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DYNAMIC PROGRAMMING FOR REDUCED NFAs FOR 
APPROXIMATE STRING AND SEQUENCE MATCHING1 

JAN HOLUB 

Approximate string and sequence matching is a problem of searching for all occurrences 
of a pattern (string or sequence) in some text, where the pattern can occur with some limited 
number of errors given by edit distance. Several methods were designed for the approximate 
string matching that simulate nondeterministic finite automata (NFA) constructed for this 
problem. This paper presents reduced NFAs for the approximate string matching usable in 
case, when we are interested only in occurrences having edit distance less than or equal to 
a given integer, but we are not interested in exact edit distance of each found occurrence. 
Then an algorithm based on the dynamic programming that simulates these reduced NFAs 
is presented. It is also presented how to use this algorithm for the approximate sequence 
matching. 

1. INTRODUCTION 

The task of approximate string and sequence matching is to search for all occurrences 
of a pattern P (string or sequence) in some text F, where the pattern can occur with 
some limited number of errors given by edit distance. In this paper the Levenshtein 
and generalized Levenshtein distances are considered. Several methods [1, 2, 6, 7, 
8] were designed for the approximate string matching. These methods simulate 
nondeterministic finite automata (NFA) constructed for this problem as discovered 
in [3, 5]. 

This paper presents reduced NFAs for the approximate string matching usable in 
case, when we are interested only in occurrences having edit distance less than or 
equal to a given integer, but we are not interested in exact edit distance of each found 
occurrence. Then we present an algorithm based on the dynamic programming that 
simulates these reduced NFAs. We also present how to use this algorithm for the 
approximate sequence matching. 

Given a string T = t\t2 .. .tn over alphabet S, a pattern P = p\p2.. .pm over 
alphabet S, and an integer k, k < m < n. The approximate string matching is 
defined as a searching for all occurrences of pattern P in text T such that edit 
distance D(P,X) between pattern P and string X = UU+i .-.tj,0<i<j<n, 

1This research was partially supported by Grant 201/98/1155 of the Grant Agency of the Czech 
Republic and by Internal Grant 3098098/336 of the Czech Technical University. 
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found in the text is less than or equal to k. The approximate sequence matching 
is defined in the same way as the approximate string matching, but any number 
of symbols can be located between the occurrences of two adjacent symbols of the 
pattern in the text. In this paper we consider two types of distances called the 
Levenshtein distance and the generalized Levenshtein distance. 

The Levenshtein distance DL(P,X) between strings P and X not necessarily of 
the same length is the minimum number of edit operations replace (one character 
is replaced by another), insert (one character is inserted), and delete (one character 
is removed) needed to convert string P to string X. The generalized Levenshtein 
distance DQ(P,X) between strings P and X not necessarily of the same length is 
the minimum number of edit operations replace, insert, delete, and transpose (two 
adjacent characters are exchanged) needed to convert string P to string X. 

Fig. 1. NFA for the approximate string matching 
using the Levenshtein distance (m =- 4, k = 2). 

Nondeterministic finite automaton (NFA) is a quintuple (Q, S, 6, qo, F), where Q 
is a set of states, S is a set of input symbols (S* denotes the set of all strings over 
5 and e the empty string), 6 is a mapping Q x (S U {e}) i-> V(Q), qo G Q is an 
initial state, and F C Q is a set of final states. An extended transition function 
6 is defined as Vg G Q,w G S*,a G S U {e}, 6(q,wa) = 6(6(q,w),a), 6(q,e) = q. 
An active state of NFA after reading input string w G S* is each state q such that 
Q £ 6(qo,w). A level of state q in NFA, q G Q, is the minimum among the numbers 
of errors associated with all final states reachable from q. A depth of state q in NFA, 
q G Q, is the minimum number of transitions that are needed to get from qo to this 
state q without using e-transitions. We say that an algorithm A simulates a run of 
an NFA M, if Vw,w G S*, it holds that A with given w at the input reports all 
information associated with each final state <7/, <?/ G F, after processing w, if and 
only if 9/ G 6(q0,w). 

