periodic systems, of the so called lifted shift-invariant reformulation 
(well known in the discrete-time case), see [7, 8]. All the above arguments are the 
object of the first part of the paper. 
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In the second part of the paper we consider the continuous-time T-periodic linear 
system V, described by the differential equations 

x = A(t)x + Bi(t)w + B2(t)u (1) 

zi=C1(t)x + D1(t)u (2) 

z2=C2(t)x + D2(t)u (3) 

where 
A(-), B1(-)> B2(-), Cx(), Dl(), C2(-), D2() 

are T-periodic piecewise continuous function matrices. The signal u(t) is the control 
input, w(t) is an input disturbance and z\(t),z2(t) are controlled output variables. 

The following state-feedback problems are dealt with. 

(1) Find a necessary and sufficient condition for the existence of a T-periodic causal 
controller fed by (xy w) and yielding u such that the Hoo norm (to be properly 
defined) from w to Z\ is less than a prescribed positive attenuation level 7 

(2) Parametrize all stabilizing T-periodic controllers fed by (x,w) and yielding 
u such that the Hoo norm from w to z\ is less than a prescribed positive 
attenuation level 7 

(3) Parametrize all memoryless T-periodic controllers (u(t) = K(t) x(t)) such that 
the Hoo norm from w to z\ is less than (or equal to) a prescribed positive 
attenuation level 7 

(4) Find a memoryless T-periodic controller (u(t) = K(t)x(t)) which minimizes 
the H2 norm (to be properly defined) between w and z2 

(5) Find a memoryless T-periodic controller of the kind u(t) = K(t) x(t) which 
minimizes the H2 norm between w and z2 while keeping the Hoo norm from 
w to z\ less than or equal to a prescribed positive attenuation level 7. 

The paper aims at providing a rather complete picture of the theory underlying the 
above mentioned issues. As such, the reader could easily found overlapping mate
rial with respect to past contributions. Indeed, preliminary results on the Hoo type 
periodic Riccati equation and on the full information Hoo periodic control problem 
are contained in [9, 10] and [11]. The sensitivity minimization problem for periodic 
systems was approached in [12, 13, 14] and [15, 16]. More in detail, the sufficient 
part of Theorem 3.1 of [17] is proven in [13] and [16] and the parametrization of 
Hoo performant controllers in Theorem 3.2 of [17] can be deduced along the lines 
traced in [12]. Concerning this last point, the proof presented here exploits only the 
properties of Hamiltonian periodic systems and does not require any frequency do
main considerations. The analysis result stated in Lemma 2.6 was proven in [10], by 
exploiting the results in [13]. Here a different and self-contained proof is provided. 
As for the concept of exponentially modulated signal and spectral properties of pe
riodic systems, they were introduced, in a different way, in [7]. Finally, Theorem 2.2 
of [17] is standard in the literature of optimal control of time-varying systems, and 
can be found in many papers. 
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This first part of the paper is organized into four Sections. All the mathematical 
material on periodic systems is concentrated in Section 2, which includes 13 lem
mas. The proofs of them are gathered in Section 3. Part II contains 7 theorems 
concerning the parametrization of stabilizing memoryless state-feedback controllers 
(Theorem 2.1 of [17]), the optimal H2 control problem (Theorem 2.2 of [17]), the 
Hoo full-information control problem (Theorem 3.1 of [17]), the parametrization of 
Hoo performant controllers (Theorem 3.2 of [17]), the parametrization of memory-
less state-feedback controllers via differential LMI (Theorem 4.1 of [17]), and the 
so-called convex and post-optimization procedures for the mixed H2/H00 control 
problem (Theorems 5.1 and 5.2 of [17]). 

2. THEORETICAL ASPECTS OF PERIODIC SYSTEMS 

In this section reference is made to a T-periodic system Q = (F, G, H, E) described 

by 

0 = F(t)0 + G(t)w (4) 

z = H(t)0 + E(t)w. (5) 

Matrices F(-), G ( ) , H(-) and E(-) are T-periodic piecewise continuous matrix func
tions of period T. 

A number of theoretical results concerning system Q are provided. They can be 
considered as non trivial generalization to periodic systems of concepts taken from 
the realm of shift-invariant systems. In particular, Lemmas 2.1 and 2.2. relate the 
solution of a periodic differential Lyapunov equation to some time-domain specifi
cations of the system (minimum energy input, maximum output overshoot). The 
Hoo norm of a periodic system is then defined and shown to be independent of time 
(Lemma 2.3) and equal to the classical L2-induced norm of the input-output operator 
(Lemma 2.4). Then, Lemmas 2.6-2.8 extend to periodic systems the necessary and 
sufficient conditions for the Hoo norm to be bounded by a prescribed scalar 7. This is 
done in terms of differential periodic Riccati equations (Lemma 2.6), periodic differ
ential inequalities (Lemmas 2.6,2.7), periodic Hamiltonial properties (Lemma 2.5) 
and differential periodic game theory approach (Lemma 2.8). An Hankel-Toeplitz 
operator is defined and characterized in Lemma 2.9. It will be useful in Section 
4. Lemmas 2.10,2.11 extend to periodic systems the double coprime factorization 
result and the Youla-Kucera parametrization, respectively. A small gain result is 
then provided in Lemma 2.12, and, finally, the relation between internal and external 
stability of feedback periodic systems is pointed out in Lemma 2.13. 

2.1. Stability 

Internal stability of Q refers to the free state motion and as such depends only 
on matrix F(). Associated with F(-) is the transition matrix $F(^T) j which is 
nonsingular, for each t and r, thanks to the Jacobi formula 

det[ФH<.г)] = e/> a c e [ F ( < т ) ] d < т . 
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The above expression puts into light the fact that a continuous-time periodic system 
is reversible. 
In continuous-time it is always possible to find a T-periodic state space transfor
mation S(-) which solves the so-called Floquet problem, i.e. such that, in the new 
coordinates, the dynamic matrix, say F, is constant. Indeed F can be obtained 
by solving eFT — $F(T + T, r ) , where r is any given time point. The appropriate 
transfomation S(-) is simply given by 

S(t) = e^-T^F(T,t). 

Such a matrix is indeed periodic of period T and solves the linear differential equation 

S(t) = FS(t)-S(t)F(t) 

with initial condition S(T) -= I. The eigenvaues of F are called the characteristic 
exponents of F(-), whereas the eigenvalues of the monodromy matrix $F(T+T, T) are 
called the characteristic multipliers of F(-). The relation between the characteristic 
exponents A and the characteristic multipliers z of F(-) is given by the simple formula 
z = eXT. 

The characteristic multipliers z are different from zero (recall the Jacobi formula or 
the formula z = eXT) and, most important, they do not depend on r. Indeed the 
equivalence relation holds 

^F(r i + T,r1) = $ F ( r 1 + T , r 2 ) $ F ( r 2 + T , r 2 ) $ F ( r 1 + T , r 2 ) - 1 

which shows that, for each T\ and r2 the matrices <I>E(ri + T , T\) and <£p(r2 + T , r2) 
are similar. 
The system is said to be (internally) stable if the free motion Of(-) satisfying 

ef(t) = *F(t,T)9f(T) 

converges to zero for any initial state X(T) and any initial time instant r . Notice 
that it is always possible to write <£F(2, T) = $F(T + r i , T) $(T + -F, r)fc, where k is 
a nonnegative integer and T\ G [0,T). Hence stability holds iff $ ( r + T,T)k goes 
to zero as k goes to infinity. This occurs iff the characteristic multipliers of F()) 
are inside the open unit disc (equivalently, iff the characteristic exponents are in the 
open left hand side of the complex plane). 

