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K Y B E R N E T I K A — VOLUME 36 ( 2 0 0 0 ) . NUMBER 3, P A G E S 3 1 1 - 3 1 9 

ON CALCULATION OF STATIONARY DENSITY 
OF AUTOREGRESSIVE PROCESSES 

JlRI ANDEL AND KAREL HRACH 

An iterative procedure for computation of stationary density of autoregressive processes 
is proposed. On an example with exponentially distributed white noise it is demonstrated 
that the procedure converges geometrically fast. The AR(1) and AR(2) models are analyzed 
in detail. 

1. INTRODUCTION AND PRELIMINARIES 

Let {Xt} be a stationary autoregressive process of the first order defined by 

Xt = bXt-i + ett 0 # 6 e ( - l , l ) (1.1) 

where {et} are i.i.d. random variables with a finite second moment. From (1.1) we 
have 

Xt=et+ 6e t-i + b2et-2 + . . . (1.2) 

and the series converges in the quadratic mean. It is clear from (1.2) that {Xt} is 
strictly stationary. We are interested in the stationary distribution of the process 
{Xt}. The following assertions show that this distribution is continuous. 

Theorem 1.1. Let {&} be i.i.d. random variables. If the series X = YltL-oo hZt 
converges almost surely and infinite many kt are different from 0 then X has a 
continuous distribution. 

P r o o f . See [10]. D 

Theorem 1.2. Let {77*} be independent random variables such that Erfi < 00 and 
J2 vwr]t < 00. Then the series YliVt — Er]t) converges almost surely. 

P r o o f . See [15], § 16.2 and § 17.2, or [18], Theorem IV.1.4, p. 241. • 
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T h e o r e m 1.3. The stationary distribution of the process {Xt} defined by (1.1) is 
continuous. 

P r o o f . The assertion is a direct consequence of Theorems 1.1 and 1.2. • 

For example, if b = 0.5 and et is a discrete random variable such that P(et = 
0.5) = P(et = —0.5) = 0.5 then Xt has the continuous rectangular distribution 
R(—1,1). A review of some results of this kind can be found in [2]. 

However, in many cases stronger assumptions about et are made. 

T h e o r e m 1.4. If et has a density, then Xt has also a density. 

P r o o f . Using (1.2) we can write Xt = et + Zt where Zt = bet-\ + b2et-2 + • • • 
Since et and Zt are independent and et has a density, their sum et + Zt = Xt has 
an absolutely continuous distribution (see [16], p. 196). £--

Now, we introduce a known equation for the stationary distribution of Xt and a 
formula for the characteristic function of Xt. 

Theorem 1.5. Let et have a density / . Then the density h of Xt satisfies the 
equation 

h(x) = f f(x- bu) h(u) du. (1.3) 

P r o o f . The equation follows from (1.1), since Xt-\ has also the density h and 
Xt-\ and et are independent. D 

Theorem 1.6. Let tp(t) be the characteristic function of et and let p(t) be the 
characteristic function of Xt. Then 

p(t) = f[ф(Ъnt). 
n=0 

P r o o f . Define 
Yttn = et + bet-x + ... + bnet-n. (1.4) 

Then YtfTl —> Xt in the quadratic mean as n —» oo. Thus Yt}Tl —» Xt also in the 
distribution. It implies that the characteristic functions of the variables Yt)Tl converge 
pointwise to p(t). But the characteristic function of Yt)Yl is ip(t) tp(bt)... ip(bnt). • 

If et has normal distribution then it is well known that X% is also normally 
distributed. One of the first attempts to find a connection between the distributions 
of Xt and et in a non-normal case was published in [9]. For some special non-
normal distributions of et (continuous and discrete rectangular distributions, Laplace 
distribution) the stationary distribution of Xt is calculated in [2]. It is also known 
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that if et has a stable distribution of exponent 0, (0 < 0 < 2) then Xt also has a 
stable distribution of the same exponent (e. g., see [19], p. 208, Ex. 11). 

By the way, the opposite problem was more popular, viz. to find a distribution 
of et for a given stationary distribution of Xt. The famous paper [12] contains the 
cases when Xt has exponential or gamma distributions. A review of such results can 
be found in [1] and [2]. 

The methods mentioned above were applicable only to some special distributions 
of Xt and et. Another approach was proposed in [3]. The goal of this paper was to 
find a distribution of et such that the stationary distribution of Xt has given mo
ments. This method was derived for general linear processes so that autoregressive 
models form only a special class. Detailed results for AR(1) models are published 
in [4]. A different method based on Hermite polynomials can be found in [17]. 

The problem how to calculate stationary distribution of a process from the dis
tribution of a white noise seems to be even more popular in non-linear models. The 
method of moments was applied in [6]. Exact explicit results are quite rare. One 
of them can be found in [7] but formulas for stationary density of the absolute au-
toregression published in [8] and [5] became more familiar (cf. [19], pp. 140-142 and 
p. 205). Numerical procedures suggested for computation of stationary density in 
non-linear models (see [19], p. 152) can be, of course, also used in the model (1.1). 
It corresponds to numerical solution of the equation (1.3). 

