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K Y B E R N E T I K A — VOLUME 36 ( 2 0 0 0 ) , NUMBER 3, P A Q E S 3 2 9 - 3 5 0 

CONTINUOUS-TIME PERIODIC SYSTEMS 
IN H2 AND Hoo 
Part II: State Feedback Problems 

PATRIZIO COLANERI 

This paper deals with some state-feedback H2/H00 control problems for continuous time 
periodic systems. The derivation of the theoretical results underlying such problems has 
been presented in the first part of the paper. Here, the parametrization and optimization 
problems in H2} Hoo and mixed H2/H00 are introduced and solved. 

1. STATE-FEEDBACK PROBLEMS 

In the paper, we consider the periodic system described by 

x = A(t) x + Bi(t) w + B2(t) u (1) 

z\ = C1(t)x + D1(t)u (2) 

z2 = C2(t)x + D2(t)u (3) 

where 
A(-), # ! ( ) , B2(-), d O ) , Di(-), C2(), D2(-) 

are T-periodic piecewise continuous function matrices. The signal u(t) is the control 
input, w(t) is an input disturbance and z\(i)}z2(t) are controlled output variables. 

The paper benefits from the development of the theory of Hoo control for shift-
invariant systems. In this regard, specially important is the celebrated paper [1], the 
additional parametrization results given in [2], the parametrization of memoryless 
state-feedback controllers via LMI and the mixed H2/HOQ control results in [3]. 
The application of the above theory to periodic systems is far from being trivial, 
since it requires, besides non standard results on the differential periodic Riccati 
equations, an appropriate extension of the mathematical machinery concerning sys
tem theoretical aspects such as spectral properties, Youla-Kucera parametrization, 
small gain results, H2 and Hoo norm, BIBO stability of feedback systems and so 
on so forth. All these arguments are collected and studied in the first part of the 
paper [4]. 

The present paper deals with the following state-feedback problems 
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(1) Find a necessary and sufficient condition for the existence of a T-periodic causal 
controller fed by (x, w) and yielding u such that the Hoo norm (defined in [4]) 
from w to z\ is less than a prescribed positive attenuation level 7. 

(2) Parametrize all stabilizing T-periodic controllers fed by (x, w) and yielding 
u such that the Hoo norm from w to z\ is less than a prescribed positive 
attenuation level 7. 

(3) Parametrize all memoryless T-periodic controllers (u(t) = K(t) x(t)) such that 
the Hoo norm from w to z\ is less than (or equal to) a prescribed positive 
attenuation level 7. 

(4) Find a memoryless T-periodic controller (u(t) = K(t)x(t)) which minimizes 
the H2 norm (defined in [4]) between w and z2. 

(5) Find a memoryless T-periodic controller of the kind u(t) = K(t) x(t) which 
minimizes the H2 norm between w and z2 while keeping the Hoo norm from 
w to z\ less than or equal to a prescribed positive attenuation level 7. 

Section 2 contains two theorems concerning the parametrization of stabilizing mem
oryless state-feedback controllers (Theorem 2.1) and the optimal H2 control prob
lem (Theorem 2.2). The Hoo full-information control problem (Theorem 3.1), the 
parametrization of Hoo performant controllers (Theorem 3.2) and the parametriza
tion of memoryless state-feedback controllers via differential LMI (Theorem 4.1) 
are the object of Section 3. Finally, in Section 4, the so-called convex and post-
optimization procedures for the mixed H2/HOQ control problem (Theorems 5.1,5.2) 
are described. 

2. H2 CONTROL 

Here we limit our attention to the control law 

u(t) = K(t) x(t) 

where K() is a T-periodic control gain to be designed. 
The aim of this section is twofold. First we want to characterize the set of all 
stabilizing periodic gains, and, in addition, tackle the so-called H2 control problem. 
Let us begin with the first problem. As is well known a T-periodic gain K(-) is 
stabilizing if and only if there exists a periodic positive definite solution P(-) of the 
differential Lyapunov inequality 

P(t) - (A(t) + B2(t) K(t)) P(t) - P(t) (A(t) + B2(t) K(t))! > 0. 

Now consider the new differential inequality in two unknows P(-) and W(-) 

-P(t) + A(t) P(t) + B2(t) W(t)f + P(t) A(t)f + B2(t) P(t) < 0. (4) 

The following theorem, whose proof is trivial, characterizes the set of all stabilizing 
gains in terms of a suitable convex set. 
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Theorem 2.1 . The set of all T-periodic pairs (P(-), VV(-)), with P(-) positive 
definite, satisfying (4) is convex. Any stabilizing T-periodic gain K(-) can be written 
*sK(t) = W(t)'P(t)-\ 

Let us now move the the H2 problem for system (1), (3) and denote by T(z2, uv, A") 
the input-output operator between the input w and the output z2 once the control 
law is applied to the system. The H2 optimal control problem consists in finding a 
periodic K(-) in such a way that 

(i) the closed-loop system is stable 

(ii) the H2 norm of T(z2, w, K) is minimized. 

The proof of the theorem below is based on the periodic Lyapunov equation (eq. 
(13) in [4]) by exploiting the monotonicity property of periodic Riccati equations 
and the theorem of the existence of the unique stabilizing periodic solution, see [5]. 

Theorem 2.2. Assume that (A(-), -B2()) is stabilizable, D2CO is full column rank 
for each t and that the periodic system (A, H2, C2, -^2) does not have invariant zeros 
in the unit circle. Then the optimal solution of the H2 problem is 

K°(t) = -(D'2(t) D2(t))-\B'2Q2(t) + D'2(t) C2(t)) 

where Q2CO is the unique stabilizing periodic positive semidefinite solution of the 
periodic Riccati equation 

-Q(t) = A'(t)Q(t) + Q(t) A(t) + C'2(t) C2(t) 

-(B'2Q(t) + D'2(t) C2(t))'(D'2(t) D2(t))~
l (B'2Q(t) + D'2(t) C2(t)). 

Notice that, under the given assumption, the Riccati equation may well ad
mit more than one positive semidefinite periodic solutions. The uniqueness of 
such a solution is ensured if the stronger assumption is made that the system 
(-4(-)> B2('),C2(), D2(-)) does not have invariant zeros outside the open unit disk. 

