
Kybernetika

Pavol Purcz
Parallel algorithm for spatially one-and two-dimensional initial-boundary-value
problem for a parabolic equation

Kybernetika, Vol. 37 (2001), No. 2, [171]--181

Persistent URL: http://dml.cz/dmlcz/135399

Terms of use:
© Institute of Information Theory and Automation AS CR, 2001

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/135399
http://project.dml.cz


K Y B E R N E T I K A — V O L U M E 3 7 ( 2 0 0 1 ) , NUMBER 2, P A G E S 1 7 1 - 1 8 1 

PARALLEL ALGORITHM FOR SPATIALLY ONE-
AND TWO-DIMENSIONAL INITIAL-BOUNDARY-
VALUE PROBLEM FOR A PARABOLIC EQUATION 

PAVOL PURCZ 

A generalization of the spatially one-dimensional parallel pipe-line algorithm for so­
lution of the initial-boundary-value problem using explicit difference method to the two-
dimensional case is presented. The suggested algorithm has been verified by implementa­
tion on a workstation-cluster running under PVM (Parallel Virtual Machine). Theoretical 
estimates of the speed-up are presented. 

1. INTRODUCTION 

The importance of the boundary-value problems (BVP) for engineering applications 
attracts and motivates continuous development of fast numerical algorithms for its 
solution. A number of various approaches have been suggested, such as finite ele­
ments methods, fast Fourier transform methods, multigrids methods and difference 
methods (e.g. [1, 2, 3, 5, 6, 7, 8, 10]), etc. 

Some theoretical aspects of the use of an explicit difference method in the case of 
spatially one-dimensional initial-boundary-value problem (IBVP) were considered by 
P. M. Kogge [4]. Based on Kogge's ideas, E. E. Tyrtyshnikov [9] suggested a possible 
approach to development of a numerical algorithm for solving the spatially one-
dimensional IBVP. In the present work such an algorithm is developed for spatially 
one- and two-dimensional IBVP, and verified on a workstation-cluster running under 
PVM (Parallel Virtual Machine). Moreover, some theoretical estimates of the speed­
up of the algorithms are presented. 

2. ONE-DIMENSIONAL INITIAL-BOUNDARY-VALUE PROBLEM 

First, we describe the suggested algorithm for a spatially one-dimensional IBVP. Let 
us consider a spatially one-dimensional IBVP for a parabolic equation 

du d2u , x 

_ = _ t > 0 | 0 < x < l x (1) 

u(0,x) = ip(x), 0<x<lx (2) 



172 P. PURCZ 

u(t,0) = a(t), t>0 

u(t,lx) = ß(t), t>0 

(3) 

(4) 

where ip,a,P are given sufficiently smooth functions such that </>(0) = a(0), (fi(lx) = 
(3(0). We look for a sufficiently smooth function ix(£,x), which satisfies the equation 
(1) and conditions (2)-(4) . For the numerical solution of the problem ( l ) - ( 4 ) , let 
us consider the following explicit difference method of the form 

ц f - ц * * «fГ1

1-2u?-1+ifc1 

hl 
(5) 

where r > 0 and hx > 0 are the time step and the spatial step of discretization, 
satisfying the condition of convergence r/hx < 0.5 and u\ - is an approximate value 
of the solution at the point (&, i), (i = 1,2,..., (nx — 1), k = 1,2,...; nx • hx = lx). 
Moreover, iz§ = a ( ^ ) , u„x = P(tk), and u^ = <p(xi), where X{ = ihx, tk = kr. 

Let us consider a natural number nx such that nx = q.n, where q > 2, n > 2. 
Then the explicit difference method (5) can be realized on a parallel computer with 
n processors Pi, F2, • • •, Pn- A geometrical interpretation of the pipe-line implemen­
tation for n = 5 is depicted in Figure 1. 

5q=n x І 

Fig. 1. Geometrical interpretation in one-dimensional case. 