2.2. Structural properties and invariant zeros 

Here we are concerned with the concepts of reachability, observability, stabilizability 
and detectability of Q . As is well known, differently from the discrete-time case, the 
dimensions of the reachable (observable) subspace does not depend on the particular 
time-instant so that it is possible to find a periodic state-space transformation which 
brings the system to the Kalman canonical form in four parts. Among the different 
yet equivalent characterizations of reachability and observability, we will here refer 
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to the extension of the so-called PBH (modal) test. System Q descibed by equation 
(4) is reachable (the periodic pair (.F(-),G(-)) is reachable) iff for any complex A 
there does not exist nonzero periodic solutions 0() of 

XI - F(t)' 

-G(t)' 
, t>т. (6) 

Analogously, system Q described by equations (4), (5) is observable (in other words, 
the pair (F(-), G(-))) is observable), iff for any complex A there does not exist periodic 
solutions 0(') of 

-A7 + F(t) 

H(t) 
t >т. (7) 

Notice that a number A satisfying (6) or (7) is a characteristic exponent of JF(-), 
i.e. eXT is a characterisic multiplier of F(-). Indeed, take for example equation 
(7). It follows that 0(-) is a T-periodic solution of 0 = (F(t) - XI) 9. Hence 6(T) = 
6(T + T) = $F(T + r , r) e~ A T 0(r) so that $ F ( r + T, r) 0(T) = e A T ^ ( r ) . 
The same modal tests can be given for stabilizability and detectability as well, by 
simply restricting equations (6), (7) to unstable system's modes, i.e. Re(A) > 0. In 
the sequel we will also make use of the so-called Wonham characterizations: namely, 
system Q is stabilizable iff there exists a T-periodic feedback gain K() such that 
F() + G(')K(-) is stable. Analogously, system Q is detectable iff there exists a stable 
state reconstructor, i. e. a T-periodic matrix L() such that F(-) + L(-) H(-) is stable. 
The notion of system zero can be extended following the same line of reasoning. In 
particular, an invariant zero of a "tall" (i.e. the number of outputs greater than 
that of the inputs) T-periodic system is defined as any complex number z = eXT 

such that there exists two T-periodic function w(-) and #(•), with (0,w) zf=. (0,0), 
such that 

' -A/ + F(t) G(t) 

H(t) (t) w 0 
t > т. (8) 

An analoguous definition holds for "fat" systems provided that the system matrix 
is transposed. 

2.3. The input output-operator 

The input-output operator associated with Q, with zero initial condition at / = r, 
will be denoted with QOP(T). Hence, 

z(i) = [Gop(r)w](t), t>T 

denotes the output of system (4),(5) with 6(T) = 0. The adjoint system of Q is 
denoted by Q~. It is readily seen that the adjoint (7op(T)~ of the operator £7op(T) 
is realized by Q~ = (-Ff,-Hf,Gf,Ef). System (4)-(5) is said to be inner at 
t = T if Gop(T)~Gop(T) = I. If E is square and detfE] ^ 0, the inverse of Q is 
Q-1 = (F - GE-^H.GE^^-E^H.E-1). Of course, the input-output operator 
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-Iop1(r) °f G x coincides with the inverse operator (/o p(r) 1

> i. e. (/op(T) l = GQP(T). 
Similar definitions can be given for the right/left inverses. 

Assume again that 9(T) = 0 and that system (4)-(5) is stable. Then, we can define 
the L2 induced norm 

IKM-)II = -P % S * - <») 
u>7-0,ti,eL2[r,oo) I M | 2 

Notice that, thanks to periodicity, the above norm does not depend upon r. Actually, 
if T - T < T' < T, then | |0o P (r) | | < HSop(r')|| < ||c7op(r - T)\\ = \\gop(r)\\. Hence, 
we define 

ll&pll - ll̂ opWII- (io) 

2.4. BIBO stability 

System G is said to be BIBO stable (at r ) if the forced output response z(-) (with 
zero initial state at r ) is bouded for any bounded input. This occurs iff the reachable 
and observable part of the system is (internally) stable. In this case we simply say 
that the input output operator GOP(T) is stable. As apparent, this stability concept 
does not depend on r. Of course, internal stability implies external (BIBO) stability. 
The converse is true iff the system is stabilizable and detectable. It is readily seen 
that both internal and BIBO stability are preserved in cascade and parallel block 
configurations. 

2.5. The H2 norm 

We now define and characterize in time-domain the H2 norm of the periodic system 
from w to z. It is here assumed that the system is stable, i.e. F(-) has all charac
teristic multipliers inside the open unit disk, and that the system is strictly proper. 
This last assumption is necessary for continuous-time system to ensure the bounde-
ness of the impulse response. Now, define as 6(t) the impulse (Dirac) function and 
et- the ith column of the identity matrix (whose dimension will be clear from the 
context). Hence, the H2 norm of G at time r is defined as follows: 

\\Q{r)h = 

' rn Л ш \\Gop(T)6{t-v-*)aWld* 

1/2 

Notice that 

[GoP(T)6(t -T-a) a] (t) = C(t) $ F ( t , r + a)G(a) e,-, t > r + a (11) 

is the response to the input w(t) = 6(t — T — a) e» and initial state 6(T) = 0. Thanks 
to periodicity with respect to r, this norm does not depend on r, and hence the H2 

norm of the system can be defined as 

l » = ||C(r)||-,Vr. 
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It is easy to verify that this norm can be computed by solving one of the two 
differential Lyapunov equations with periodic coefficients 

P2(t) = P2(t) F(t)' + F(t) P2(t) + G(t) G(t)' (12) 

-Q2(t) = F(t)'Q2(t) + Q2(t) F(t) + H(t)'H(t). (13) 

Actually, recall that, since F(-) is stable, eqs. (12), (13) admit a unique T-periodic 
solutions Q2(-) and P2(), see [3]. From (11) it readily follows that 

\\G\\l = trace 
rp I I" rp 

I H(<T)P2(<T)H(<T)'C\CT = t race I / G(<T)'Q2(<T) G(t) Aer 
Jo jo 

• (14) 

The periodic Lyapunov equation is useful to characterize time-domain properties of 
the periodic system. The first result, stated below, considers the properties of the 
reachability Grammian P2(t). 

Lemma 2.1. Consider system G given by equations (4), (5) and assume that 
(i) E(t) = 0, V* 

(ii) F(-) is stable 

(iii) 0(-oo) = 0 
(iv) the periodic pair ( F ( ) , G ( ) ) is reachable. 

If 0(0 is a final state of (4), (5), then 

,n '^< Jw\\i = e(o,P2(o-1m), 

where the T-periodic positive definite matrix P2(t) is the unique T-periodic solution 
of the T-periodic Lyapunov equation (12). 

A second result concerns a time-domain specification. Precisely, we want to link 
the solution of the Lyapunov equation (12) with the maximum overshoot of the 
output signal z when the input signal w is bounded in the unit ball of L2. To this 
aim, define 

N|oo = s u P ( * ( 0 W / 2 . 
t>T 

The following result holds. 

Lemma 2.2. Consider system G given by equations (4), (5) and assume that 
(i) E(t) = 0, Vf 
(ii) F(.) is stable 
(iii) 0(r) = 0 

(iv) the periodic pair (F(),G()) is reachable. 
Then, 

sup 11*000= sup Xm„[H(t)P2(t)H(t)']1f2 

weL2[r, ooj, IM| 3 <i *e[o, r] 

where the T-periodic positive definite matrix P2(t) is the unique T-periodic solution 
of the T-periodic Lyapunov equation (12) and Amax denotes the maximum eigen
value. 
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2.6. EP signals, transfer function operator and spectral properties 

The analysis of periodic systems can be addressed by making reference to its spectral 
properties. Define in system Q given by equations (4)-(5) the input signal ^v(t) as 
an exponentially periodic signal (EPS) in the symbol A, i. e. 

w(t + kT) = w(t)eXkT, V*. 

Now, chosen any tag point r, it follows that the initial state 

pr+T 

0X(T) = (eAT7 - $ F ( r + T, r ) ) " 1 / $ F ( r + T, a) G(a)w(a) da (15) 

is such that both the state and the corresponding output are still EPS with symbol 
A, i.e. 

6(t + kT) = e(t)eXkT, \/t 

z(t + kT) = z(t)eXkT, Vi. 

The corresponding input/output operator mapping w(a), a E [t,t + T) to z(t) will 
be denoted by Q(t) A). After some computations, it follows that 

z(t) = [G(t,X)w](t) (16) 

= H(t)$F(t,T)6x(T)+H(t) I $F(t,a)G(a)w(a)da+Ew(t) 

rt+T 
= H(t) (eXTI-^F(t + T, t))-1 f $>F(t + T, a) G(a) w(a) da+E(t) w(t). 

This operator satisfies (the simple check is left to the reader) 

[G(t, X) w] (t + kT) = exkT[G(t, X) w] (t). 

Its norm is defined as 

m,m= SUP \mmm (17) 
w?QtweL2[t t+T) \\w\\rtT 

where the norm of a (complex) signal v(-) in L2^,^ + T) is taken as 

rt+T 

/

i+j-

v(a)*v(a)da 

and * denotes here the complex conjugate. It should be noted (see e.g. [7, 8]) 
that Q(t,\) coincides with the "transfer function" of the lifted state-sampled re
formulation of the periodic system between the sampled input function u(kT + a), 
a E[t,t + T] and the sampled output signal y(kT + t + T), both seen as discrete-time 
function of the integer k. The adjoint Q(t, A)~ of Q(t, A) is easily shown to be related 
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with the transfer function £~(*,A) of the adjoint system Q~ = (-F',-H',G',E') 
in the following way 

g(*,A)~ = £ ~ ( i , - A * ) . 