The NFA for the approximate string matching using the Levenshtein distance has 
been presented in [3, 5]. In the NFA there is for each edit distance I, 0 < / < k, one 
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level2 of states. An example of such NFA for m = 4 and k = 2 is shown in Figure l3 . 
When string P1P2P3P4 is being read, the states of level 0 are active according to 

the found prefix - the horizontal transitions representing match are used. When the 
last symbol P4 is read from the input, the final state #4 is active, which reports "no 
error in the found string". One can get to other level of states only using vertical 
(insert) or diagonal (delete, replace) transition. Each of such transitions increases 
number of errors (edit distance). Transition replace (diagonal labeled by p) changes 
position in pattern P as well as in text T. Transition delete (diagonal labeled by e) 
changes position in P but not in T. Transition insert (vertical) changes position in 
T but not in P. The self-loop of the initial state provides that any string preceding 
an occurrence is omitted. 

Among the algorithms for the approximate string matching there were recognized 
[5, 4] two methods of simulation of a run of NFA for the approximate string matching. 
The first method is called bit parallelism (Shift-Or algorithm [1] and its variations -
Shift-Add [1] and Shift-And [8]). The second method is called dynamic programming 
[6, 7]. 

2. REDUCED NFAs 

If we are interested only in all occurrences of the pattern in the text with edit distance 
less than or equal to k and we do not want to know the edit distance between the 
found string and the pattern, we can remove such states from the NFA for the 
approximate string matching that are needed only to determine the edit distance 
of the found string [3]. Such states are bordered by the dotted line in Figure 1. 
The resulting reduced NFA is shown in Figure 2 and has only one final state that 
represents that the pattern has been found with the edit distance less than or equal 
to k. 

The modification of Shift-Or algorithm for the reduced 7VF_4s was presented in 
[3] and the modification of the dynamic programming is discussed in the following 
sections. 

3. DYNAMIC PROGRAMMING 

The basic idea of the dynamic programming [6, 7] was to compute matrix D of 
size (m x n) of edit distances (dj^ is edit distance between prefix of P (P1P2 . . -Pj) 
and substring of T ending at position i). [2] then made some some optimization of 
storing and computing matrix D. 

From the NFA simulation point of view, the dynamic programming computes in 
each step i of the run of the NFA ith column of matrix D: one element of the column 
is for each depth of the NFA and it contains the number of level of the highest active 
state of this depth. If there is no active state in this depth, then the element contains 
number of a level not existing in this depth. Since each NFA for the approximate 
string matching has m + 1 depths, it needs space 0(m) and runs in time 0(mn). 

2In figures, the states of the same level are in the same row. 
3Symbol Pj, 0 < j < m, represents £ — {pj} in figures. 
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Fig. 2. Reduced NFA for the approximate string matching 
using the Leveiishtein distance(m -=4, k — 2). 

Since the last k depths of the reduced NFA do not have states on all k + 1 
levels, this method is not suitable for the reduced NFAs for the approximate string 
matching. Instead of having one element of the column for each depth of the reduced 
NFA we have one element for each diagonal of the reduced NFA; these diagonals are 
formed by the ^-transitions and are of the same length. If any state on a diagonal 
is active, then all states located lower on this diagonal are also active because of 
^-transitions connecting them. Therefore in the element for each diagonal Z, 0 < / < 
m — &, we store only the number of the level of the highest active state on diagonal I. 
In this way we get for each step z, 0 < i < n, of the run of the NFA the column 
Di = e/o,i,di,i, • • • idm-k,i of length m — k + 1. Each element of the column can 
contain a value ranging from 0 to k + 1, where value k + 1 represents that there is 
no active state on the corresponding diagonal. The formula for computing columns 
Di is as follows: 

^0,i 

dj,o 
л3,г 

dj,i 

0, 0<i<n 
fc + 1, 0 < j <m-k 
min(fc + l, 

<7d,_i.;_i+i,*t- + d i - i , i - i j delete k, match 
if Pd^i-i+j+i 7- U 
then djj-i + 1 replace 
else k + 1, 

if Pdi + i,i_i+i+2 7̂  U 
then dj+i5i_i + 1 insert 
else k + 1), 0 < j < m — k, 0 < i < n 

min(k + 1, 
9dj-1,i-1+j,u +^i- i , i - i j delete & match 
if Pdjti-i+j+l 7- U 
then djyi-i + 1 replace 
else A; + 1), j = m — k, 0 < i < n 

(i) 
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The first line in the formula says that the initial state lying on the Oth diagonal 
of the NFA is always active because of its self-loop. 