3. Hoo CONTROL 

Let us now be given a positive scalar 7. The so-called full-information control 
problem for system (1), (2) consists in finding 

(i) a necessary and sufficient condition for the existence of a T-periodic causal 
controller K : (x,w) —> u, such that the closed-loop system is stable and 
the Hoo norm of T(z\, w, K) is less than 7; 

(ii) the family to which all such controllers belong. 

The derivation of the main result will be made under the following assumptions, 
which are standard in the literature of Hoo control. 



332 P. COLANERI 

A l ) d ( 0 ' D i ( 0 = 0,V*. 

A 2 ) D i ( 0 , D i ( 0 = I. Vt\ 

A3) The pair (A(-),B2(-)) is stabilizable. 

A4) The pair (A(-),C2(-)) is detectable. 

Consider first the H2 periodic Riccati equation: 

-ri(o = A(t)'n(t) + n(t)A(t) - u(t)B2(t) B2(0'n(0 + Oi(0'Oi(0 (5) 

and let I I ( ) be the unique stabilizing semidefinite T-periodic solution (whose exis
tence is ensured by assumptions A3, A4). Now, let a new variable v be defined as 
follows: 

«(0 = «(0 + B2(0'n(0*(0-
The output z\ can be rewritten as 

*i (0 = Rop(r) Bi (0 w(t) + Uop(r)v(t) (6) 

where 1Z and U are the following T-periodic stable systems: 

Tl = (A-B2B2U,I,C1-D1B2n,0) (7) 

U = (A-B2B2n>B2,C1-D1B'2U,D1). (8) 

Define also a T-periodic matrix D+(-) such that D+(t)'D\(t) = 0, Vtf and 
D+(t) D+(t)' = I, V£, and consider the T-periodic stable system 

u+ = (A - B2B'2n, -IT1C[D+, Ci - DxB^n, D+). 

Hereafter, the symbol -40p(T) denotes the input-output operator associated with a 
periodic system A, with zero initial condition at t = T. The following lemma is now 
in order. 

Lemma 3.1. Systems U and U+ are inner at t = r and U0P(T)~U+0P(T) = 0. 

P r o o f . Let xi> x2) X3 and #4 be the state variables of U, U~, U+ and U+, 
respectively. Simple computations show that 

(i) Wiop(r) = UOP(T)~UOP(T) is such that Ux = (-A' - UB2B'2l0yB'2)I) (with state 
variable x$ = x2 — Ux{). Hence U\OP(T) = I. 

(ii) U2OP(T) = U+OP(T)~UOP(T) is such that U2 = (A - B2B'2U, 0, -D'+Cu 0) (with 
state variable x§ = U~~1X4 — x\). Hence U2OP(T) = 0. 

(iii) U3OP(T) = U+OP(T)~U+OP(T) is such that U3 = (A + U'1C'1Cu0JD
f+CitI) 

(with state variable #7 = X3 — U~1X4). Hence U3OP(T) = I. • 
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To state the main theorem, we need to introduce the class 2 of all T-periodic causal 
controllers K fed by x and w and yielding u such that the resulting closed-loop 
system is stable and satisfies ||T(zi, itt,/C)||oo < 7-

f2B\P 

- - - - *& -—* 

-B'2P 

Q >t-^> 

F i g . 2 . Parametrization of the set ZLR C S . 

Theorem 3.1. Consider system V given by equations (1), (2), let 7 > 0 be a given 
scalar, and let the assumptions A1-A4 be fulfilled. Then, 

(a) there exists a (full-information) T-periodic controller K such that the closed-
loop system is stable and ||jT(.2ri,T^L;,./C)||oo < 7 if and only if there exists a 
T-periodic positive semidefinite solution of 

-P(t) = A(t)'P(t) + P(t)A(t) 

+ P(t) (Bx(t) IMOV2 - B2(t) B2(t)
f) P(t) + Ci(tyCi(*) (9) 

i. e. such that A(-) + (Bi(-) Bi(-)'7~2 - B2(-) B2(-)') P(-) is stable. 

(b) Suppose that there exists a periodic stabilizing solution of (9) and denote by 

3R the set of all controllers such that (see Figure 2) 

u(0 = -B2(typ(t) x(t) + QOP(T) (W(t) - r^m'ptt) x(t)) (10) 

where Q is a stable T-periodic system with ||Q||oo < 7- Then, 
(bi) The set 2j-> is included in the set 2 , i. e. 2 # C 2 . 

(b2) If K £ 2 then there exists a controller K G 2 # yielding the same input-output 
operator, i.e. T(zi,w,K) = T(z\,w,K). 

P r o o f . We suppose without loss of generality that 7 = 1. This can be done by 
suitably scaling matrices B2 and C\ as follows: B2 —> B2j} C\ —» C17"1 . Conse
quently, K —> /C7-1. 

Point (b) and sufficiency of (a). In this part we first suppose that there exists the 
stabilizing T-periodic positive semidefinite solution P(-) of the Riccati equation (9). 
We shall prove (i) that the controllers of the proposed family 2 # (see equation (10)) 
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do the job and (ii) that any controller in E has a counterpart in the family ER 
yielding the same closed-loop operator. 

i) Let r(t) = w(t) - Bi(t)'P(t) x(t) and Q be as follows 

<T = F(t)a + G(t) r 

q = H(t)a + E(t) r. 

Then the overall T-periodic system can be written as: 

where 

1(0 = 

B(t) = 

þ = Ãp(t) + B(t) w 

z = Č(t)p+Ď(t)w 

A(t) - B2(t) B2(t)'P(t) - B2(t) (t) BІЏ)' B2(t)H(t) 

-Ö(ť)B i (ť) ' F(t) 

Bi(t) + B2(t) (t) 

G(t) 

(П) 
(12) 

(13) 

(14) 

C(t)=[ C1(t)-D1(t)B2(t)fP(t)-D1(t)E(t)B1(tyP(t) Dx(t)H(t)) ] 

D^^D^t)^). 