Analogously, as for the inverse system (7 - 1 , it is 

G(t,\)~l=G-\t,\). 

The Fourier analysis for periodic systems can be properly extended as follows. Con
sider, for each £, the input and output discrete-time signals at time k 

{w(t + kT)}} {z(t + kT)} 

and define the formal series 

w^x\ť)= ] T w(t + kT)e 
k = — oo 

oo 

z^x\t)= J2 *(•+*-")«" 
k = — oo 

Then it results that w(x\t) and z(x\t) are EPS signals, i.e. for example z(x\t + 
kT) = z(x\t)eXkT, Vi. Hence, it follows that z<-x\t) is given by 
z(

x)(t) = [G(t, \) wW] (t), so that 

[GOP(T) w]<x\t) = [G(t, A) w^} (t), t > r (18) 

The above equation serves as a proper generalization of the concept of transfer 
function for periodic system. As a matter of fact, the operator G(T, A) acts as 
a transfer function since it transforms the input Fourier trasform it/ ja;)(cr), a 6 
[t,t + T)j into the output Fourier transform z^w\t). Recalling now the inverse 
Fourier transformation formulas, 

(t + kT) = ^- í w^\t)e^kTdu 

(t + kT) = ^- í z^"\t) e^kTdu 
2*" J-* 

it is easy to work out the so-called Parseval rule. Actually, since, 

duj 
/

CO rp pW pT-TJ-

z(t)*z(t)dt = ±-J \J zV»\t)*zU»\t)dt 
it follows 

II'IIH = ^J[ \\^U)\\l,T^ = £ £ \W,ju)vfiu)\\>,T*"- (19) 

Analogously 

\H\l = ^fy^Wh^. (20) 
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Remark 2.1. It is important to stress further the relations between the two oper
ators associated with the periodic system G, namely Gop(r) and £(T, A). The causal 
operator Gop(r) acts on signals defined for t > r and yields the output forced re
sponse of the system (with initial zero conditions at t = r ) . On the contrary, the 
noncausal operator £(r, A) acts on signals defined in the interval [/, t + T) and yields 
the value of a signal at time t. Concerning causality, notice however that, since the 
input signal is EPS, the equation (16) can be equivalently rewritten as 

z(t) = H(t) (I - $F(t + T, ^X'7)'1 / $F(*, a) G(a) w(a) da + E(t) w(t) 
Jt-T 

so that a causal operator mapping w(a), a E (t — T,i\ to z(t) can be defined instead 
of G(t) A). As in the time-invariant case, the two operators G(t) A) and GOP(T) are 
related by equation (18), in which the signals on both sides are the z-transform (or 
Fourier transform) of the input and output signals uniformly sampled with period 
T at tag time t. 

2.7. The Hoo norm 

The operator (7(r, A) is a consistent generalization of the transfer function of a shift-
invariant system. It is then very natural to define the Hoo norm of the periodic 
system G given by equations (4), (5) at r as 

||ty(r)||oo= sup | | 0 (T .A) | | . (21) 
Re(A)>0 

A first important result is that this norm does not depend on the initial time r. 

Lemma 2.3. ||(7(r)||oo -s constant with respect to r . 

Based on this lemma, the Hoo norm ||(?||ooof a periodic system can be consistently 
defined as follows: 

||a|U := sup ||S(T,A)||. (22) 
Re(A)>0 

Interestingly, as in the shift invariant case, the L2 induced norm given by (9), (10) 
coincides with the now defined Hoo norm of the transfer function, given by (15)-
(22). 

Lemma 2.4. Consider system G given by equations (4), (5) and suppose that F 
is stable. Then 

ll^lloo = naopii-

Differently from the H2 norm, the characterization of the Hoo norm in state-space 
only gives a necessary and sufficient condition for this norm to be less than or equal 
to a prescribed positive scalar 7. Let this scalar be such that a(E(t)) < 7, V* (so 
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that y2I—E(t)'E(t) is positive definite, Vf) and consider the T-periodic Hamiltonian 
matrix W(-) associated with system (4), (5) : 

W(t) = 
F(t) G(t)G(ty 

-H(t)'H(t) -F(t)' 
(23) 

where 

F(t) = F(t) + G(t) (y2I - E(t)'E(t))-lE(t)'H(t) 

G(t) = G(t) (7
2I - E(t)''£(0)"1/2 

H(t) = (I- E(t) E(t)'y-2)-^2H(t). 

In the classical results of Riccati equation theory, the existence of Hermitian solutions 
is linked with properties of invariant subspace of the so-called Hamiltonian matrix. 
The lemma below extends this relation to the differential Riccati equation of Hoo 
type 

-P(t) = F(t)'P(t) + P(t) F(t) + H(t)'H(t) 

+(P(t) G(t) + H(t)'E(t)) (7
2I - EitYEWrHGityPit) + E(t)'H(t)). (24) 

Lemma 2.5. Consider system Q given by equations (4), (5) and assume that 
(i)j2I-E(t)'E(t)>0,Vt 

(ii) Vw e L2[T OO), W / 0, it results that ||£op(T) w\\2 ^ 7IM.2 
(iii) The Hamiltonian matrix W() in (23) does not have unit-modulus characteristic 

multipliers 

(iv) The pair (F(-). <?(•)) is stabilizable. 

Then there exists a T-periodic stabilizing solution of the Riccati equation (24). 

Lemma 2.6 below characterizes the H^ norm in terms of differential T-periodic 
Riccati equations and inequalities. Precisely it states equivalent conditions for such 
a norm to be less than a scalar 7. 

Lemma 2.6. Now, consider system Q given by equations (4), (5) and let 7 > 0 be 
a given positive scalar. Then, the following statements are equivalent: 

(i) F(-) is stable and ||£||oo < 7 

(ii) 7 2 / — E(t)'E(t) > 0, Vt and there exists a T-periodic stabilizing positive 
semidefinite solution to 

- P ( t ) = F(t)'P(t) + P(t) F(t) + H(t)'H(t) + 

+ (P(t) G(t) + H(t)'E(t)) (T
2 / - E(t)'E(t)yl(G(tyP(t) + E(t)'H(t)) 

i.e. such that 

F(-) + G() (7
2I - ^ ( . )^( ) ) - 1 (G ( ) 'P( - ) + E(-)'H(.)) 

is asymptotically stable. 



222 P. COLANERI 

(iii) y2I — E(t) E(t)f > 0, Vtf and there exists a T-periodic stabilizing positive 
semidefinite solution to 

Q(t) = F(t)Q(t)+Q(t) F(t)' + G(t) G(t)' 

+ (Q(t) H(t)' + G(t) E(t)')(7
2I-E(t) E(t)')-\H(t)Q(t)+E(t) G(t)')(2b) 

i. e. such that 

F(-) + (Q(.) H(.)' + G() E(.)')(7
2I - E(-) E(.)')~lH(.) 

is asymptotically stable. 

Notice that the equivalent conditions stated in Lemma 2.6 are concerned with 
differential Riccati equations. It is also easy to work out new equivalent conditions 
based on differential Riccati (strict) inequalities where the stabilizing property of 
the solution is no longer required. This is done, for example, in the lemma below, 
which, in addition, extends the results of Lemma 2.6 to cope with the case where 
also the equality sign in the Hoo bound is considered. 

Lemma 2.7. Consider system Q given by equations (4)-(5) . Let 7 > 0 be a 
given positive scalar and assume that the pair (F1() ,G()) is reachable. Then, the 
following statements are equivalent: 

(i) F(-) is stable and ||£||oo < 7 

(ii) 7 2 / — E(t)fE(t) > 0, Vtf and there exists a positive definite T-periodic solution 
Q(-) of the differential Riccati matrix inequality 

Q(t) > F(t)Q(t)+Q(t) F(t)' + G(t) G(t)' 

+ (G(t) E(t)'+Q(t) H(t)') (j2I-E(t) E(t)')-\E(t) G(t)'+H(t)Q(t)).(26) 

(iii) j21 — E(t)'E(t) > 0 and there exists a positive definite T-periodic solution 
P() of the differential Riccati matrix inequality 

-P(t) > F(t)'P(t) + P(t) F(t) + H(t)'H(t) 

+ (P(t) G(t)+H(t)'E(t)) (j2I-E(t) E^yy^G^yp^+E^'H^)). 