Each processor starts computations with the initial conditions, and computes the 
values of solution in a triangle block. Then the data exchange between processors is 
performed in the "north-west" direction. In the case of a pipe-line implementation 
with processors connected in series, each processor sends data to its "left" neigh­
bour. After finishing the data exchange, a new step of computations is performed; 
each processor computes the values of solution in a corresponding turned square 
block. The "boundary" processors also use the boundary conditions. Then the data 
exchange and computation of the values of solution in turned square blocks repeats. 



Parallel Algorithm for Spatially One- and Two-dimensional Initial-boundary-value Problem... 173 

Generally for n processors we can write the whole data exchange process in the form: 

-P(t+1) mod(n) -> -Pi -> Pn[(n-i+l) d iv(n)]+(t-l) mod(n) . (t = 1, 2 , . . ., n ) . (6) 

3. GENERALIZATION OF A PARALLEL ALGORITHM IN 
A GEOMETRICAL WAY 

Now let us describe a generalization of the spatially one-dimensional algorithm for 
the two-dimensional case. There is a certain difficulty consisting in the following. In 
the one-dimensional case, the triangle and square blocks give us a complete covering 
of the considered domain (see Figure 1). However, in the two-dimensional case we 
have pyramids instead of triangles, and dipyramids instead of squares; these two 
types of blocks do not cover the considered domain completely, and there are also 
other types of blocks. The complete set of blocks which give the complete covering 
in the case of the spatially two-dimensional problem is shown in Figure 2. 

Fig. 2. A complete set of blocks in the two-dimensional case. 

Let us consider the spatially two-dimensional IBVP for the parabolic equation 

d2u 
i ^ + a " 2 ' * > 0 > 0 < x < / x , 0 < y < / y (7) 

0<x<lx, 0<y <ly (8) 

* > 0, 0 < y < ly (9) 

t > 0, 0 < y < ly (10) 

* > 0 , 0<x<lx (11) 

t > 0, 0 < x < lx (12) 

дu 
~дt 

= 
ð2U ( 
дx2 i 

u(0,x,y) = Ф,y), 
u(t,0,y) = <*(t,y), 

u(t,lx,y) = ß(t,y), 
u(t,x,0) = Ч(t,x), 

u(t,x,ly) = S(t,x), 



174 P. PURCZ 

where (p, a, (3,7,6 are given sufficiently smooth functions such that ip(0,0) = a(0,0) = 
7(0,0), <p(lx,0) = 0(0,0) = 7 ( 0 , / x ) , <p(lx,ly) = miy) = 6(0,lx), (p(0,ly) = 
a(0, ly) = 8(0,0). We look for the solution u(t, x, y), that satisfies (8) - (12). For the 
numerical solution we use the difference scheme of the following form: 

Ц І J - < 7 / * - - _ 9 7 / * - 1 -4- 7 | * - 1 - f * - l 
Ui-lj ZUij + Ui+lj Uij-1 *Uij T ^ t j + 1 

ЛÏ лg 
(13) 

where r > 0 is the time step and hx > 0, hy > 0 are spatial steps of a discretization, 
satisfying the condition of convergence T/max (ti%,hy) < 0.5 and ukj is the approx­
imate solution in the point (k,i,j), i = l,2,...,(mx — 1), .; = l , 2 , . . . , ( n y — 1), 
A; = 1,2,...; mx.hx=lx, ny.hy = ly. Moreover, uL = a(tk,yj), u* • = P(tk,Vj), 

ik -
ŁІO — 

l(tk,Xi), uk

iUy = 6(tk,Xi) and u^ = (p(x{,yj), where x{ = i.hx, yj = j.hy, 
tk = kT. The algorithm is based on the same idea as in Section 2 and presented 
using a geometrical interpretation for parallel processing of the considered problem. 