We know from the assumption that system Q = (F, (5, H, E) is well-posed and stable 
with norm less that 1. In particular, F(-) is stable and I — E(')'E(') > 0. In view of 
Lemma 2.6 of [4] there exists a T-periodic positive semidefinite stabilizing solution 
r(-) of: 

-r(0 = E(0'r(0 + r(0E(0 + B(0'^(0 

+ ( r ( 0 G ( 0 + H(t)'E(t)) (I - E(t)'E(t))-\G(t)'Y(t) + E(t)'H(t)).(15) 

It is just a matter of cumbersome matrix manipulation to check that 

P(t) 0 

o r(0 
5(0 = (16) 

is a T-periodic positive semidefinite stabilizing solution of the periodic Riccati equa
tion: 

- 5 ( 0 = A(t)'S(t) + S(t)A(t) + C(t)'C(t) 

+ ( 5 ( 0 5 ( 0 + c(tyb(t))(i - b(t)'b(t))-x(b(t)'c(t) + B(t)'s(t)). (17) 

Since / - D(t)'D(t) = I - E(t)'E(t) > 0, Vf, from Lemma 2.6 of [4] it follows that 
A(-) is stable and the overall system has Hoo norm less than one. 
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(ii) Suppose that there exists a controller K G H, i.e. a controller such than system 
(13), (14) is stable with Hoo norm less that one and let 

£ = (AK, [BK BK],CK, [DK DK]). 

By letting r(t) = w(t) - Bi(t)'P(t) x(t) and q(t) = u(t) + B2(t)'P(t) x(t) one can 
form in correspondence system Q = (F, G, H, E) in (11), (12) with 

F(t) = 

G(t) = 

Aк(t) Bjf(*)Bi(t)'Р(<)+-5jr(*) 
B2(t) Cк(t) A(t)+ßj(ť) Bi (t)'P(t)+B2(t) (Dк(t) Б І (t)'P(t)+Dк(t)) J 

-?if(0 

B2(t)DK(t) + Bl(t) 

H(t) = [ CK(t) DK(t)B1(t)'P(t) + ĎK(t) + B2(t)'P(t) 

Ě(t)=DK(t). 

, (18) 

(19) 

(20) 

(21) 

This leads to a controller /C which belongs to the family ER given by equation (10). 
We have to prove that system Q = (F.G.H.E) in equation (11), (12), (18), (19) is 
stable with Hoo norm less than one. From Lemma 2.6 of [4] we know that there 
exists a periodic positive semidefinite stabilizing solution of equation (17). Consider 
now equation (9) and the quadratic form v(x)t) = x'P(t)x. It is easy to see that 
v(x(t),t) = -r(t)'r(t) + w(t)'w(t) + q(t)'q(t) - z(t)'z(t). Recalling that x(r) = 
x(oo) = 0 and ||-T(zi, uv,K) tD||2 < | |H.2, ^ w ^ -^2[Too), w ^ 0, it follows that 

I M | 2 < | | r | | 2 , V r e L 2 [ 0 o o ) 1 r 7 t 0 . (22) 

Since there exists the stabilizing solution S(-) of (17), the Hamiltonian matrix 

Ac(t) Bc(t)Bc(t)' 

L -cc(tycc(t) -Ac(ty 

where 

Hc(t) = 

Ac(t) = A(t) + B(t) (I - /3(0'o(0)_1o(0'O(0 
Bc(t) Bc(ty = B(t)i - b(ty b(t))-1 B(t) 
cc(tycc(t) = c(tyi - b(t)b(t)')-lc(t) 

does not have unit-modulus characteristic multipliers. Easy but cumbersome matrix 
manipulations show that 

Fc(t) Gc(t)Gc(t)' ? 0 

-Hc(t)'Hc(t) -Fc(t)' ? 0 

0 0 ? 0 
Z(t)Hc(t)Z(t)~ г+ Z(t)Z(t) . - 1 -
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where 

Fc(t) = F(t) + ú(t) (i - ĚityĚwyiĚityHit) 
Gc(t) Gc(t)' = G(t) (I - ĚWĚW^GV) 
Hc(t)'Hc(t) = H(t)'(I - Ě(t)Ě(t)')-lH(t) 

I 0 0 0 

0 / 0 0 

-P(t) 0 / 0 

0 0 0 / 

Z(t) = 

and ? denotes the blocks which are irrelevant. It follows that 

Hc(t) = 
Fc(t) Gc(t)Gc(t)' 

-Hc(t)'Hc(t) -Fc(t)' 

does not have unit-modulud characterstic multiplies. This fact, together with (22) 
implies by Lemma 2.5 of [4] that there exists a stabilizing T-periodic solution of 
eq. (15). Since the stabilizing solution of (17) is unique and the matrix (16) is a 
stabilizing solution, we conclude that S(-) as in (16) is that solution. Since S(t) > 0, 
Vtf, it follows that T(t) > 0, Vz, as well. Lemma 2.6 of [4] concludes the proof of (ii). 

Necessity of (a) 
Suppose that there exists a stabilizing controller K yielding H-IX î, u7,/C)||oo < 1. 
We first show that there is no loss of generality in assuming the observability of 
the periodic pair (A(-)}Ci(')). This is done by resorting to the Kalman canonical 
decomposition of a periodic system into its observable and unobservable parts, see 
e.g. [6]. Now, let the system state x = [ x[ x'2 ] be decomposed accordingly to 
this partition, so that 

-4(0 
Ли(0 o 
A21(t) A22(t) 

B(t) = 
Bn(t) B12(t) 

B21(ł) B22(t) 
, Oi(0 = [ Cn(t) 0 ] 

The existing T-periodic controller 

K = (A)[B1 B2lC}[DiD2]) 

fed by (xyw) and yielding u can be partitioned accordingly, i.e. Bi(t) — [B\\(t) -B12CO] 
and D\(t) = [-Dii(^) D\2(t)]. Hence, by grouping state x2 with the controller 
state, a controller K for the observable part of the system is obtained as K = 
(A,[Bi B2],C,[Di D2]) with 

Â(t) = 
A22(t) + B22(t)Ď12(t) B22(t) 

Bn(t) Ä(t) 
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B(t) = [ B^t) B2(t) ] = 
A2í(t) + B22(t)Ďn(t) B2l(t) + B22(t)Ď2(t) 

Bn(t) B2(t) 

C(t) = [ Ďl2(t) Č(t) ) , Ď(t) = [ Ďn(t) Ď2(t) ]. 