The second one says that at the beginning of the searching there is no active state 
on diagonals /, 0 < / < m — k, because there is no initial state on such diagonals. 

Term gdj-i^-i+j.u +d j - i . t - i represents match and delete transitions. The match 
is represented by the horizontal transitions and edit operation delete is represented 
by the diagonal e-transitions in Figure 2. An implementation of match transition 
is simple: if the state on diagonal j — 1 and level dj-i^-i is active and horizontal 
transition leading from this state is labeled by symbol £i, then the state on diagonal j 
and level dj-i^-i becomes active. For an implementation of delete transition we 
have to search for the state on diagonal j — 1 and level /, dj-i^-i < I < &, such that 
there is a match transition labeled by input symbol ti leading from this state. In 
order to find such state in constant time we have to use auxiliary matrix G, in which 
there is for each position r in pattern P and input symbol ti the number r', 0 < r', 
such that at pr+r' = ti, where r' is the lowest possible. If there is no such position, 
then r' = k + 1. Since value of dj_i.i_i can be k + 1 and the maximum number of 
diagonal, into which there lead match transitions, is m — k, the maximum position, 
for which a value of matrix G is required, i s m — k + k + 1 = m + l. Therefore 
the matrix has to be of size (m + 2) x |S ' | , where S' C S is the alphabet used in 
pattern P. The formula for computation of matrix G is as follows: 

gjta := min({A; + 1} U {(/ | pj+l = a, 0 < /) or 
(k + 1 | if there is no such /)}), 0 < j < m, a G S , , 

0m+i,a -= k + 1, a G S 

Number dj-i^-i +j gives the position of symbol Pdj-iti-i+j 1n the pattern, which 
is used as a label of the match transition leading from the highest active state on 
diagonal j — 1 to a state on diagonal j . Therefore gdj-iti-i+j,u + dj-i . t - i gives 
the level of the highest active state on diagonal j that has arisen by using match 
transition to each active state on diagonal j — 1. 

Term dj^-i + 1 represents replace transition. In Figure 2, edit operation replace 
is represented by diagonal transition labeled by symbol Pd^-i+j+i mismatching 
symbol Pdjti-i+j+i- To implement replace transition it is only needed to move the 
highest active state on diagonal j to the next lower position on the same diagonal. 
Since dj.i-i can reach k +1, the value of expression dj.i-i +j +1 can be greater than 
m and in that case Pdjti-i+j+i would give undefined value. To solve this problem we 
can add some if statements but it increases the time of the computation. A better 
solution is to put some symbols, that are not in input alphabet S, at positions m + 1 
and m + 2 of the pattern - for example symbol (end of string). 

Term c/j+i}i_i + 1 represents insert transition. In Figure 2, edit operation insert is 
represented by vertical transition also labeled by mismatching symbol Pdj+1 i_1+j+2-
The active state on diagonal j + 1 and on level dj+i^-i moves to level dj+i^-i + 1 
on diagonal j . 

From these transitions we get minimum in order to obtain the highest active 
state on each diagonal. An example of matrix G for pattern P = adbbca is shown 
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in Table 1 and the process of searching for pattern P = adbbca with at most k = 3 
errors in text T = adcabcaabadbbca is shown in Table 2. 

Table 1. Matrix G for pattern P = adbbca 
and k = 3. 

G a ò c d E — {a, 6, c,d} 
1 0 2 4 1 4 
2 4 1 3 0 4 
3 3 0 2 4 4 
4 2 0 1 4 4 
5 1 4 0 4 4 
6- 0 4 4 4 4 
7 4 4 4 4 4 

Table 2. Matrix D for pattern P = adbbca, text T = adcabcaabadbbca, 
and A: = 3. 