Let us take natural numbers m,n such that mx = qm, ny = qn where q > 2, 
ny > 2, nx > 2. For instance, let m = 4 and n = 2. Then the explicit difference 
scheme (13) can be realized on a parallel computer with m x n processors ordered 
as shown (see Figure 3). 

P21 
p 
22 

P 
23 P24 

P l l P12 P13 P14 

Fig. 3. An example: 4 x 2 processors. 

Let us introduce the following types of three dimensional blocks for the two-

dimensional problem: 

A — tetragonal pyramide, 
B — rhombic sfenoide, 
C — half a rombic sfenoide, 
D — tetragonal dipyramide, 
E — half a tetragonal dipyramide, 
F — quarter of a tetragonal dipyramide. 



Parallel Algorithm for Spatially One- and Two-dimensional Initial-boundary-value Problem . . . 175 

At the beginning, all processors compute values lying in the blocks of the type 
A. At this step, computations in each processor are based on the formula (13) and 
initial conditions (8) are also used. After finishing these computations, the data 
exchange is performed. The values at the points lying on the west and south walls 
of the considered type A blocks, as well as the values at the nearest points lying 
inside the type A blocks, are transferred according to the following rule, depicted in 
Figure 4: 

-n(i+l)mod(m),jJ-
Ci,(j+l)mod(n) ~> -%' , (* = l , 2 , . . . , m ; j = l , 2 . . . 7 l ) . (14) 

"I 2 1 •*— P 22 

1 
-•—p 

|23 ^ 

- ? ' ~ì* l ^ 

Fig. 4. Data exchange between processors: a layer of blocks A. 

During further steps, the domains processed by each processor move gradually in 
the "north-east" direction, as shown in the diagrams below. 

At the next step, we have a layer formed by blocks of types B and C. There 
is no analogy for such a layer in the one-dimensional case. This layer is shown in 
Figure 5, as well as the directions of the data exchanges. For example, each of the 
processors P n , P12 and P13 processes two blocks of the type B\ each of the processors 
^14, P21, P22 and P23 processes one block of the type B and two blocks of the type 
C (meanwhile, two blocks of the type C create one block of the type B)\ processor 
P24 processes four blocks of the type C. Afterwards, the data (input and output) 
exchange is performed according to the following rules: 

Processor P n receives the data from processors P12 and P21 before starting its 
computations, and sends the computed values to processors P14, P21 after finishing 
its computations; other processors work similarly. Since we consider the pipe-line 
implementation, then in the considered problem the following permanent data ex­
change rules hold for all further layers: 

Pi J -> ^m[(m-i+l)+(m)]+(i--l)mod(m)^ ( I 5 ) 

-P(i+1) mod(m),j. -Ptf(i+1) mod(n),j ~> PiJ (t = 1, 2, . . . , m; j = 1, 2 . . . Tl). (16) 



176 P. PURCZ 

\V / \ -HP 
' \ 22/ 

/ \ -HP 
' \ 23/ ̂

\ Г P 2 4 / 
ppK ìy\ P )< |22 У\ P \< P r23 /\j24 

\ u / X~P12 ) \ ~ p i з ^\ V 
Ў\ 
v*—p \ 

/ r21 

ч ł X-P \ 
\X 22 

i i 2X 
ч ł /̂ —P \ 
\ / 23 

piз /VJ*14 

ч * У^-P \ 
\ / 24 \ 

Fig. 5. Data exchange between processors: a layer of blocks B and C. 

Objects D, E, and F create the layer of blocks which is analogous to the layer con­
sisting of squares and triangles in the one-dimensional case. For this layer, processors 
work as shown in Figure 6. 

P24 
> 

-HP 
02 

-H? 
|23 

> 

Ь ~tП 
> > * > 

P24 - P 2 1 
-HP 

r22 
-HP r 23 * * 2 4 

Fig. 6. Data exchange between processors: a layer of blocks JD, E and F. 