Quite recently (see [13]) some theoretic results for the stationary density of Xt 

in the model (1.1) were derived in the case that et has the rectangular distribution 
on (0,1). It was proved that the stationary density belongs to the class C°° and 
some bounds for tails of this stationary distribution were derived. The derivation 
was based on investigation of asymptotic properties of et + bet-\ + h bnet-n as 
n —+ co. 

2. AN ITERATIVE METHOD FOR AR(1) PROCESSES 

An explicit formula for h satisfying (1.3) given / is known only in a few cases. Here 
we propose an iterative method for its computation. Let /io be an arbitrary density. 
For n > 1 define 

hn(x) = f(x- bu) hn-i(u) du. (2.1) 

It is obvious that every function hn defined by (2.1) is a density. 

Theorem 2 .1 . Let ho be a density. Define hn by (2.1). Assume that there exists 
an integer m > 0 such that 

/

oo 
|V>(<) rp(bt) ... ip(bmt)\ dt < oo. (2.2) 

-OO 

Then hn(x) —• h(x) for all x as n —» oo. 
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Proof. Let An be the characteristic function corresponding to hn. Using (2.1) 
we obtain 

Xn(t) = f eitxhn(x)dx= feitx | / / (_-&«) „n_i(_)d_] da; 

= J /i„_i(«) \Jeitxf(x - bu) dx\ du = J An_i(«) 17eitbu+ityf(y) dy du 

= tftt) J eitbuhn.!(u)du = rf,(t)Xn_1(bi). 

Thus 

An(*)-= m tp(bt) V-(^)... 4>(bn-h) x0(b
nt). 

From the continuity of the characteristic function we have 

X0(b
nt) -> Ao(0) = 1 as n -> oo. 

Using Theorem 1.6 we get Xn(t) —> p(t) as n —• oo. Assume that n > m. Because 

1 I°° 
hn(x) = ^j e~lixXn(t)dt (2.3) 

and \e-itxXn(t)\ < \tp(t) ip(bt).. .if>(bmt)l Lebesgue theorem gives 

lim hn(x) = -f- / e-ltx lim Xn(t) dt = — / c-*V(<)d< = M*)- D 

n-oo 2nJ-oo L"^00 J 2* J-oo 

Of course, speed of the convergence and complexity of formulas for hn depend 
heavily on the choice of /io-

3. AN EXAMPLE 

Sometimes it is easy to derive speed of convergence hn(x) —» h(x). From (2.3) we 
h a v e j / 0 0 

\hn+1(x) - /in(x)| < — / |An+i(0 - Xn(t)\ dt. 
27r J-oo 

Define 
A n + i = sup \hn+i(x) - hn(x)\. 

X 

Then we get 

1 f°° 

An+1 < ±j \m*w---wn-lt^ d*- (3-1) 
Consider the process {Xt} given by (1.1) such that 6 G (0,1) and et ~ Ex(l), 

i.e., / (x) = e"x for x > 0. For simplicity, choose ho(x) = / (#) . Then 

m = MO = j-̂ -r-
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Since 

\m\ = (3.2) 
vT+T-"' 

the assumption (2.2) is fulfilled for m = 1. The inequality (3.1) can be written in 
the form 

-n+l <-L 

-oo 

лoo 

oo n 

-oo 
П^(бäť) 

.5=0 

[Ф(bn+Ч) -1] dť. (3.3) 

Assume that n > 3. Then (3.3) and (3.2) yield 

1 I°° 
An + l < - / |T/,(/) ^(fe/)|.|^(fe2^)^(^3^)||^(6^-f-1^) — 1| dT̂  

^ J - o o 
bn+H 1 ľ°° 1 1_ 

- ҡj_00l + 62ť2 1 + 66ť2 VI + 6 2"+ 2ť 2 

1 ľ°° 1 1 

< ̂ Ï L Î - - Ӣ - Л 

Since 

we have 

ť 
< 

i 

бeť2 

r°° dť 
l + 66ť2 - 26 3 ' 

1 y°° c 
T j-oo 1 + 

1 
62ť2 26' 

1, 
A n + 1 < ^ 6 " " 3 . 

In this case the iterative procedure converges to the limit density geometrically fast. 
For small values of n we write (3.3) in the form 

ŁП + l ГOO " + 1 

д „ + i < - — / tľ[(i + ь2>t2)-l/2dt. 

Especially, 

A < - í t 1 1 l 

2 ~ * jo v " ! " 2 VI + 62ť2 Vl + 64ť2 

62 /°° ť 62 '°° 

dť 

_ l°°____L__dť-— Г dx 

~ " Уo (1 + б^ť^VГTť 2 2тr Уo (1 + 64x) V Ӣ ~ (l + 64ť2)Vl 

7 r - 2 a r c t g 7 = . l r ï 

Similarly, 

2TT\/ I — ~6 4 

63 

= D2(6). 