£> - a d c a ò c a a 6 a d 6 6 c a 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 4 0 1 1 0 1 2 0 0 1 0 1 2 2 3 0 
2 4 4 0 1 2 1 2 3 4 1 2 0 1 2 3 4 
3 4 4 4 2 3 4 2 3 3 4 3 4 0 1 2 3 

Below we also present an algorithm that uses the dynamic programming for the 
reduced NFA for the approximate string matching using the Levenshtein distance. 
While in Formula 1 there were evaluated the transitions incoming to the diagonals, 
in this algorithm there are evaluated the outgoing transitions. It simplifies the 
computation because there is only one test whether input symbol U is matching 
symbol. This test is necessary for deciding whether to use only match transition or 
to use replace, insert, and delete transitions. 

At the beginning we perform the initial setting - only Oth diagonal contains active 
state. Then in each step i of computation we take the highest active state in each 
diagonal, perform transitions leading from this state with respect to the current 
input symbol, and according to the transitions we set the highest active states of 
the adjacent diagonals. 

In the Oth diagonal we evaluate only transition match. Transition replace has 
no effect since the initial state is always active. In the first diagonal we evaluate 
transitions match, delete, and replace. Transition insert has no effect since it leads 
into the Oth diagonal. Then in each following diagonal all transitions are evaluated 
except the last diagonal, where there is no match transition. 
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Algorithm 1. DP for the reduced NFA for the approximate string matching using 
the Levenshtein distance 
Input: Pattern P = P1P2 • • -Pm> text T = t^2 .. .tn, maximum number of differ­
ences allowed k. 
Output: Matrix D of size (m - k + 1) x (n + 1). 
Me thod : 

/* the initial settings of Oth diagonal */ 

/* the initial settings of other diagonals */ 

dn,o : = 0 
for j' := 1,2,.. . ,m — k do 

dj,o : = k + 1 
endfor 
for i := 1,2,.. . ,n do 

do,i : = 0 
di.i := gi,u 
if PdM_1+2 = U then 

d2,i : = di }i_i 
else 

d2yi := rnin^, ._1+2,«. + dM_i , k + 1) 
d M := min(dM__i + l , d M ) 

endif 
for j := 2, 3 , . . . ,m - k — 1 do 

if Pdj-.i-i-H+i = U then 
dj+i,i := d^i-i 

else 
dj+lfi : = m i n ( # d i i _ 1 + J + M . + d^-i-fc + 1) 
dJ}i := m i n ^ i - i + l.d^i) 
dj-i^ := min(d j>i_i + l ,d j_ M ) 

end if 
endfor 
j := m — k 
i f Pdi.i-i+i+i # *i t h e n 

d^i := min(d i ) i_i + l,dj,.i) 
d j . i ^ := min(djfi.-i + l jdj-i^) 

endif 
if dm-k,i < k + 1 then 

write ("pattern found at position z") 
endif 

endfor 

The first command of the second for cycle in the algorithm (dn,i := 0) represents 
the self-loop of the initial state - the highest active state on Oth diagonal is always 
on level 0 and this is the initial state. 

The second command (di,i := <7i,*J represents the only transition that leads from 
Oth diagonal, which is match transition. #1^. gives the position / of the pattern, on 
which symbol ti is located, or k + 1, if U is not in the pattern. If / < k + 1, then this 
position I is equal to the level of the 1st diagonal, in which there is the active state 
that arose by using match transition for U going from Oth diagonal. 