According to this diagram, processors Pn, P12, and P13 process type D blocks; 
processors P14, P21, P22 and P23 process two blocks of the type E\ processor P24 
processes four blocks of the type F (four blocks of the type F create two blocks of the 
type E or one block of the type D). The data exchange is performed in accordance 
with the above permanent rules (15)-(16). 

At the next step, we have again a layer consisting of blocks of the types B and 
C. This layer is similar to the previously considered layer of B and C blocks, but 



Parallel Algorithm for Spatially One- and Two-dimensional Initial-boundary-value Problem... 177 

the roles of processors are slightly different. In our geometrical interpretation of the 
algorithm, the data exchange diagram for this layer can be obtained by shifting the 
processors in Figure 5 in the "north-east" direction, which gives the data exchange 
rules depicted in Figure 7. 

Ь ф/\ 
X^"P12 

P / \ j22/ \ P / 
Г / 

) \ P 1 4 
\ 

Ь 
- p l l 

ф/\ 
X^"P12 

P / \ j22/ \ P / 
Г / 

) \ P 1 4 

ь JX >X }y 
4 ^ P 2 1 

\ ^ -•—P 
/ \ 22 / \ 23 X"P24 

V P 2 l \ / 
P \ / 22 \ / P \ 23 \ 

Fig. 7. Data exchange between processors: a layer of blocks B and C. 

The last layer in our description is a layer of blocks of the type D. The corre­
sponding data exchange diagram is shown in Figure 8. 

-r* ~r -pľ *~P13 
ł 

~pľ -r-
-—p 

|22 
-•—P 

^23 

Fig. 8. Data exchange between processors: a layer of blocks D. 

During the following steps, the sequence of the described layers (BC, DEF, BC, 
D) repeats, and we can use the above rules (15) - (16) for the data exchange in each 
sub-step. 



дu 

~дi 
д2u 

= -—-, t>0, 0 < x < 4 

u(0,x) = x2, 0 < x < 4 

u(t,0) = 2t, t > 0 

u(t,4) = 2í + 16, ť > 0 . 

178 P. PURCZ 

4. SAMPLE IMPLEMENTATION 

The suggested algorithm has been verified in both cases, one- and two-dimensional, 
by implementing it in FORTRAN with parallel extensions (Fortran-Lib version 
3.3.11) on a workstation-cluster running under PVM (pvm version 3.3.11) using 
two sample examples: 

a) for spatially one-dimensional IBVP: 

(17) 

(18) 

(19) 

(20) 

Let us take the spatial step of discretization h = 0.25, the time step r = 0.01, the 
number of processors nproc = 4 and the maximum number of nodes processed by 
one processor at each time layer q = 4 (q may be only even). The number of steps 
taken is pc = 10. 

The results of computations were checked by comparing them with the exact 
solution u(t,x) = 2t + x2, while the accuracy 10~6 was reached. 

b) for spatially two-dimensional IBVP: 

0 < y < 2 (21) 

(22) 

(23) 

(24) 

(25) 

(26) 

Let us take the spatial steps of discretization hx = hy = 0.25, the time step 
r = 0.01, the number of processors nproc = 8 and the maximum number of nodes 
processed by one processor at each time layer q = 4 (q may be only even). The 
number of steps taken is pc = 10. 

The results of computations were checked by comparing them with the exact 
solution u(t,x) = At + x2 + y2, while accuracy comparable to the previous example 
was reached. 

дu 

~дi = 
д2u д2u 

+ w> t>0> 0 < x < 4 > 
u(0,x,y) = x2+y2, 0 < x < 4 , 0 < y < 2 

u(t,0,y) = 4t + y2, t>0, 0 < y < 2 

u(t,4,y) = 4ť + 16 + y2, ť > 0 , 0 < y < 2 

u(t,x,0) = 4ť + x2, í > 0 , 0 < x < 4 
u(t,x,2) = 4ť + x2 + 4, t > 0, 0 < x < 4. 