Such a controller is stabilizing and such that ||-T(.zi, uv,£)||oo < 1. If we now show 
that there exists the T-periodic stabilizing positive semidefinite solution P\(-) of the 
periodic Riccati equation associated with the observable part (-An, [Bn Bi2]yC\i) of 
system (1), (2), then the T-periodic stabilizing and positive semidefinite solution of 
(9) takes on the form 

" Pi(t) o 
P(t) = 

0 0 

Hence, we can assume that (.A(-),C()) is observable from the very beginning, and 
proceed to prove the existence of the periodic stabilizing positive semidefinite solu
tions of the periodic Riccati equation (9). 

Lemma 3.1 together with expression (6) entail that 

uop(r)~ 

tV+oP(r)~ 
z = 

with 

И 2 = 

*Cp(r)Ro P (r) Si ()w + v 

u+op(r)~ftop(r) #!(•)«> 

' íVop(r)~ 

L W+oP(r)~ 
(23) 

On the other hand, the assumption that the Hoo norm is less than one, definition 
v(t) = u(t) + B2(t)

fP(t) x(t), the fact that x G L2[T OO) and x(r) = 0 imply 

1 > sup inf | |z|j2 . 
u;GL2[T+oo),|M|2 = l veL2[r+oo 

Recall now the operator Mop previously introduced and associate it with system 
Q = [ Q\ Q2 ], where 

[ Siop(r) £2 o p(r) ] = £ i ( . ) X P ( r ) [ Uop(r) Z/+op(r) ] 

By taking into account equations (23) and (27) in [4] , and defining 

v(t) = v(t) + Q+UOP(T)~1IOP(T) Bx(t) w(t) 

we obtain 

Mop(r)~w+[l 

But Mopw and [v' 0]' are orthogonal so that 

1 > SUP ||MopH|2 = | |^oP l l = l l^op| | . 
W£L2[T -hoo), ||io||2 = l 

1 > sup inf 
wЄL2[т oo),||«;||2=l tî€L2[т+oo) 
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Hence 

where 

sup H-Mopfllh < 1 

Моря = П+В1(-)'7го р(г)~ [ Ыор(т) Ы+ор(т) ] 

(24) 

«i 

ь 
It is easy to see from equations (7), (8) that two possible realizations of 

BI()'KOP(T)~UOP(T) 

and 
S 1 ( . ) , R o p ( r ) u + o p ( r ) 

respectively, are as follows: 

Bi (-yRo P ( r )~u o p ( r ) = (A- B2B'2U, -B2, B[U, 0) 

5 i ( ) X p ( r ) ~ u + o p ( r ) = (A- B2B
,

2Tl,n-1C'lD+,B'lni0). 

Equation (24) in particular implies that 

| | f l i ( - ) X p ( r ) ~ u + o p ( r ) g 2 | | 2 < | |g 2 | | 2 ) V q2 G L2[T + oo) 

Moreover, A(-) — B2(-) J32(-)'n(-) is stable. Hence Lemma 2.6 of [4] ensures the 
existence of the stabilizing positive semidefinite solution W(-) of 

-W(t) = (A(t) - B2(t) B2(t)'Il(t))'W(t) + W(t) (A(t) - B2(t) B2(t)'U(t)) 

+ W(.)n(.)-1Oi(0'Ci(On(0~1W(0 + n(<)5(*rlBi(*)'n(0- (25) 

We have here used the fact Ci(t)'D+(t) D+(t)'Ci(t) = Ci(t)'Ci(t), Vf. Notice also 
that n ( i ) - 1 is the controllability Grammian of system 5 i ( ) ' R o p ( r ) ~ [ u o p ( r ) u+op(r) 
The Hamiltonian matrices T ( ) and T 2 ( ) associated with equation (9) and (25), re
spectively, are related by the matrix 

Tз(t) = 
-I П(ť)" 1 

-Җt) 0 

Actually, Ti(t) = (T3(t)T2(t) + f3(t))T3(t)~1. Hence equation (9) admits the pos
itive semidefinite T-periodic stabilizing solution P(t) = (I - I t y ) - 1 ^ ) ) - 1 ^ * ) = 
U(t) ( n ( 0 - W ( 0 ) " l n ( 0 provided that we show that U(t)-W(t) is positive definite. 
This last condition follows from Lemmas 2.8, 2.9 and 2.1 of [4] applied to system Q 
given by equations (4),(5) of [4] with QOP(T) = BX()"J1OP(T)~ [ uop(r) u+op(r) ] 
and 

F(t) = A(t) - B2(t) B2(t)'U(t) 

G(t) = [-B2(t) U(t)-lCi(t)'D+(t)] 

H(t) = Bi(t)'U(t) 

E(t) = [0 0]) 
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Notice however that Lemmas 2.1 and 2.9 of [4] require the reachability of this last 
system. As a matter of fact we now finally show that this condition is ensured 
by the assumption of observability of the T-periodic pair (_4(-), C\(-)). Suppose by 
contradiction that Q is not reachable. In view of the PBH test (equation (7) of [4]) 
there exists a nonzero periodic vector 8 such that 

XI - A(t)'+ B2(t) B2(t)'Щt) ' ' 6 

B2(t)'6 6 = 0 

D+WdЩЩt)-1 
0 

ť >т. (26) 

r + A(0" 

Cг(t) 
Џ = 

' џ 

0 

_ 0 _ 

It is easy to recognize from (5) and (26) that fi(t) = n ^ ) " " " 1 ^ ) is a nonzero periodic 
solution of 

, ť > т. 

Hence, the assumed observability of (-4(-),Ci(-)) is violated (recall the PBH test, 
equation (7) of [4]. 

R e m a r k 3.1, Notice that the family 2 of Hoo performant periodic controllers can 
obviously include non-dynamic periodic controllers such that 

u(t) = E1(t)w(t) + E2(t)x(t) 

where E\(-) and E2(') are T-periodic matrices. Based on the line of reasoning used 
in deriving equations (18),(19) it turns out that a controller in ER yielding the same 
closed-loop operator can be constructed by defining in (10) system Q of (11),(12) 
with 

F(t) = (A(t) + 5,(0 £ 1 ( 0 ^ ( 0 + B2(t)E1(t)'B1(t)'P(t) + B2(t)E2(t) 
G(t) = B1(t) + B2(t)El(t) 
H(t) = E2(t) + B2(t)'P(t) + E^t) B^'P 
E(t) = Ex(t) 

As a matter of fact, if £ is the state of this system and x the state of system (1) 
it follows that £ — x is the state of an unreachable T-periodic system with F(-) as 
dynamic matrix. 