(iv) j21 — E(t)'E(t) > 0 and there exists a positive definite T-periodic solution 
Qs() of the periodic Riccati equation 

Q,(t) = F(t)Qs(t) + Qs(t) F(t)' + G(t) G(t)' 

+(G(t) E(t)'+Qs(t) H(t)') (7
2I-E(t) EW^W) G(t)'+H(t)Qa(t)) 

such that the characteristic multipliers of 

F(-) + (Qs() H(.)' + G(-) E(.)')(7
2I - E(-) ^(•)')-1B(-) 

are all inside the closed unit disk (strong solution). 
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The theories of Hoo control and game theory are strictly related to each other. 
The following analysis result puts the basis of such a relation by linking the max
imization of a sign-indefinite functional with the periodic solution of a differential 
Riccati equation. 

Lemma 2.8. Consider system G given by equations (4), (5) and assume that 

(i) E(t) = 0, V* 

(ii) F(-) is stable 

(iii) IIGHoo < 7. 
If 0(T) is an initial state of (4), (5) then 

sup \\Z\\1-72\\W\\1 = 6(T)'P(T)0(T), 
wj±Qtw£L2[T oo) 

where P(T) is the T-periodic stabilizing solution of (24) computed at t = r. 

2.8. The mixed Hankel-Toeplitz operator 

Suppose that the input vector w of system (4) - (5) is partitioned into two com
ponents, say w\ and w2. Accordingly, matrices G(-) and E(-) can be written as 
G(t) = | Gi(t) G2(t) | and E(t) = | Ex(t) E2(t) |, respectively. Moreover, let 

Gi = (F, Gu H, Ex), G2 = (F, G2, H, E2). 

Now, let the orthogonal projections fi+ and fi_ be the operators mapping L2(—oo , oo) 
to L2[T ,OO) and L2(—oo , r ] , respectively, and let ^ be the set 

Ф = < w : 
W\ 

w2 

, m Є í t2(-oo r] , w2 Є L2(-oo + oo) 

Finally, define the operator Mop : * —• L2[T OO) as Mopw = 0,+z = Q+GOP(T)W. 
It is readily seen that the adjoint operator M~p : L2[T OO) —• * is defined by 

ft-2ioP(Tr 
M:PҺ = 

a 2 o p (r ) ' 
(27) 

Lemma 2.9. Consider system Q given by equations (4)-(5) and suppose that: 

(i) E(t) = 0, V. 

(ii)u; = K ^2]'. 

(iii)G(.) = [Gi() G-(-)l, 

(iv) F(-) is stable 

(v) the periodic pair (F(-),G(-)) is reachable. 
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If 

then 

||Л40рН12 

ш?0,и>е* 1М|2 

(a) there exists the T-periodic positive semidefinite stabilizing solution X() of 

- * ( * ) = F(t)'X(t) + X(t)F(t) + \x(t) G2(t) G2(t)'X(t) + H(t)'H(t). 
7 

(b) X(t) < J2P2

l(t)} Vf, where P 2 ( 0 is the controllability Grammian of system Q 
defined in equation (12). 

2.9. Youla—Kucera p a r a m e t r i z a t i o n 

The periodic system Q given by equations (4),(5) can be given a coprime fraction 
representation as indicated in the next result. 

Lemma 2.10. Consider the periodic system Q given by equations (4), (5) and 
assume that ( F ( ) , G ( ) ) is stabilizable and (F(),H(-)) is detectable. Then, there 
exist 8 stable periodic systems 5, ./V, «S, Af', X, J>, X and y, such that 

0) 
<7oP(r) = NopWS-V) = ̂ V)Nop(r). 

(ü) 
sop(r) ^op(r) 

[ N o P ( r ) XOP(T) 
= 1. 

XOP(T) -yop(T) 

-Nop(r) sop(r) 

Moreover, a possible choice of the above systems is: 

S = (F + GK, G, K, I), N = (F + GK, G,H + EK, E) 

X = (F + GK, L, -H - EK, I), y = (F + GK, L, -K, 0) 

S = (F + LH,L,H,I), fi=(F + LH,G + LE,H,E) 

X = (F + LH,G + LE, -K, I), y = (F + LH, L, -K, 0) 

where K() and L() are two T-periodic matrices such that F() + G()K() and 
F() + L(-) H() are stable. 

Lemma 2.11 . Consider the periodic system Q given by equations (4),(5). All the 
periodic input-output operators Kop(r) which internally stabilize Q are given by 

/Cop(r) = [^oP(r) + soP(r)Qop(r)][A'0p(r) + N o p ( r ) Q o p ( r ) ] - 1 

= [XOP(T) + Qop(r)Nkop(r)]-1[yop(r) + QoP(r)soP(r)] 

where Q is any stable periodic system such that (I + GOP(T)QOP(T)) is invertible. 
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2.10. Stability of feedback systems 

Consider a positive feedback connection between two periodic systems 

Tii =(A1,B1,C1)D1), n2 = (A2iB2,C2iD2). 

For the well posedeness of the closed-loop system it is obviously required that det(7— 
Di(i) A-OO) ^ 0,VJ G [T, T + T ) . We also assume that the two systems (see Figure 1) 
are given a right coprime factorization x as follows: 

ftlop(T) = 7il2op(T)7inop(T)~~ , 7<2op(T) = ft21op(T)W22op(T)~ , 

Lemma 2.12 below provides (a simplified version) of the extension to periodic systems 
of the well known small gain theorem. Lemma 2.13 establishes an important link 
between internal and external stability of the feedback configuration in Figure 1. 

Lemma 2.12. Assume that the two periodic systems H\ and Ti2 are both stable 
and that they have Hoo norm less than 1, i. e. ||Hi||oo < 1,2 = 1,2. Then, the closed 
loop system in Figure 1 is stable as well. 

'1 u l ! 

—H X 11 

ЗC 
21 

3Ci 12 

% 
22 

c^-j-O* 

щ\ 

F i g . 1. Feedback configuration of two periodic systems. 

L e m m a 2.13. The system in Figure 1 is stable iff one of the two following equiv
alent conditions holds: 

(i) The input-output operator HQP(T) from v = VI 

V2 
to U = 

Ui 

U>2 

is stable. 

1 Two T-periodic systems A and B with the same number of inputs are said to be right coprime 
if the relations 

" O D = -'ont ' i -,op op*--op 

with A and B T-periodic systems, are verified only if C is a causal T-periodic system with causal 
inverse. It is possible to prove that an extended version of the Bezout identity holds for right 
coprime T-periodic systems as well. 
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vi 
v2 

to z 
z2 

is stable. (ii) The input-output operator Tiop(T) from v 

3. PROOFS OF THE LEMMAS 

3.1. Proof of L e m m a 2.1 

Since F() is stable, there exists only one periodic solution P2O of equation (12). 
Moreover, such a solution is positive definite thanks to the reachability condition. 
Consider the function v(9,t) = 9'P2(t)~

l9 and compute its derivative along the 
trajectory of the system. It follows 

v(9,t) = w(t)'w(t)-p(t)'p(t) 

where p(t) = w(t) - G(t)'P2(t)-
10(t). Integration with 9(-oo) - 0 leads to 

^(0^(0~^(0 = -IWI^ + IHI^<IIHl2. 

The conclusion follows by noticing that w(t) = G(t)' P2(t)~
l9(t) G L2(—oo £]. Actu

ally, with this choice we have that 9(t) = (F(t) + G(t)G(t)'P2(t)~
1) 0(t), and F(t) + 

G(t)'G(t)'P2(t)-1=(F(t) P2(t) + G(t) G(t)') P2(t)-
1=(P2(t) - P2((t) F(t)') P2(t)-\ 

It is known that F(t) = (P2(t) - P2(t) F(t)') P2(t)~
l and -F(t)' are dynamic 

matrices of algebraically equivalent systems (if 6(t) = P2(t)~10(t) it follows that 
9(t) = -F(t)-l9(t)). Hence $ p ( r + T, r ) = P 2 ( r )$_ j P / ( r , r + T) / P 2 ( r ) - 1 . The 
conclusion follows from the stability of F(-) 

3.2. Proof of L e m m a 2.2 

Consider again the function v(9,t) = 9'P2(t)-
19 and compute its derivative along 

the trajectory of the system. It follows 

i)(9,t) = w(t)'w(t)-p(t)'p(t) 

where p(t) = w(t) — G(t)'P2(t)-l9(t). By integrating both members from r to t and 
recalling that 9(T) = 0 we have 

e(t)'P2(t)~H(t) = - J* \\p(*)\\2d* + J* \\w(a)\\2da 

< / \\w(aWda 

\\w(a < / ||u/ŕff)ll2dc- < 1. 