A < _ / * 1 
3 - " 1o VT+1~ \/T+ _ r —-— -

- 7r1 0 l + 6 2 ť 2 l + í 

1 1 
б2ť2 VI + б4ť2 VI + 66ť2 

261n6 

dť 

66*2 d t TT(1 - 64) 

Some values of Dj(6) and D3(6) are introduced in Table 3.1. 

= Dз(6). 
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Fig. 3.1. 

Table 3.1. 

6 0.01 0.1 0.5 0.9 0.99 
D2(b) 
D3(b) 

0.50 
0.03 

0.50 0.43 
0.15 0.24 

0.34 
0.18 

0.32 
0.16 

Explicit formulas for hn(x) can be written down if n is small. For example, 

h2(x) = 
(1-6)-

I _ g*-*/6 _ 
b - ex(Ъ*+Ь-l)/Ь-l/Ь 

1 + 6 

and so on. However, it is easier to use a program package for calculating and 
processing the functions hn(x). We used Mathematica. Figure 3.1 shows functions 
/i 0 (x), . . . , h$(x) in the case 6 = 0.5. 

4. A GENERALIZATION TO AR PROCESSES OF HIGHER ORDER 

The iterative method for calculating stationary density can be generalized to autore-
gressive processes of higher order. Here we present a derivation for AR(2) model. 
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Let Xt be a stationary AR(2) process defined by 

Xt = blXi-1+b2Xi-2 + ei (4.1) 

where et is a strict white noise with a density / and a finite second moment. Let ^ 
be the characteristic function of et and 

= (î h) 
It is known that 

oo 

Xt = J2a3et-j 

where ay is the (l,l)-element of the matrix FJ (see [14], p. 57). It follows from 
the assumption of stationarity that all roots of F lie inside the unit circle and thus 
the series (4.1) converges in the quadratic mean. If we define c = (1,0)' then 
aj -= c'FJc = c'Flj c and the characteristic function A of Xt is given by 

oo oo 

X(v) = J J xP(vaj) = Y[ ^(vc'F'Jc). (4.2) 
i=o i=o 

Since we assume that et has a density, it follows from (4.1) that the random vec
tor (Xt,Xt-i)' has a joint density, say q(x>y). The stationary density of {Xt} is 
f q(x,y)dy. Because {Xt} is stationary, the vector (Xt-i)Xt-2)' has also the den
sity q. The joint density of (Xt)Xt-i, Xt-2)' is q(xt-i,xt-2) f(xt-bixt-i-b2xt-2) 
and so we have an integral equation 

q(xti xt-i) = / q(xt-i, xt-2) f(xt - &ix t-i - b2xt-2) dxt-2. (4.3) 

Let qo(y, z) be a density. Formula (4.3) suggests that a method for calculating q can 
be based on the recurrent relation 

qn(x, y)= qn-i(y, z)f(x - bxy - b2z) dz. (4.4) 

We prove that under some conditions concerning qo the functions qn converge point-
wise to q. 

Theorem 4.1, Let An be the characteristic function corresponding to qn. Then 
for arbitrary t = (ti,t2)' we have Xn(t) —* A(t). 

P r o o f . Using (4.4) we get 

A„(.i..2) = JJeit**+it>yqn(x,y)dxdy 

= JJJ e^'+^qn-xiv, z)f(x -biy- b2z) dz dx dy 
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= (If e i ,^w +* l ! '+ ' - ' ) + , ' ' a , '? . . - i( i / , z)f(w) dz dw dy 

= If ei^+t*)y+iuh2Zqn-i(y,z)dydz f eitlW f(w)dw 

= Xn.i(t1b1 + t2,tib2)ip(ti) 

= A n_i(F ' t )V(c ' t ) . 

This gives 
An(t) = V(c't) rP(c'F't)... tP(c'F'n~H) X0(F'nt). 

Since Fn —*• 0 as n —• oo, we have Xo(F'nt) —>• 1 and in view of (4.2) it follows that 
An(t) - A(t). . • 

Theorem 4.2. Let qo be a density. Assume that there exists an integer m > 0 
such that 

/ / \iP(c't) rJj(c'F't)... xjj(c'F'mt)\ d.i dt2 < oo. 

Then qn(x, y) —> q(x) y) for all (#, y) as n —» oo. 

P r o o f . For n > m we have 

|An(*i,*2)| < H(c't)^(c'F't). ..TP(c'F'mt)\ 

and thus ff |An(.i,1^)1 dti dt2 < oo. Then qn(x,y) is bounded, continuous, and 
-I /«oo /*oo 

«*(*.») = 7TTT2 / / e - ^ ^ + ^ A ^ * ! , ^ d . i d . 2 
(27r) J-oo J-oo 

(see [11], formula 7.12). Theorem 4.1 and Lebesgue theorem imply 

-i /»oo /»oo 

l i m 7T^2 / / e-i^+y^\n(tut2)dt1dt2 = q(x,y). • 
n-oo (2TT)^ J_OQ J_00 
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