Theorem 3.2. Consider system V given by equations (1),(2), let 7 be a given 
positive scalar, and let Assumptions A1-A4 be fulfilled. Moreover, assume that 
there exists the stabilizing periodic positive semidefinite solution P(-) of the periodic 
Riccati equation (9). Then, the class H of all periodic stabilizing controllers K such 
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that ||r(zi.iH,/C)||oo < 7 - s shown in Figure 3, where Z\ and Q are any stable 
periodic systems and ||Q||oo < 7-

w 

B. 

ӯ2B'.P 

L > 

ÍW ç 

ъ. 

^TЧ 

ê - > 2, 2, 

B'2P 

* 

в. 

Fig. 3. Parametrization of the set 2. 

P r o o f . Let 

u(0 = -B 2 (0 , P(0 *(<) + ?(<) 
and form the closed-loop system Vq as 

x = (A(0 - B2(t) B2(t)'P(t)) x + B1(t)w + B2(t)q 

z = (d(t) - Dx(t) B2(t)'P(t)) x + Dx(t)q 

x + W. 

Denote by Vqij, i^j— 1,2 the corresponding subsystems of Vq) i. e. 

Vqll = (A-B2B'2P,B1,C1 - DrB2PtQ) 

Vql2 = (A- B2B'2P, B2, & - DXB'2P, D) 

Vq21 = ( Л - B 2 B 2 P , B 1 , 

Tî22= [A-B2B'2P,B2, ,0 

(27) 

As shown in Lemma 2.11 of [4], the generic periodic controller (Kr'- y -* q) which 
stabilizes 7^22 is given by 

K,FOP(T) = [yop(r) - SOP(T)ZOP(T))[XOP(T) - N0p(r)2op(r)]-1 
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where Z is any stable periodic controller. Now, since ^ 2 2 is stable per se, it is 
possible to choose Afop(r) = 'Pg22op(T)) ^ ( T ) = 0, ZOP(T) — I, and XOP(T) — I, so 
that 

KFOP(T) = -ZOP(T) (I - P?22op(r) ZOP(T))~X. (28) 

Plugging this controller in the system, it results: 

z(t) = [(Vqllop(T) - P,i2oP(r) Zop(T)Vq21op(T)) w] (t). (29) 

On the other hand, all the possible periodic input-output stable operators V(K) (T) 
with H^/QHoo < 7 are such that 

z(t) = [^nop(r) w] (t)+[Vql2op(T) VOP(T)QOP(T) ( / ~ 7 - 2 S 1 P ^ o p ( r ) Bx) w] (t) (30) 

where 
£ = (A-B2B'2P,I,I,0) 

and 
Vop(r) = (/ + T - 2 Qo P ( r ) 51(-) 'P(.) £OP(T) B2(-))~\ 

By comparing (29) with (30) it follows 

Vql2op(T) [2oP(r)P,2ic>p(r) + ^^ = 0. 

Since D]_(t)fD1(t) = 7, V% 'Pgi2op(T) 1s left-invertible, so that 

- 2 o p ( r ) ^ 2 1 o P ( r ) = Vop(r)Qo p(r)(7-T-2B1(-) /P(-)^op(r)51(-))-

Moreover, since 

[^(r)BiO)| 
Vq21oP(T) - (dlj 

it is readily seen that 

/ - T - 2
J B 1 ( . ) / P ( - ) ^ o P ( ^ ) 5 i ( - ) = [ - 7 - 2 B i ( 0 ' P ( - ) I ] ^2 io P ( r ) 

so that 

(2 o p ( r ) + Vop(r) QOP(T) [ - T -2 j B l ( . ) 'P ( - ) I ]) Vg21op(T) = 0. (32) 

Assume for the moment that V is stable (this condition will be proved later on). 
Hence, a particular solution of equation (32) is 

ZOP(T) = Vop(r) <2op(r) [ T - 2 5 1 ( - ) ' P ( ) - I ] 

whereas the general solution is given by 

ZOP(T) = zoP(r) + 2 o p ( r ) 

where Z is any stable T-periodic system solution of the homogeneous equation 

2o p(r)7Vop(r) = 0. 
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Since V is stable with stable inverse (recall that Q is stable and P is stabilizing so 
that V"1 is stable as well), without any loss of generality we can write 

ZOP(T) = [ V0p(r)2iop(r) Z2op(r) ] 

with Z\ and Z2 stable. Recalling now equation (31) it follows that 

Z2OP(T) = -VOP(T)Z1OP(T) £OP(T)B\ 

so that 
iop(r) = Vop(r) Z1OP(T) [ I - £ o p ( r )£ i ( - ) ] . 

Hence, 

2op(r) = Vop(r)[Ziop(r)+ 7 - 2Q 0p(r)5i( - ) 'P(-) -Qop(r)- .Ziop(r)£.p(r)B i (-)] 

with Z\ and Q stable and ||Qj|oo < 7- Putting this last expression of Z into (28) 
and recalling (27) it follows that the family S of all periodic stabilizing performant 
controllers is represented by the generic controller (/CF- y —¥ u) 

ICFoP(r) = [ -B2(-)'P(.) 0 ] (7 - Z1OP(T)£OP(T) - M O ) - 1 x 

x [ - 2 i o p ( r ) - 7 - 2 Q o p ( r ) 5 i ( - ) ' P ( 0 QOP(T) + 2 i o p ( r )£ o p ( r )5 i ( - ) ] (33) 

with Z\ and Q stable and ||Q||oo < 7- By inspection, this controller corresponds to 
the block scheme of Figure 3. 
Finally, wre only miss to show that V is a stable periodic system, where 

Vop(r) = (7 + 7 " 2 Q o p ( r ) Si(.) 'P(-)^oP(r) B2(-))~\ 

Ci 

c2 

S = (A(t) - B2(t) B2(t)'P(t))Z + B2(t)q 

z1 = (C1(t)-Dl(t)B2(t)
,P(t))^ 

z2 = y-lB1(t)'P(t)Z 

The input-output operator of L2 is exactly 7~1Bi(-)'P(-)£op(r)i?2(-)- Moreover, 
consider the periodic Riccati equation (9), equivalently rewritten as follows 

-P(t) = P(t) (A(t)-B2(t) B2(t)'P(t))+(A(t)-B2(t) B2(t)'P(t))'P(t) 

+ (C1(t)-D1(t)B2(t)'P(t))'(C1(t)-D1(t)B2(t)'P(t)) 

+ P(t)B1(t)B1(t)'P(t)1-
2. 