Hence the state trajectories 6(t), t > T are in the set 0(t)'P2(t)~16(t) < 1. Now, 
letting 6(t) = P2(t)~ll26(t) it follows 

sup \\z\b < sup{z(t)'z(t), 6(t)'P2(t)-H(t) < 1} 
vjeL2[T, oo], | | H | 2 < 1 t-T 
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< suP{6(ty'p2(t)^2H(tyH(t) p2(*)1 / 20>), o(t)'o(t) < 1} 
t>T 

< sup\m*x[H(t)P2(t)H(t)']. (28) 
t>T 

We only miss to show that there exists a feasible input w(-) which brings us arbi
trarily close to the equality sign in equation (28). To this aim consider the solution 
II(/) of equation (12) with initial condition II(r) = 0, i.e. 

U(t)= f ^F(t)(T)G(a)G(ay^F(tiayda. 

Of course 
n(t)<P2(0> limIl(t)-P2(t) = 0. 

t—•oo 

Now, consider a fixed but arbitrary time instant L > r and the input function 

f G(ty$F(L,tyil(L)-ll2xl), T<t<L 
w(t) = \ 

{ 0, t>L 

where ip is a unit-modulus eigenvector of II(L) 1 ! 2 H(L) / H(L)II(L) 1 ! 2 . Easy compu
tations show that 

INI! = i 
a r 1 d ., / 0 

z(L) = H(L)U(L)^2^ 

so that 

\\z\\l > i>'n{Lyi2H{L)'H{L)n{Lyl2xl> > Xm&x[H{L)U{L) H{L)']. 

Since U(t) tend to P2(t) as t tends to infinity, the thesis follows. 

3.3. Proof of Lemma 2.3 

Select ri G (T,T + T). It is a matter of simple computation to show that 

[G(T}X)w](t) if te[TUT + T) 

eXT[G(T,\)w](t-T) iHGjr + r - n + T ) 

where 

[<?(ГЬA) «,!](*) , 

{ 
tt»(ť) ifť e f n . r + r ) 

1 eATu;(*-T) ifťe[r + Tn+r) 
Hence, if A lies on the imaginary axis, i.e. A := ju} [<5(r, ju>) w] (t) and w have 
the same norm as [G(T,J0) WI] (t) and ivi, respectively. Moreover, thanks to the 
maximum modulus theorem, Vr 

||<7(r)||oo= sup ||cYr,A)|| = sup||Clr,ju,)| |. 
Re(A)>0 w 

The proof is thus completed. 
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3.4. Proof of Lemma 2.4 

Consider system _7 given by equations (4), (5) and let 

0(-oo) = 0 

_(<) = / ? ( ť ) i<T+ 

\ 0 t>T + 
where 

w(t-kT) = w(t)e~XkT, Re(X)>0, k>0, < e [ r . T + r ) . 

It is easy to verify that 

6 ( T ) = J $F(T,cr)G(cT)w(cr)dcT 
J —CO 

= (eA T7 - $F(T + T, T))-1 f $F(T + T, cr) G(<T)W(<T) dcr 

fr ( \ -\<*\ í z(l) t<T + T 
[QOP(T) W) (t) = | 

so that 
IV? f«-\ ,,,l N\ — J 

H(t) $F(t, T + T)0(T + T) t>r + T 
where 

z(t -kT) = z(t)e~XkT, Re(A)>0, k > 0, * e [ r , T + r ) 

and 
z(t) = [Q(T,X)w}(t), te[T,T + T). 

Of course, due to the system stability and the fact that Re(A) > 0, it is z(t) £ 
L2(-oo, T + T) and s(t) = H(t) $F(t, T + T) 0(T + T)e L2(T + T, oo), so that 

||î7op(-oo)HIІ = 11*113 + 11*113 

> PHІ 
oo pт-kT+T 

= £ / Г(t)ž(t)dt 
k=oJr~kT 

oo fT+T 

= yje-2Яe(A) f cт / _*(ť)ž(ť)dť. 
I..-П JT jfc=0 

Analogously, 
oo fт+T 

IHІ2 = D Є-2 Я eíA)*T / W*(t)w(t) dť. 
*=0 ^ 

Hence, recalling the fact that ||_7_p(T)|| does not depend on r, it follows 

2 _ c„_ l|gop(-°°Mli 
IMIi 

цaopiľ = sup 
w^0,w€L2( — oo oo) 
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> Г' 
S U Р ,r+T 

Яe(A)>0, w£L2[т т+T) / ...цг í \w 

l|gfoA)iB||»tT 

w\ т,T 
= sup 

Re(A)>0,t2JGL2[T r+T) 

> sup ||<7(r,A)||2 

Re(A)>0 

= 1 1 * -

Viceversa, recalling the Parseval rule (equation (19), (20)), 

| | C o p | | 2 = SUP l | g 0 p ( - ° ° ) t / ; | 1 2 

eM-°° 00) IIHI1 

/

- rT+T 
[ z^\tyz^\t)dt\du) 

SUp ——t-ryj; 
0-)€L2[r r+T) f' , T wU«){tyw{J»){t) d ť ] du) 

J —7T Jr 

sup 
wVш)єL2[т т+T) 

< sup 
w' 

J —7T  

r iit,(^)n2

irdW 
J —7T 

r \\w^wiiTdu, 
J —7T 

U»)eL2[T r+T) / | | w ( ^ ) | | 2 r d w 

J —7T 

= lián 

11011 

Ù 

3.5. Proof of Lemma 2.5 

Without any loss of generality, let us assume that 7 = 1. Moreover, let <£jy (T + r, r ) 
be the monodromy matrix associated with W(-) (see (23)). From the assumptions, 
we know (see e.g [9]), that there exist two matrices XQ and YQ such that 

X0 
Yo 

(i) гank 

(ii) XZYo = Y0*Xo 

(Ш)Фиr(r-ł-Г,r) 

= n. 

XQ 

Yo 
X0 

Yo 
Q. 

(iv) the eigenvalues of the constant matrix Q are inside the open unit disc. 
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Now let R(t) be any (T-periodic) matrix such that $ £ ( r + T,T) = Q and consider 
the differential equation 

x(t) 
[ Ý(t) J 

= W(t) x(t) 
Y(t) 

x(t) 
Y(t) 

R(t) 

with initial condition 
X(т) 

[Y(r) 

X0 

Yo 
It follows that the solutions X(-) and 

Y(-) of the associated differential equations are T-periodic matrices. Consider now 
V(t) = X(t)*Y(t). Simple computations show that 

-17 (t) = R(t)*V(t) + V(t)R(t) 

+x(tyH(t)f(i - EftEityy^wxit) - Y(tyG(t) (i - E^yE^y^^yY^) 

so that the periodic generator V(T) satisfies 

$Z(t, T)'X(tyH(t)'(I - E(t)E(t)')-'H(t)X(t) *-(«, T) + 

*ii(t, r)'Y(tyG(t) (I - EWEWr^GWYW *n(t, T) dt. I 
The thesis is proven ones it is shown that Xo is invertible. Suppose by contradiction 
that there exists y ^ 0 such that Xoy = 0. Hence V(T) y = 0. Letting 

w(t) = (/ - EWEW)-1 (G(t)'Y(t) + E(t)'H(t)X(t)) *R(t, T) y 

we have that 0(t) = X(t) $p(J, r ) y is the state solution of system (4) and the output 
(5) is z(t) = H(t) 9(t) + E(t) w. Moreover, it turns out that (the computation is left 
to the reader) 

í (z(t)'z(t) - w(t)'w(t)) dt = y'V(т) y = 0. 

Hence, ||z||2 = HHh w ^ h w £ L2[r oo). Therefore, assumption (ii) entails that 
w(t) = 0, V*. Since Xoy = 6(T) -= 0, it follows that 0(t) = 0, V*, and z(t) = 0, V*, 
as well. Now, letting 

h(t) = Y(t)*£(t,T)y. 

It results that, for any y E Ker (Xo), 

G(t)'h(t) = 0, Vť 

k(t) = -F(t)'h(t) 

h(T) = Y0y 

*F(T,T + T)'Yoy = Y0Qy 

XoQky = 0, k = 0,\,... 