Parallel Algorithm for Spatially One- and Two-dimensional Initial-boundary-value Problem... 179 

5. SPEED-UP 

Spatially one-dimensional I B V P : Let us suppose that values in the points u®, 
i = 0 , 1 , . . . ,nx, determined by initial condition <p(x), are computed in advance and 
stored in memory. Let's consider a layer, which is nq + 1 points long (in the spatial 
axis) and q points wide (in the time axis). 

In general, the number of arithmetical operations for computing one value in the 
point u1- inside the considered layer and on its border is not the same. It depends 
on the computational complexity of the points specified by boundary conditions. 

2 

Each processor computes the values in ^- points inside the considered area, which 
corresponds in geometrical interpretation to a rotated square block (see Figure 1). 

We need five arithmetic operations for computing the values u\, (i = 1,2,..., nx—1, 
k > 0) according to the difference scheme (5). 

Each processor, which uses for computing also the boundary conditions, computes 
2 

values in ^ — q points inside the considered layer and in 2 x q points on its border. 
In the geometrical interpretation it corresponds to two triangles standing opposite 
to each other on both boundaries (left and right) along the time-axis (see Figure 1). 
Let us denote the number of arithmetic operations needed for computing the values 
in the points u§ and u„x as r(a) and r((3), respectively. The number of arithmetic 
operations needed in the sequential case is 5[(nq — l)q] + [r(a) + r(/3)]q, and in the 

2 2 

parallel case it is max{5g2; 5^- + 5(\— q) + [r(a) + r((3)]q}. 
Now we are able to define the speed-up function f(n,q) as a rate of the number 

of the arithmetic operations for computing the considered layer of the values in 
(nq + 1) x q points in the sequential case to the number of arithmetic operations in 
parallel. This gives: 

/ ( П ) < ľ ) = 5(nq-l)q + [r(a)+r(ß)]q 
max{5q3; 5(q2 - l)q + [r(a) + r(P)]q} 

5(nq-l) + r(a)+r(/3). 
max{5g2; 5(q2 - 1) + r(a) + r(/3)}' 

If the functions a(t), f3(t) are constant, then r(a) = r((3) = 0 and we can write the 
speed-up function in the form: 

f ( n x 5[(ng - \)q] nq-1 
/ ( n ' g ) = 5? —q~~ 

Spatially two-dimensional I B V P : Since all aforementioned considerations for 
one-dimensional case hold for two-dimensional case as well, we only briefly describe 
obtaining of the speed-up function for this case. As above, suppose that the values 
in the points u^, i = 0 , 1 , . . . , nx, j = 0 , 1 , . . . , ny determined by initial condition 
(p(x,y), are computed in advance and stored in memory. 

Let's consider a three-dimensional layer of (mq + 1) x (nq+1) points of plane (in 
the spatial axes) times q points of height in the time-axis. Each processor computes 
the values in 2 x q\q ~1f points at the main layer and the values in 4 x q^ ]£ points at 



180 P. PURCZ 

the secondary layer inside the considered area, which corresponds in the geometrical 
interpretation to the blocks of types D and B (see Figure 2). We need nine arithmetic 
operations for computing the values u\^ (i = 1,2..., mx — 1, j = 1,2,..., nx — 1, 
k > 0) according to the difference scheme (13). Each processor, which is used for 
computing also the boundary conditions, computes the values at least in g'93~*' — 

q2 + q points at the main layer, and in q^\£ — ^- points at the secondary layer 
inside the considered area, and at most in 2 x (q2 — q) points at the main layer and 

2 

2 x 4 points at the secondary area on its border. In the geometrical interpretation 
this corresponds to four blocks of type F standing in the corners (see Figure 6), and 
2xtwo blocks of type C standing opposite to each other on both boundaries (left 
and right, or up and down) - see Figure 5 or Figure 7). Let us denote the number of 
arithmetic operations needed for computing the values in the points u^^ u*^, u*0, 
u\n as r(a), r(/3), r(j) and r(S). The number of the arithmetic operations needed 
in the sequential case is 9(mq — l)(nq — l)q + nq[r(a) + r(/?)] + mq[r(j) + r (<&)], and 
in the parallel case 

{ t V i , [ j^+-£-a_ . .+ ,+ , ( !a±a_£)] max 

,2 

+ ( ү " | +2j)[r(<*) +r(ß) +r(7) +r(S)}}. 