Thanks to Lemma 2.6 of [4] it follows |f£||oo<l. From£2op(r) = 'r1Bi(-) ' JP(-)£op(r) 
B2() and ||£2||oo < ||£||oo; it then results | |7-15i(-)'P(-)^oP(r)B2(-)| |oo < 1- More
over, it is || — 7

- 1Q0p(r) | |oo < 1- Since £ and Q are both stable, Lemma 2.12 of [4] 
can be applied to yield the conclusion that the system with input output-operator 

(/ + 7 - 2 Q o P ( r ) Bi(-)'P(-) £oP(r) B-(-))-1 

is stable as well. ---

Actually, consider the periodic system , given by 
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Remark 3.2. As obvious, the set ER can be recovered from S by selecting Z\ — 0. 
It is now interesting to point out further the relationship in the time-domain setting 
between the sets S and ER. As a matter of fact, if the controller initial state at 
t = r is zero, then, from equation (33) it follows 

q(t) = [Z1OP(T) (EOP(T) B2(-)q + £0p(r).BiQ w - x)] (t)+ 

+[QoP(r)(w-y-2B1(-yP(-)x)](t). 

But, from the system equation x = (A(t) - B2(t) B2(t)'P(t)) x + Bx(t)w + B2(t)q it 
follows that letting A(t) = A(t) - B2(t) B2(t)'P(t), 

*(') = [^oP(r) w] (t) + [£op(r)q] (t) + 9A(t, r) s ( r ) , t > r 

so that 

u{t) = -B2{t)'P{t) x{t)+Zlop{T)<f>A{t, T) X{T)+[QOP{T) (u;-B i( .) 'P(-) *)] (<)• (34) 

By comparing the control pattern in equation (34) (corresponding to the set S), 
with the one given by equation (10) (corresponding to the set ER) the conclusion is 
drawn that the only difference is played by the possible nonzero system initial state 
X(T). 

Remark 3.3. The solution of the full information control problem provided in 
Theorem 2.2 is the starting point in order to properly extend to periodic systems 
the so called output estimation problem in Boo. As in the time-invariant case, it can 
be shown that the solution of this latter problem derives directly from the solution 
of the disturbance feedforward problem, which, in turn, is intimately related to the 
solution of the former. 

4. PARAMETRIZATION OF MEMORYLESS Hoo STATE-FEEDBACK 
CONTROLLERS 

In this section we want to characterize the set of stabilizing control laws 

u(t) = K(t) x(t) 

with K(-) T-periodic, which render the H^ norm of T(z\, w) K) bounded from above 
by a given positive attenuation value j . Let us denote by /C7 the set of periodic 
stabilizing control gains such that TT(zi, w} K) < 7 and define the square matrix 

Wi(t) W2(t) 

w2(ty w3(t) 
(35) W{t) 

such that, \/t 

W{t) > 0 (36) 

Wi(t) > i4(*)Wi(-) + Wi(*.M'(-) 

+ 7~2(Wi{t) C[{t) d{t) Wi{t) + W2{t) Wi(t)) 

+ B2(t)Wi(t) + W2(t)B
,
2(t) + Bl(t)B[(t). (37) 

Now, denote by W7 the set of all periodic pairs {W{-),7 ) satisfying eqs. (35)-(37). 
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Theorem 4 .1 . Let assumptions A1-A4 hold and suppose that Bi(t)B[(t) > 
0,Vf. Then, 

(a) The set W7 is convex. 

(b) Each (W(-),72) G W7 is such that Wi(t) > 0, Vt. 

(c) £ 7 = {(W^(-) WW"1) : (W(0,7 2) € W 7 } . 

P r o o f , (a) To prove convexity it is sufficient to rewrite inequality (37) in affine 
form. Indeed, by using Schur complements and letting Letting 

0(W(t)) = -Wi(t) + A(t)Wi(t) + Wi(t)A(t)' 

+ B2(t) w2(ty + w2(t) B2(ty + Bi(t) Bi(ty 

Ci(t)'Ci(t) 0 
R(t) = 

U=[I 

0 

0 

it is easy to see that inequelity (37) can be rewritten as 

-WO) = 
(W) UW(t)R(t)ll2 

R(t)ll2W(t)U' -y2I 
< 0 . 

Hence, since 0(W{-)) is affine, A(W(-) is affine as well so showing convexity of W7. 
(b) This condition follows from the assumption that B\(t) Bi(t))' is positive definite, 
for each t. Indeed, assume, by contradiction, that W\(t) is singular for some time 
instant £ G [0,T), i.e. Wi{Z)x = 0, x 7- 0, and let y(t) = x'Wi(t)x. Since W(-) is 
positive semidefinite it must be also W2(£)'x = 0. By premultipling inequality (37) 
by x' and postmultipling by x it then follows that y(£) > x'B\(£) Bi(£)'x > 0. This, 
together with y(£) = 0 and y{i) > 0, V/, leads to contradiction. 
(c) This point simply derives from Lemma 2.7 of [4] by comparing the two inequalities 
(37) and (26) of [4] and letting W2(0 ' = K{t)Wi{t). Actually, such a comparizon 
yields Wi(t) = P(t). Indeed, if K(-) G /C7 then let 

F(t) = A(t) + B2(t)K(t) 

G(t) = Bi(t) 

H(t) = Ci(t) + Di(t)K(t) 

E(t) = 0. 