(29) 

(30) 

(31) 

(32) 

(33) 
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Let now /i(A) be the monic minimum degree polynomial such that fx(Q) y = 0 
and write fi(Q) = (XI — Q)v(Q). Hence, if y = v(Q)y, it is Qy — Xy where 
y ^ 0 and |A| < 1. Let d such that e"dT = X. Obviously, Real(cf) > 0. Since 
yG Ker(Xo) (recall equation (33)), from equations (29)-(32) it follows that h(t) = 
$F(T,tyYoyedi is a T-periodic solution of 

dl - F(t)' 

G(t)' 
h(t) = 

h(t) 

0 

The equation above together with the assumption of stabilizability of ( F ( ) , G ( ) ) 
entail that Yoy = 0. On the other hand, this conclusion and Xoy = 0 contradict the 

fact that rank ,,° \ = n. 

3.6. Proof of Lemma 2.6 

(ii) <-• (i). First notice that the pair (F(-),N(-)) is detectable, where 

N(t) = (7

2I - F;(0,-5(0)"1/2(G(0,-D(0 + E(t)'H(t)) 

Indeed thanks to the stabilizing property of the solution, F(-) + L(-)N(-) is stable, 
with 

L(t) = G(t)(1

2I-E(t)'E(t))-^ 

This fact implies, by a well known inertia theorem [3] that F(-) is stable, so that the 
first point of (i) is proven. 
Now, let v(0,t) = 6fP(t) 9 and compute the derivative along the trajectories of the 
system. After some easy computations it follows 

where 

^K<u)i = - - w - w + T M O X O - vitytf i - E(t)'E(t))P(t) 

p(t) = w(t) - ( У J - E(t)'E(t)Г\E(t)'H(t) + G(t)'P(t)) x(t). 

Hence, recalling that F(-) is stable and that w(-) G L2[T, OO), integration over [r, oo) 
yields 

NI22-72IHIl--lblll 
so that \\z\\\ -7 2 | |H |_> < °) Viu(-) £ L2[T, OO), p(-) ^ 0. Notice, however, that 
p(-) = 0 cannot be approached by any sequence of L2 integrable signals w(-) apart 
from the null signal w(-) = 0. Hence, ||(/||oo < 7-
(i) <-» (ii). We have only to show that the Hamiltonian matrix W(-) does not have any 
unit-modulus characteristic multipliers. Then the result will follow from Lemma 2.5. 
To this end assume, by contradiction, that W(-) has an unit-modulus characteristic 
multiplier, say e J w T . Hence, there exists an eigenvector [0f p'] such that 

(т + T) 
p(т + T) 

= Фw(т + T,т) = êшT 
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Now, take the solution of the Hamiltonian system 

ltt)} = *w{t'T) 

and define 

w(t) = ( T 2 / - E(t)'E(t))-l(G(t)'p(t) + E(t)'H(t) 0(t)) 

z(t) = (T2 / - E(t) E(t)')-HE(t) G(t)'p(t) + 7
2H(t) 0(t)). 

Now, it is simple to check that 

6 = F(t) 6 + G(t) w 

p = -F(t)'p-H(t)'z 

z = H(t) 6 + E(t) w 

w = G(t)'p + E(t)'z 

so that all signals are EPS. Hence, for t 6 [r, T+T) it follows z(t) = [G(T, e'wT) w] (t) 
and w(t) = J~2[G(T,e'wT)~z] (t) so that 

[G(T, e*»T) G(T, et»T)~z] (t) = y2z(t). 

Since z() ^ 0 (otherwise also w(-) would be identically zero) the conclusion follows 
that \\G(T, eiujT)\\ > 7, contrary to the assumption. 

3.7. Proof of Lemma 2.7 

(ii) «-> (iii). This point easily follows by checking that P() and Q(-) are related by 
P(-) = 72Q()-\. 
(iv) —• (iii). This point is trivially verified by inspection, 
(ii) —• (i). The inequality in point (i) can be rewritten as 

Q(t) = Q(t) F(t)' + F(t)Q(t) + G(t) G(t)' + N(t) 

+ (G(t) E(t)' + Q(t) H(t)') ( T 2 / - E(t) E(t)')-l(E(t) G(t)' + H(t)Q(t)) 

where N(-) is a suitable periodic positive semidefinite matrix. Stability of F(-) 
follows from the controllability of ( F ( ) , G ( ) ) thanks to an inertia theorem, see [3]. 
Moreover, letting P(t) = J2Q(t)~1

) simple computations show that 

^t[x(t)'P(t)x(t)] = -z(t)'z(t) + w(t)'w(t)7
2 -p(t)'(y2I - E(t)'E(t))p(t) 

where z(t) = H(t) x(t) + E(t) w(t) and 

p(t) = w(t) - ( T 2 / - E(t)'E(t))-\E(t)'H(t) + G(t)'P(t)). 

Now recall that F() is stable and that w() G L2[r,oo]. Integrating both member 
with initial state x(r) = 0 we get the thesis. 
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(i) —* (iv). Let us define 

Hn(t) = H(t)en, En(t) = E(t)en 

where en £ [0,1] monotonically tends to 1 as n tends to infinity. Hence, thanks to the 
assumptions in point (i), the Hoo norm of the periodic system Qn = (F, G}Hn)En) 
is stricly less than 7. In view of Lemma 2.6, there exists, for each n > 0, a positive 
semidefinite stabilizing solution of the differential Riccati equation 

-Pn(ł) = F(ł)'Pn(ł) + +Pn(ł) F(ł) + Hn(t)'Hn(t) + (Pn(t) G(t) 

+Hn(t)'En(t))(j2I-En(t)'En(t))-1(G(t)'Pn(ł)+En(ł)'G(ł)). (34) 

Such a solution is easily verified to be the smallest positive semidefinite T-periodic 
solution of eq. (34). Moreover, consider the periodic differential Riccati equation 

Qn(t) = F(t)Qn(t) + Qn(t) F(t)' + G(t)'G(t) 

+(Qn(t) Hn(t)' + G(t) En(t)') (j2I-En(t) ^„(0')_ 1(^n(0Qn(0 + ̂ n(0 Hn(t)'). 

Since the Hoo norm of Qn is strictly less than 7 and the pair (F(-), G(-)) is reachable, 
such an equation admits a positive definite stabilizing solution for each n, [10]. 
Moreover, it is easily verified that Un(^) := J2Qn(t)"1 is a positive definite solution 
of (34). Such a solution is the antistabiling one. It turns out that Pn(^) < cJn(tf), 
\ft. On the other hand, Qn(-) is bounded from below by the reachability grammian 
M(-) of the pair (F() ,G(-)) . Indeed, denoting with $ f ( t , r ) the transition matrix 
ofF(-), it follows that 

Qn(t)>M(t)= f <f>F(t}<T)G(a)G(a)'<I>F(t,<Tyda>0. 
Joo 

Hence Pn(t) < Un(t) < 7
2 M ( * ) " 1 , V*. 

We now prove that Pn(t) is not decreasing with respect to n, i.e. that Pn +i(tf) > 
Pn(t). To this purpose, notice that the equation of P n ( ) can be equivalently rewrit
ten as 

-Pn(t) = [ I Pn(t) } Rn(t) [ I 

where 

and 

Rn(t) = 

Pn(t) 

Hn(t)'Hn(ł) Fn(t)' 
Fn(t) Gn(t)Gn(t)' 

Hn(t) = (I- En(t) £n(0'7-2r1 / 2#n(<) 
Fn(t) = F(t) + G(t) (j2I - E^tyEnWr'E^tyH^t) 

Gn(t) = G(t) (j2I - E^tyE^t))-1'2. 

