
Kybernetika

Jan Holub
Dynamic programming for reduced NFAs for approximate string and sequence
matching

Kybernetika, Vol. 38 (2002), No. 1, [81]--90

Persistent URL: http://dml.cz/dmlcz/135447

Terms of use:
© Institute of Information Theory and Automation AS CR, 2002

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/135447
http://project.dml.cz

K Y B E R N E T I K A — VOLUME 3 8 (2 0 0 2) , N U M B E R 1, P A G E S 8 1 - 9 0

DYNAMIC PROGRAMMING FOR REDUCED NFAs FOR
APPROXIMATE STRING AND SEQUENCE MATCHING1

JAN HOLUB

Approximate string and sequence matching is a problem of searching for all occurrences
of a pattern (string or sequence) in some text, where the pattern can occur with some limited
number of errors given by edit distance. Several methods were designed for the approximate
string matching that simulate nondeterministic finite automata (NFA) constructed for this
problem. This paper presents reduced NFAs for the approximate string matching usable in
case, when we are interested only in occurrences having edit distance less than or equal to
a given integer, but we are not interested in exact edit distance of each found occurrence.
Then an algorithm based on the dynamic programming that simulates these reduced NFAs
is presented. It is also presented how to use this algorithm for the approximate sequence
matching.

1. INTRODUCTION

The task of approximate string and sequence matching is to search for all occurrences
of a pattern P (string or sequence) in some text F, where the pattern can occur with
some limited number of errors given by edit distance. In this paper the Levenshtein
and generalized Levenshtein distances are considered. Several methods [1, 2, 6, 7,
8] were designed for the approximate string matching. These methods simulate
nondeterministic finite automata (NFA) constructed for this problem as discovered
in [3, 5].

This paper presents reduced NFAs for the approximate string matching usable in
case, when we are interested only in occurrences having edit distance less than or
equal to a given integer, but we are not interested in exact edit distance of each found
occurrence. Then we present an algorithm based on the dynamic programming that
simulates these reduced NFAs. We also present how to use this algorithm for the
approximate sequence matching.

Given a string T = t\t2 .. .tn over alphabet S, a pattern P = p\p2.. .pm over
alphabet S, and an integer k, k < m < n. The approximate string matching is
defined as a searching for all occurrences of pattern P in text T such that edit
distance D(P,X) between pattern P and string X = UU+i .-.tj,0<i<j<n,

1This research was partially supported by Grant 201/98/1155 of the Grant Agency of the Czech
Republic and by Internal Grant 3098098/336 of the Czech Technical University.

82 J. HOLUB

found in the text is less than or equal to k. The approximate sequence matching
is defined in the same way as the approximate string matching, but any number
of symbols can be located between the occurrences of two adjacent symbols of the
pattern in the text. In this paper we consider two types of distances called the
Levenshtein distance and the generalized Levenshtein distance.

The Levenshtein distance DL(P,X) between strings P and X not necessarily of
the same length is the minimum number of edit operations replace (one character
is replaced by another), insert (one character is inserted), and delete (one character
is removed) needed to convert string P to string X. The generalized Levenshtein
distance DQ(P,X) between strings P and X not necessarily of the same length is
the minimum number of edit operations replace, insert, delete, and transpose (two
adjacent characters are exchanged) needed to convert string P to string X.

Fig. 1. NFA for the approximate string matching
using the Levenshtein distance (m =- 4, k = 2).

Nondeterministic finite automaton (NFA) is a quintuple (Q, S, 6, qo, F), where Q
is a set of states, S is a set of input symbols (S* denotes the set of all strings over
5 and e the empty string), 6 is a mapping Q x (S U {e}) i-> V(Q), qo G Q is an
initial state, and F C Q is a set of final states. An extended transition function
6 is defined as Vg G Q,w G S*,a G S U {e}, 6(q,wa) = 6(6(q,w),a), 6(q,e) = q.
An active state of NFA after reading input string w G S* is each state q such that
Q £ 6(qo,w). A level of state q in NFA, q G Q, is the minimum among the numbers
of errors associated with all final states reachable from q. A depth of state q in NFA,
q G Q, is the minimum number of transitions that are needed to get from qo to this
state q without using e-transitions. We say that an algorithm A simulates a run of
an NFA M, if Vw,w G S*, it holds that A with given w at the input reports all
information associated with each final state <7/, <?/ G F, after processing w, if and
only if 9/ G 6(q0,w).

The NFA for the approximate string matching using the Levenshtein distance has
been presented in [3, 5]. In the NFA there is for each edit distance I, 0 < / < k, one

Dynamic Programming for Reduced Nondeterministic Finite Automata... 83

level2 of states. An example of such NFA for m = 4 and k = 2 is shown in Figure l3 .
When string P1P2P3P4 is being read, the states of level 0 are active according to

the found prefix - the horizontal transitions representing match are used. When the
last symbol P4 is read from the input, the final state #4 is active, which reports "no
error in the found string". One can get to other level of states only using vertical
(insert) or diagonal (delete, replace) transition. Each of such transitions increases
number of errors (edit distance). Transition replace (diagonal labeled by p) changes
position in pattern P as well as in text T. Transition delete (diagonal labeled by e)
changes position in P but not in T. Transition insert (vertical) changes position in
T but not in P. The self-loop of the initial state provides that any string preceding
an occurrence is omitted.

Among the algorithms for the approximate string matching there were recognized
[5, 4] two methods of simulation of a run of NFA for the approximate string matching.
The first method is called bit parallelism (Shift-Or algorithm [1] and its variations -
Shift-Add [1] and Shift-And [8]). The second method is called dynamic programming
[6, 7].