/* Oth diagonal (j = 0) */ 
/* delete & match from the initial state *** */ 

/* 1st diagonal (j = 1) */ 
/* match */ 

/* delete h match */ 
/* replace */ 

/* *** */ 

/* the following diagonals */ 

/* match */ 

/* delete & match */ 
/* replace */ 
/* insert */ 

/* *** */ 

/* the last diagonal */ 

/* replace */ 
/* insert */ 
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The first if statement represents transitions leading from the highest active state 
of the first diagonal. In this case we do not evaluate insert transitions because they 
always lead to Oth diagonal, where the initial state is always active. If input symbol ti 
is the same as the symbol Pdjfi_i+2 used as a label of match transition leading from 
the highest active state in 1st diagonal, then we evaluate only this match transition 
(d2,f := d\^-\). If the symbols are different, then we evaluate delete and replace 
transitions. For delete transition we search for the next occurrence of input symbol U 
in the pattern behind position d^i-\ + j + 1 (the number of the diagonal plus the 
number of the level gives the position in the pattern corresponding to the state on 
that level of that diagonal). At first we perform delete transition (we move the 
highest active state down in the diagonal) and then we perform match transition 
for input symbol ti. For replace transition we move the highest active state of the 
diagonal to the next lower position of the same diagonal. 

In the next for cycle the transition leading from the highest active state of the 
next diagonals except the last one are evaluated. It is done in the same way as 
described in the previous paragraph but in addition insert transition is evaluated. 
For this insert transition we put the level of diagonal j increased by one to the 
previous diagonal j — 1. 

In the last diagonal we evaluate only replace and insert transitions because match 
transition has no diagonal, into which it could lead. 

Fig. 3. Reduced NFA for the approximate string matching 
using the generalized Levenshtein distance (m = 4, k = 2). 

This method can also be used for the simulation of the run of the reduced NFA 
for the approximate string matching using the generalized Levenshtein distance. An 
example of such reduced NFA for m = 4 and k = 2 is shown in Figure 3. We have 
only to add term representing edit operation transpose. In Formula (1), the added 
term is as follows: 

Іf Pd i- i .ť-2+i+l = *ť-l a n d Pdj. 
then dj-_lfi_2 + 1 
else k + 1, 

2+j — H 
transpose 
0 < j <m k, 1 < i < n (3) 
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And in Algorithm 1, the added command is as follows: 

if Pdjti-2+j+2 = U-i and pdji_2+j+i = U then 
dj+i.i := min(dj5i_2 + l,dj+i.t) 

endif 
/* transpose */ 

This command should be inserted into each part of Algorithm 1 where 0 < j < m — k 
and 1 < i < n. Such places are behind the lines marked by '***'. 

Fig. 4. Reduced NFA for the approximate sequence matching 
using the Levenshtein distance (m = 4, k = 2). 

This type of simulation of the reduced NFAs can also be used for the reduced 
NFAs for the approximate sequence matching using the Levenshtein and generalized 
Levenshtein distances [4]. An example of the reduced NFA for the approximate 
sequence matching using the Levenshtein distance for m = 4 and k = 2 is shown in 
Figure 4. 

To modify the presented algorithm so that it could simulate this reduced NFA 
we have to implement the self-loops in each non-final and non-initial state. It can 
be performed by inserting the following term into Formulae (1) and (1+3) for the 
approximate string matching. 

if Pd^-i+i+i / U 
then djyi-i self-loop 
else fc + 1, 0 < j < m — k,0 <i <n 
if Pd^i-i+j+i ¥" U a n d djfi-i < k 
then djyi-i self-loop 
else & + 1, j = m — k,0 <i <n 

(4) 

The presented formulae and algorithm compute whole matrix D but in the prac­
tice only two (three for the generalized Levenshtein distance) columns from this 
matrix are used in each step of computation. 
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4. CONCLUSION 

The resulting simulation runs in time 0((m — k)n + mfi) and needs space C?(m/i), 
where ji is the number of different symbols used in the pattern. We can decrease 
the space complexity by using another implementation of auxiliary matrix G but it 
increases the time complexity. Our algorithm also uses only one input symbol in 
each step of computation in case of the Levenshtein distance and two input symbols 
in case of the generalized Levenshtein distance. 

The resulting algorithm has the time bound better than [6, 7], which runs in 
time 0(mn) and for k > y it has also the time bound better (not considering 
the preprocessing time) than [2], which runs in time 0(kn -f- mlogm), where m = 
min(m, |S|). 

(Received May 12, 2000.) 
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