Now, it can be simply verified that 

Bn+i(0 = Rn(t) + н(t)' 
G(ł)E(t)'j-2 

Sn(t)[H(t) E(t)G(ł)'i - 2 
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where 

Sn(t) = (I- En+1(t) E^ty-y-2)-1^ -(I- En(t) En(t)'j-^-'el 

Since Sn(t) > 0 it turns out that 

I7n+i(0-I2n(0>0 

The last inequality is a celebrated monotonicity assumption which entails the mono-
tonicity of the stabilizing solutions Pn(-) with respect to n. Indeed, letting An(t) := 
Pn+1(t)-Pn(t), and Fn(t) := F(t) + G(t)(^I-E(t)'E(t))-\G(t)'Pn(t) + E(t)'Hn) 
a simple computation shows that 

-An(t) = An(t)Fn(t) + Fn(t)'An(t) 

I 
+ [ I Pn+1(t) } (Rn+1(t) - Rn(t)) 

En+l(0 

Since Fn(-) is stable, it follows from an inertia theorem on the periodic Lyapunov 
equation [3] that Pn+i(t) > Pn(t). A similar reasoning on the equation of Qn(t) 
shows that Qn+iit)"1 < Qn(t)~

l, V% so that Un+i(t) < Un(t). From this last 
inequality and the inequelities Pn(t) < Un(t) < j2M(t)~l and Pn+i(tf) > Pn(t) 
it follows that the sequence of antistabilizing positive definite T-periodic solutions 
Un(') of equation (18) admits the limit solution Uoo(0- Such a solution is antistrong, 

F(-) + G() ( T 2 / - E(.)'E(-))-\G(.)'Uo0(.) + E(-)'H(.) 

has characteristic multipliers with modulus greater than or equal to one and satisfies 

-Uoo(t) = F(t)'Uoo(t) + Uoo(t) F(t) + H(t)'H(t) 
+ (Uoo(t) G(t) + H(t)'E(t)) (7

2 / - E(t)'E(t))-1(G(t)'Uao(t) + E(t)'H(t)). 

Moreover, since F(-) is stable and Uoo(0 is antistabilizing, it is easy to see that the 
pair 

(F(\ \ H® ]\ 
V (''' L (T2I - E(t)'E(t))-W(G(tyUoo(t) + E(t)'H(t)) J J 

is observable, so that Uoo() is indeed positive definite. Finally, is just a matter of 
simple computations to recognize that Qs(t) :--- J2Uoo(t)~l is the positive definite 
strong T-periodic solution of the Riccati equation in point (iv). 

3.8. Proof of Lemma 2.8 

First notice that, in view of Lemma 2.6, the periodic stabilizing solution P(t) of (24) 
actually exists. By completing the squares we have that 

-Iwmow) = (MO - mmm) (M>) _ mmm 
- w(t)'w(t)y2 + z(t)'z(t). 
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Integration of both members from r to +00 leads to 

6'TP(T) eT = \\7w - - ^ - - - - i i l + IMI; - 7
2\H\l 

7 

so that ||z||2 — 7 2 | | 2 ^ | | 2 < QTP(T)OT- Of course, the stabilizing property of P(-) 
entails that w(-) — j~2G(')'P(-)0(') £ LI\T 00). Then the conclusion follows. 

3.9. Proof of Lemma 2.9 

The periodic stabilizing solution X() exists in virtue of Lemma 2.6 applied to system 
(F ,G2 ,H ,0) . Actually, 

- v ^ c n n l i _ _ _ 2 p H i i ^ Q11„ II^QP^Ib 
7 > S UP || n > sup — — n — . 

wjt:ofwe* \\w\\2 w1=o,w2^oiw2eL2[T 00) IF2II2 
Moreover, recalling the definition of the operator Mop and the set \P, it follows 
||Q+z||! ~ 7 2 | |H| 2 = ll^+^lli - 72 | |^+^2| |2 - 7 2 | |^-Hl2- T h e l a s t t e r m contributes 
to ||fi_|_;?||2 only through the state 0(T). Hence, application of Lemmas 2.2 and 2.8 
leads to 

S U P { | | < M | 2 - 7
2 | H | 2 \6(r) = M = 6'T[X(T) - 7

2P^(T))6T. 
we<& 

Hence ||M0puv||2 - 7IHI2 < 0 implies that 0T[X(T) - 72-D
2~1( r)]^< 0. Since r and 

0T are arbitrary, the thesis follows. 

3.10. Proof of Lemma 2.10 

First recall that, in view of the assumed stabilizability and detect ability of £, there 
exist two periodic matrices K(-) and L(-) such that F(-) + L(-)H(-)) and F(-) + 
G()K(') are stable. Consider the four stable periodic systems T{, i — 1, • • •, 4 given 
by 

( i = (F(t) + G(t))K(t))i + G(t)v 

Tx = \ z = (H(t) + E(t)K(t))i + E(t)v 

[ w = K(t)£ + v 

( 0 = F(t) 9 + G(t) w + L(t)r) 
' 2 \ r) = H(t)9 + E(t)w-z 

_ / jx = (F(t) + L(t)H(t))ii + (G(t) + L(t)E(t)))w-z 
' 3 ~ \ g = w - K(t)(X 

( p = (F(t) + G(t)K(t))P + L(t)d 
JF4 = I z = (H(t) + E(t)K(t))p - d 

( w = K(t)p 

The reason why certain input (output) variables of the various systems are the same 
is due to the fact that we are going to put some of them in cascade connection. In 
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particular, notice that system T\ is nothing but system Q equipped with the periodic 
feedback control law w(t) = K(t)^(t)) + v(t)y whereas system T2 is a periodic state 
reconstructor for system Q. 
Assume that all the initial conditions (at t = r ) of all four systems are zero and 
consider systems S, J\f, X, S, N and X defined in the statement of the Lemma. 
From T\ it follows: 

u;(<) = [5op(r)»] (0 , z(t) = [NOP(T)V] (t). 

By comparing with z(t) = [Qop(T) w] CO and noticing that S is invertible, it is 

QOP(T) = ^ o p W ^ p W - 1 . (35) 
From system T2 it is 

V(t) = t#oP(r) ti;] (0 - [sop(r) z] (t). (36) 

But the cascade connection ^op-^iop entails 

(e-t) = (F(t) + L(t)H(t))(9-0 

v = H(t)(e-t) 

so that 0(t) = £(t) and rj(t) = 0, V2. From equation (36), the invertibility of S and 
z(t) = [£op(r) w] (t) it then follows 

^oP(r) = sop(T)-1N0p(T). (37) 

Equations (35) and (37) prove point (i) and entail 

soP(r)NoP(r) = KP(T)SOP(T). (38) 

Moreover, from system Tz it follows 

<7 = ^op(r)u;-5 5op(r)z . (39) 

But the cascade connection .T^op^iop entails that 

(ii-i) = (F(t) + L(t)H(t))(li-i) 
g = v-K(t)(ii-i) 

so that \i(t) = i(t) and g(t) = v(t), Vt. From (39), it then follows 

£oP(r)sop(r) - ^op(r)No p(r) = I. (40) 

Analogously, from system TA it follows 

Z(t) = ~[XoP(T) d] (t), W(t) = ~[yop(T) d] (0 . (41) 

But the cascade connection ^op-^op entails that 

(p-0) = (F(t) + L(t)H(t))(p-6) 
ri = d-H(t)(p-6) 
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so that p(t) = 0(t) and 77(f) = d(t), V*. From (36), (41) it then follows 

SOP(T)XOP(T) - Nop(r)^op(r) = 7. (42) 

Finally, the cascade connection .̂ op-TAop entails that 

(p-ii) = (F(t) + L(t)H(t))(p-») 

g = K(t) (p - n) 

so that p(t) = n(t) and g(t) = 0, V<. From (39) and (41) it then follows 

£>P(r) 3>op(r) - 5^op(r) * o p ( r ) = 0 (43) 

Equations (35), (37), (38), (40), (42), (43) prove point (ii). 

3.11. Proof of Lemma 2.11 

Observe first that, since I — GOP(T)QOP(T) is invertible, XOP(T) — Nop(r)Qop(r) and 
<^oP(r) — QOP(T)N"OP(T) are invertible as well, so that the formulas in the statement 
are well defined. Moreover, for any QOP(T), it follows 

sop(r) ~Уop(т) 

L -Nop(r) Xop(т) 

I Qop(r) 1 [" XOP(T) ^op(r) 

0 I J I Nop(r) SOP(T) 

XOP(T) + Qop(T)Atop(r) 9OP(T) + QOP(T)SOP(T) 

Nop(r) <5oP(r) 

sop(r) - s 0 p ( r ) Q o p ( r ) - > ' o p ( r ) 

L -NoP(r) KP(T)QOP(T) + XOP(T) 

Now, letting 

Vo p(r) = * o p ( r ) + Q o p ( r ) N o p ( r ) , uop(r) 

Vop(r) = Afop(r) + Nop(r)Qop(r), uop(r) 

it follows 

-Qop(r) 

I 

Ўop(т) + Qop(т)Šop(т) 

Уop(т) + Sop(т)Qop(т) 

Vop(r) uop(r) 

L Nop(r) sop(r) J 

sop(r) -uop(r) 

-N o p ( r ) Vop(r) J 
(44) 

and 
ICOP(T) = UOP(T)VOP(T)~1 = VopíO-^opír). 