(38) 

(39) 

(40) 

(41) 

Notice that the pair (.F(),G(-)) is reachable since G(i)G{t)' > 0, V*. In view of 
Lemma 2.7 in [4] there exists a T-periodic positive semidefinite solution Q(-) of 
inequality (26) of [4]. In addition Q(-) is positive definite thanks to the positive 
definiteness of £ i ( t ) Bi(*)' = G(t) G(t)'. Now, let 

Ww = Q(t) 
K(t)Q(t) 

Q(t)K(t)' 
K(t)Q(t)K(t)' 
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It is simple to verify that the periodic matrix W(-) satisfies all required conditions 
since it is positive semidefinite with W\(t) = Q(t) positive definite and such that 
inequality (37) is satisfied. Conversely assume that W(-) £ W7. Then, by letting 
K(t) = W2(t)'W1(ty

1
f and F(), G( ) , H(-), E(-) as in (38)-(41) it follows that 

Q(t) = W\(t) is a positive definite solution of inequality (26) of [4] so that, in view 
of Lemma 2.7 of [4] the conclusion that K(-) £ /C7 follows. • 

The interest of the theorem above mainly relies on the convexity property of the 
set W7. 
The results relative to the parametrization of periodic stabilizing controllers guaran
teeing the strict Hoo inequality, namely for ||T(zi, w, A')||oo. are still obtained from 
Theorem 4.1 by replacing the inequality sign > 0 in equation (37) with the strict 
inequality sign >. 

5. THE MIXED II2/#oo CONTROL PROBLEM 

In this section we want to address the problem of finding a periodic stabilizing gain 
K(-) which minimizes ||-T(;?o, w,I.T)||2 while keeping ||T(zi, w, IQ||oo < 7, i.e. 

Jm = min{||T(z0)U,,K)||2 : ||T(~i, w, K)||oo < ?} . (42) 
l \ 

The exact solution to this problem is not yet available in the literature, even in 
the time-invariant case. This fact spurred the research activity in the direction of 
finding suboptimal solutions to problem (42). One way consists in exploiting the 
convex structure of the set W7 introduced in the previous section and trying to 
replace the nonconvex objective function with a convex (linear) function of W(). 
By doing so, a suboptimal solution is recovered by solving the convex optimization 
problem stated in the result below. 

Theorem 5.1. Let assumptions A1-A4 hold and also the assumptions of Theo
rem 2.2 be fulfilled. Moreover, let L(t) := [ C2(t) D2(t) ] and assume that W(-) 
is the optimal solution of the convex problem 

rp 

Jsub = min W(-) e W7trace / L(t) W(t)L(t)' dt. 
Jo 

Then, K°(t) = W2(tyWi(t)"1 minimizes an upper bound of the objective function 
of problem (42). 

P r o o f . Let K(t) =- W2(t)'Wi(t)~l and consider eqs. (38)-(39). Direct com-
parizon of (12) in [4] and (37), this last inequality with W2(t)' = K(t) Wi(t), shows 
that Wi(t)>P2(t) so that 

tгace / L(ł)W(t)L(ł)'dt 
Jo 
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rp 

+ trace / (C2(t) + D2(t) K(t)) W^ (t) (C2(t) + D2(t) K(t))' dt 
jo 

+ trace / D2(t) (W3(t) - K(t) W^t) K(t)') D2(t)' dt 
jo 

> trace / (C2(t)+D2(t) K(t)) P2(t) (C2(t) + D2(t)K(t))'dt = \\T(z2>w,K)\\2. o 
Jo 

The rest of this section is devoted to present an algorithm (a iteration procedure) 
providing a suboptimal solution of the mixed problem which performs better than the 
convex optimization procedure described in Theorem 5.1. Let A'i(-) be a stabilizing 
periodic gain, and a e [0, 2] a scalar parameter. Moreover let 

F(t) = A(t) + B2(t)K1(t)(l-a)2 

+ (a2 -2a )B 2 (0 (D2(0 'D2(0)" 1 I J 2 (0 'O2(0 

G(t) = B2(t) (D2(t)'D2(t))-
l'2(2a - a2)1'2 

H(t) = C2(t) + D2(t) IU(t) (1 - a) - aD2(t)(D2(t)'D2(t))-
lD2(t)'C2(t). 

Consider now the standard periodic differential Riccati equation 

- n 2 ( 0 = F(t)'U2(t) + E2(t)F(t) + H(t)'H(t) - U2(t) G(t) G(t)'U2(t). (43) 

We are in a position to prove the following result. 

Theorem 5.2. Consider system (1) - (3) and let Assumptions Al - A4 hold. More
over, let Ki(-) be any stabilizing T-periodic feedback control gain. Then for any real 
«e[o,2] 

(i) The periodic differential Riccati equation (43) admits the stabilizing T-periodic 
positive semidefinite solutionT^O, Va e [0,2]. 

(ii) The periodic feedback gain 

K2(t) = (1 - a) Kr(t) - a(D2(t)'D2(t))-
1(B2(t)'E2(t) + D2(t)'C2(t)) (44) 

is stabilizing, i.e. A(-) + B2(-) K2(-) is stable. 

(iii) The H2 norm due to K2(-) is less than (or equal to) the H2 norm due to K2(-)) 

i.e. 
\\T(z2,w,K2)\\2 < H T ^ w . K O I h , V a e [0,2]. 

(iv) The H2 norm due to K2(>) is monotonically nonincresing for a e [0,1], and 
monotonically nondecreasing for a e [1,2], i. e. 

^ l i r ^ ^ K ^ i ^ o , Vae[o,i] 

^-\\T(z2,wJ<2)\\2 > 0 , V a e [1,2]. 
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P r o o f . Point (i). Equation (43) is a standard periodic differential Riccati equa
tion (in the unknown n2(-)) of the kind encountered in the H2 design context. 
The first point to be proven is that the pairs (P1(-), G()) and (F(-), H(-)) are stabi-
lizable and detectable, respectively. Indeed, let 

A2(t) = A(t) + B2(t) (D^tyD^r'D^tyc^t) 

C2(t) = (I-D2(t)(D2(t)'D2(t))-lD2(ty)C2(t). 

In view of the assumption on the zeros of system (A, B2}C2, D2) and the fact that 
D2(-) is full column rank, it follows that the pair (A2(-),C2(-)) is detectable. Now, 
notice that 

F(t) = A2(t) + B2(t)(l-a)S2(t) 

H(t) = C2(t) + D2(t)S2(t) 

where S2(t) = (l-a) (Ki(t) + (D2(t)'D2(t))-1D2(t)'C2(t)). Now assume by contra
diction that the pair the pair (F(),H()) is not detectable. This means that there 
exists a nonzero periodic solution of 

-XI + F(t) 

H(t) 
t >т 

with Re(X) > 0. The second equation with the definition of C2(t) and the facts that 
C2(t)'D2(t) and D2(t) is full column rank, implies that 

S2(t)x(t) = 0, C2(t)x(t) = 0, Vť. 