Now we can define the function of the speed-up f(m,n,q) similarly to the one-
dimensional case: 

( . 9(mq - l)(nq - 1) + m[r(a) + r(J3)] + n[r(7) + r(S)] 

If the functions a(t, j/), fi(t, y), j(t, x) and S(t, x) are constant, then r(a) = r(fi) = 
r(7) = r(S) = 0 and we can write the speed-up function in the form: 

ffm *, „\ (mq - l)(nq - 1) j\m,nyq) = -j ~ mx n. 

6. CONCLUDING REMARKS 

The theoretical estimates showed the significant speed-up of order n in one-dimensional 
case and of order m x n in two-dimensional case, in comparison with the serial im­
plementation of the difference methods (5), (13). Further theoretical estimates and 
computational experiments are the subject of the continuing study of the suggested 
algorithm. 

ACKNOWLEDGEMENT 

The author is grateful to Osterreichischer Ost- und Siidosteuropa Institut for sponsoring 
the visit of the author to the University of Salzburg, Austria, where the computational 



Parallel Algorithm for Spatially One- and Two-dimensional Initial-boundary-value Problem... 181 

experiments were done on a workstation cluster running under PVM, and especially to 
prof. P. Zinterhof, the Director of the Research Institute of Software Technology, Uni­
versity of Salzburg, for fruitful discussions and general support. The author also thanks 
P. Schmitzberger for technical help with implementation of the algorithms on a workstation 
cluster running under PVM . 

(Received June 4, 1999.) 

REFERENCES 

[1] K. Burrage: Parallel methods for initial value problems. Appl. Numer. Math. 11 
(1993), 5-25. 

[2] J. Crank and P. Nicolson: A practical method for numerical evaluation of solutions of 
PDEs of the heat-conduction type. Proc. Camb. Phil. Soc. 43 (1947), 60-67. 

[3] T. L. Freeman and C. Phillips: Parallel Numerical Algorithms. Prentice Hall, Engle-
wood Cliffs, N .J . 1992. 

[4] P. M. Kogge: Parallel solution of recurrence problems. IBM J . Res. Develop. 2 (1974), 
18, 138-148. 

[5] J . M. Ortega and R. G. Voigt: Solution of PDE on Vector and Parallel Computers. 
SIAM, Philadelphia, 1985. 

[6] M. Pavlus: Schwarz algorithm for solution of a quasiparabolic equation. Vestnik 
Moskov. Univ. 4 (1992), 15, 27-35. 

[7] D. W. Peaceman and H. H. Rachford: The numerical solution of parabolic and elliptic 
differential equations. J. Soc. Indust. Appl. Math. 3 (1955), 28-41. 

[8] G. D. Smith: Numerical Solution of PDE. Finite Difference Methods. Second edition. 
Clarendon Press, Oxford 1978. 

[9] E. E. Tyrtyshnikov: Parallelization of some numerical methods. In: Numerical Solution 
of Partial Differential Equation, Kosice 1992. 

[10] M. Vajtersic: Algorithms for Elliptic Problems. Efficient Sequential and Parallel 
Solvers. VEDA, Bratislava 1988. 

RNDr. Pavol Purcz, Department of Mathematics, Faculty of Civil Engineering, Technical 
University, Vysokoskolskd 4, 042 00 Kosice. Slovak Republic, 
e-mail: purczp@ccsun.tuke.sk 


		webmaster@dml.cz
	2015-03-26T14:45:48+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document