The simple verification tha t the feedback connection between system Q and controller 
/C is well posed is left to the reader . Now, equation (44) implies tha t 

Sop(r) -Wop(r) 

L - J M r ) VoP(r) J 

- 1 
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is stable. But this operator is exactly the input-output operator (called HOP(T) 

in Lemma 2.13) between v and z in Figure 1. Then, application of Lemma 2.13, 
point (ii), allows one to conclude that the closed-loop system (namely the system in 
Figure 1) is (internally) stable. 
Conversely, take a periodic stabilizing controller /C and write a coprime factorization 
as Kop(r) = Wop(r)Vop(r)"1. Then, 

r I ? ] 

[ o -STOP(T)UOP(T)+SOP(T)VOP(T) J 

* o p ( r ) íop(r ) 

L Nop(r) sop(r) 

sop(r) -uop(r) 

L -Nop(т) Vop(r) 
(45) 

where ? is a block we are not interested in. Notice that the inverses of both operators 
at the right hand side of equation (45) are stable. The first by construction and 
the second in view of Lemma 2.13, point (ii). Consequently, also MOP(T)UOP(T) — 
«->op(r)V0p(r) admits a stable inverse. Thus, we can define 

Vvop(r)"1 = -(Nop(r)uop(r) + s0p(r)VoP(r))-1

) 

Qop(r) = (^op(r)uop(r) - 5'0p(r)V0p(r))>V0p(r)-1. 

Thanks to what we have said before, QOP(T) is stable. Moreover, as can be easily 
seen (the check is left to the reader), the well posedeness of the closed-loop system 
implies the invertibility of I + QOP(T)QOP(T) and that of XOP(T) + JVop(r)60p(r). 

Finally, an easy computation shows that 

I -Ôop(r)W o p ( r ) 

0 Wo p(r) 

sop(r) -uop(r ) 

L -Nop(r) V0p(r) 

• M r ) - ^ p ( r ) 

-No P ( r ) <Top(r) 

so that 

Q>oP(r) + 50p(r)Qo p(r))WoP(r) = UOP(T) 

(XOP(T)+MOP(T)QOP(T))WOP(T) = VOP(T) 

implies 

£ o p ( r ) = [yop(T) + S0P(T)Q0P(T)][X0P(T) +^ o p ( r )Qop( r ) ] - 1 . 

Analogously, it can be proven that if/Cop(r) = V0p(r)~1i/op(r), then 

IC0p(r) = [XOP(T) + QoP(r)jV>
op(r)]-

1[5?0p(r) - QoP(r)5o p(r)] . 

3.12. Proof of Lemma 2.12 

Let x\,x2 be the state variables of the two systems Hi and H2 and x that of the 
closed-loop system. Assume, by contradiction, that the closed-loop system has an 
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unstable characteristic multipliers, say /i := e A T , with Re(A) > 0. Hence, letting 

Ai2(<) = (/ - Di(t) D2(t)) and A 2 i(t) = (I - D2(t) -Oi(0)> w e h a v e 

x(T+r) = eXTx(r) 

x = A(t) x 

with 

A(t) = 

By letting 

and 

-4i(0 + Bi(0 D2Дi2(0-1Oi(0 Bi(0Д2i(0_1O2(0 
ß 2 ( 0 Д i 2 ( 0 _ 1 C i ( 0 л 2 ( 0 + ß 2 ( 0 Д i 2 ( 0 _ 1 A ( 0 O 2 ( 0 J 

* i ( 0 = Д 2 i ( 0 " Ҷ D 2 ( 0 Oi(0 * i ( 0 + Oг(0 *2(0) 

Z2(t) = A^ty^D^t) c2(t) x 2 ( 0 + Oi(0 * i ( 0 ) 

it then follows that 
i i = Ai(t)Xl + B1(t)z1 

z2 = Ct(t) Xl + Di(t) Zl 

Xl(T + T) = eXT

 XI(T) 

and 
x2 = A2(t)x1+B2(t)z1 

z1 = C2(t)x1+D2(t)z2 . 

X2(T + T) = exl'X-(T) 

Now, recalling the definition of transfer function of a periodic system (equations 
(15), (16)), it results 

[7i1(T,\)n2(T,\)z1\(t) = z1(t). 

Hence, 
| |Wi(r,A)7ť 2 (r,A) | |>l . 

Finally, Re(A) > 0 and the definition (22) of the Hoo norm of a periodic system 
imply that ||7£iW2||oo > 1. This is a contradiction since ||7/i||oo < 1 and ||7i2||oo < 1 
obviously imply ||7^||oo < 1-

3.13. Proof of Lemma 2.13 

Point (i). Obviously, if the system is internally stable then Wop(r) is stable. To 
prove the converse statement, we only have to prove that the overall system % 
with input-output operator 7Yop(r) is reachable and observable. Letting Ai2(f) = 
(7 - Di(t) D2(t)) and A2i(*) = (I - D2(t) Dx(t)), it follows that H = (A, B, C, D) 
where 

A(t) = 

5 ( 0 = 

Ai(0 + Я i ( 0 Д 2 i ( 0 _ 1 D ! ( 0 O i ( 0 BiWДгiíО"1^^) 
B2(0Дi2(0_1Oi(0 M(t) + ß 2 ( 0 Д i 2 ( 0 - 1 D i ( 0 Oг(0 J 

5 i ( 0 Д 2 i ( 0 _ 1 Я i ( 0 Д 2 i ( 0 _ 1 D ! ( 0 
B2(0Дl2(0_1-5l(0 B2(0Дl2(0_1 
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C(t\ - í ДгiíO-^DгíOOiíO Д2i(0)_ 1O2(0 
° W ~ [ ДiзíО^OiíО Дn íО^D i íОOг íО 

n(t) = \ A 2 i ( ť ) _ 1 -мo-^-эд 
^ ; [ Д U Í О - ^ I W ДÍ20-i 

Now introduce the following matrices (which are invertible for all t) 

To(t) = 

I 
0 
0 

-O i (0 

0 0 0 
/ 0 0 

O2(0 -Д 2 i (0 - 1 D2(0Дi2(0 I 

o / -Дiзío-^DiíОДгiíО 

Tc(0 = 

/ 0 5 i ( 0 
o / o 
0 0 / 

0 0 -A i^OD i íOAníO" 1 

0 

ß2(0 
- д 2 i ( 0 o 2 ( 0 Д i 2 ( 0 _ 1 

/ 

Recall the PBH test (equation (6)) and assume, by contradiction, that system H is 
not reachable, i.e. that there exists a nonzero periodic solution of 

A/ - .4(0' 

-5(0' 
t > т. 

By premultiplying by Tc(t)', simple computations show that 

A / - Л i ( 0 ' 0 
0 A / - Л 2 ( 0 ' 
o -в2(ty 

- B i ( 0 ' o 

X = 

i 

2 
0 
0 

so that reachability of the minimal systems 7ii and/or H2 is violated. 
Analogously, recall the PBH test (equation (7)) and assume, by contradiction, that 
system H is not observable, i. e. that there exists a nonzero periodic solution of 

-A/ + Л(0 
O(0 

= t>т. 

By premultiplying by To(t), simple computations show that 

-A/ + Ai(0 0 
0 -XI -f A2(0 
0 O2(0 

Oi(0 0 

= 

01 

02 

0 
0 

so that observability of the minimal systems Hi and/or H2 is violated. 
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Point (ii). We have only to prove that W o p(r) is stable iff 7 t o p (r) is stable. From 
Figure 1 it is apparent that 

0 7 t 2 i o p ( r ) 

. fti2oP(r) 0 
7top(r) = - 7top(r) + / 

so that if 7ioP{r) is stable, W o p (r) is stable as well. 
Conversely, since the systems (7 in o p ( r ) ,Wi 2 o p ( r ) ) and (W22oP(r),W21op(r)) are 
right coprime, there exist four stable periodic systems X\, ^ 2 , 3̂ i and ^ 2 such 
that 

Л"юP(r) 
0 

0 1 [ ?ťl2oP(r) 
•W) J [ 0 

0 
7t2ЮP(r) J 

+ 
^ i o P ( r ) 

0 
0 1 [ ^iюp(r) 

З l 2 o p(r) J [ 0 
0 

•W22oP(r) J 
= 1. 

Hence, a little thought leads to 

Hop(r) + 

Hence, if 7? o p(r) is stable, 7^o p(r) is stable as well. 

IViop(r) -XOP(T) ' 

. -X2OP(T) ^ 2 o p ( r ) 

0 * i o p ( r ) 

^ 2 o P ( r ) 0 
Њp(т). 
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