Hence 
(-AI + F(t)) x(t) = (XI + A2(t)) x(t) = i(t) 

which, together with Re(X) > 0, C2(t)x(t) = 0, V* and x(-) ^ 0, contradicts the 
detectability of (-42(-)> C2(-)). As for the stabilizability of (F(-), G ( ) ) , it easily fol
lows from that of (A2(-), 5 2(-)), which in turn is equivalent to the stated condition 
of stabilizability of (A(-), B2(-)). Therefore we have shown that the pair F(), H(-)) 
is detectable and the pair F(),G(-)) is stabilizable. Hence, the equation,(see [7]) 
admits a stabilizing solution whenever a E [0,2]. Actually, under the stated assump
tions, this solution is also the unique positive semidefinite one. 

Point (ii) In order to check the stability of A(-) + B2(-) K2(-), with K2(-) given by 
eq. (44), consider again eq. (43). It can be rewritten in the following way 

-П 2 (ť) = (A(t) + B2(t) Щt))'Jl2(t) + П2(ť) (A(t) + B2(t) Щt)) 

+ (C2(t) + D2(t) Щť))'(C2(t) + D2(ł) Щt)). (45) 

Now notice that 

A(t) + B2(t) Щt) = Ä2(t) + B2(ť) 5(ť) 

Oг(ť) + D2(ť) Щt) = Č2(ť) + D2(ť) S(ť) 

0 = D2(ť)Ć2(ť) 
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where the periodic matrix S(-) is defined as follows 

S(t) = [(1 - a) (K,(t) + (D2(t)'D2(t))-
lD2(t)'C2(t)) 

- a(D2(t)'D2(t))-
1B2(t)'Jl2(t)]. 

Thus, the stated detectability assumption together with the above equations imply 
that the pair (A(-) + B2(-) K2(-)} C2(-) + D2(-) K2()) is detectable as well. This fact 
and the existence of a solution U2(t) > 0 of (45), entails, by an inertia argument 
(see [7]) that A(-) + B2(-) K2(-) is stable. 

Point (Hi). For i = 1, 2 let Qi(t) be the periodic solutions of the differential Lyapunov 
equations 

-n , - (0 = (A(t) + B2(t) Ki(t))'Ui(t) + Ili(A(t) + B2(t) Ki(t)) 

+ (C2(t) + D2(t) Ki(t))'(C2(t) + D2(t) Ki(t)) (46) 

respectively. Of course, 
rp 

trace / [B[(t)Ui(t) B,(t)] = \\T(z2,w, Ki)\\\. 
Jo 

By means of standard algebraic manipultions it is possible to conclude that the 
difference between the two periodic solutions IIi(^) and H2(t) of (46) satisfies the 
equation 

-(r i^) - u2(t)) = (A(t) + B2(t) K-xoVOMO - n2(0) 
+ (iLW - n2(0) (A(t) + fl2(0tfi(0) + i<i(t)'i<i(t) 
- k2(tyi<2(t) 

where, for i = 1, 2, 

Ki(t) := IU(t) + (D2(.)
,D2(0)"1[52(0'n2(0 + D2(t)'C2(t)] (D2(t)'D2(t)y'2. 

Indeed, with this choice the above equation becomes 

-(Hip) - n2(0) - (A(t) + B2(t)/fi(0)#(ni(<) - n2(0) 
+ (Hi(*) - n2(0) (A(t) + B2(t) I<!(t)) 
+ Kl(t)'K1(t)(2a-a2) 

which shows that IIi(-) > I I 2 ( ) whenever a G [0,2]. 

Point (iv). Notice first that II2(tf) enjoys a symmetric property with respect to a, 
i.e. II2(tf) at a is equal to II2(£) at 2 - a. Denoting with T2(-) the periodic matrix 
which is the derivative of II2(-) with respect to a it is possible to verify that such a 
matrix satisfies the following Lyapunov equation 

- r 2 (* ) = F(t)T2(t) + T2(t)F(t) - 2(1 - a ) f f i ( 0 ' £ i ( 0 (47) 

where F(t) = F(t) - G(t) G(t)'U2(t) is a stable matrix since II2(*) is the stabilizing 
solution of eq. (43). Hence from eq. (47) it follows that T2(t) < 0 for a G [0,1] and 
r 2( t )>0forae[l ,2] . • 
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R e m a r k 5 .1. The above results can be exploited in the following way. Consider 

system (l)-(З) and suppose that Ä'i(*) is a given periodic matrix such that A(-) + 
B2()K\() is stable and | |Г(zi, uv;Ä'i)||oo < 7 ( f ° г instance the matrix resulting 

fгom the convex programming problem (42)). Then one one dimensional search in 

the inteгval [0,2] for а with eq. (43) taken into account, allows to determine the 

value of а° corresponding to which the control law u(t) = K2(t)x(t) minimizes the 

H2 noгm while keeping the #oo norm not greater than 7- Incidentally, notice that 

the choice а = 1 corresponds to the optimal unconstrained H2 control law, see 

Theoгem 2.2. Obviously а° and the relevant value for the H2 norm depend on the 

chosen Ki(-). Hence the а procedure consists in finding а° as follows: 

а° = argmin{l — o.i, а2 — 1} 

ûři = max{a | а Є [0,1], | |Г(zi, w\ s)||oo < 7 } 

а2 = min{a| а Є [iҖЩz^w^s)^ < 7}. 

6. CONCLUDING REMARKS 

In this paper a number of important state-feedback control problems for continuous-
time periodic systems are tackled. Particular attention is devoted to the parametriza-
tion of memoryless Hoo controllers and to the discussion of a new procedure for the 
suboptimal solution of the mixed H2/Hoo control problem. The exposition greatly 
exploits the theory of periodic Riccati and Lyapunov equations and does not take 
any advantage of the recent developments of the "transfer function" approach for 
continuous-time periodic systems. 
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