2. REDUCED NFAs

If we are interested only in all occurrences of the pattern in the text with edit distance
less than or equal to k and we do not want to know the edit distance between the
found string and the pattern, we can remove such states from the NFA for the
approximate string matching that are needed only to determine the edit distance
of the found string [3]. Such states are bordered by the dotted line in Figure 1.
The resulting reduced NFA is shown in Figure 2 and has only one final state that
represents that the pattern has been found with the edit distance less than or equal
to k.

The modification of Shift-Or algorithm for the reduced 7VF_4s was presented in
[3] and the modification of the dynamic programming is discussed in the following
sections.

3. DYNAMIC PROGRAMMING

The basic idea of the dynamic programming [6, 7] was to compute matrix D of
size (m x n) of edit distances (dj^ is edit distance between prefix of P (P1P2 . . -Pj)
and substring of T ending at position i). [2] then made some some optimization of
storing and computing matrix D.

From the NFA simulation point of view, the dynamic programming computes in
each step i of the run of the NFA ith column of matrix D: one element of the column
is for each depth of the NFA and it contains the number of level of the highest active
state of this depth. If there is no active state in this depth, then the element contains
number of a level not existing in this depth. Since each NFA for the approximate
string matching has m + 1 depths, it needs space 0(m) and runs in time 0(mn).

2In figures, the states of the same level are in the same row.
3Symbol Pj, 0 < j < m, represents £ — {pj} in figures.

84 J. HOLUB

Fig. 2. Reduced NFA for the approximate string matching
using the Leveiishtein distance(m -=4, k — 2).

Since the last k depths of the reduced NFA do not have states on all k + 1
levels, this method is not suitable for the reduced NFAs for the approximate string
matching. Instead of having one element of the column for each depth of the reduced
NFA we have one element for each diagonal of the reduced NFA; these diagonals are
formed by the ^-transitions and are of the same length. If any state on a diagonal
is active, then all states located lower on this diagonal are also active because of
^-transitions connecting them. Therefore in the element for each diagonal Z, 0 < / <
m — &, we store only the number of the level of the highest active state on diagonal I.
In this way we get for each step z, 0 < i < n, of the run of the NFA the column
Di = e/o,i,di,i, • • • idm-k,i of length m — k + 1. Each element of the column can
contain a value ranging from 0 to k + 1, where value k + 1 represents that there is
no active state on the corresponding diagonal. The formula for computing columns
Di is as follows:

^0,i

dj,o
л3,г

dj,i

0, 0<i<n
fc + 1, 0 < j <m-k
min(fc + l,

<7d,_i.;_i+i,*t- + d i - i , i - i j delete k, match
if Pd^i-i+j+i 7- U
then djj-i + 1 replace
else k + 1,

if Pdi + i,i_i+i+2 7̂ U
then dj+i5i_i + 1 insert
else k + 1), 0 < j < m — k, 0 < i < n

min(k + 1,
9dj-1,i-1+j,u +^i- i , i - i j delete & match
if Pdjti-i+j+l 7- U
then djyi-i + 1 replace
else A; + 1), j = m — k, 0 < i < n

(i)

Dynamic Programming for Reduced Nondeterministic Finite Automata... 85

The first line in the formula says that the initial state lying on the Oth diagonal
of the NFA is always active because of its self-loop.

The second one says that at the beginning of the searching there is no active state
on diagonals /, 0 < / < m — k, because there is no initial state on such diagonals.

Term gdj-i^-i+j.u +d j - i . t - i represents match and delete transitions. The match
is represented by the horizontal transitions and edit operation delete is represented
by the diagonal e-transitions in Figure 2. An implementation of match transition
is simple: if the state on diagonal j — 1 and level dj-i^-i is active and horizontal
transition leading from this state is labeled by symbol £i, then the state on diagonal j
and level dj-i^-i becomes active. For an implementation of delete transition we
have to search for the state on diagonal j — 1 and level /, dj-i^-i < I < &, such that
there is a match transition labeled by input symbol ti leading from this state. In
order to find such state in constant time we have to use auxiliary matrix G, in which
there is for each position r in pattern P and input symbol ti the number r', 0 < r',
such that at pr+r' = ti, where r' is the lowest possible. If there is no such position,
then r' = k + 1. Since value of dj_i.i_i can be k + 1 and the maximum number of
diagonal, into which there lead match transitions, is m — k, the maximum position,
for which a value of matrix G is required, i s m — k + k + 1 = m + l. Therefore
the matrix has to be of size (m + 2) x |S ' | , where S' C S is the alphabet used in
pattern P. The formula for computation of matrix G is as follows:

gjta := min({A; + 1} U {(/ | pj+l = a, 0 < /) or
(k + 1 | if there is no such /)}), 0 < j < m, a G S , ,

0m+i,a -= k + 1, a G S

Number dj-i^-i +j gives the position of symbol Pdj-iti-i+j 1n the pattern, which
is used as a label of the match transition leading from the highest active state on
diagonal j — 1 to a state on diagonal j . Therefore gdj-iti-i+j,u + dj-i . t - i gives
the level of the highest active state on diagonal j that has arisen by using match
transition to each active state on diagonal j — 1.

Term dj^-i + 1 represents replace transition. In Figure 2, edit operation replace
is represented by diagonal transition labeled by symbol Pd^-i+j+i mismatching
symbol Pdjti-i+j+i- To implement replace transition it is only needed to move the
highest active state on diagonal j to the next lower position on the same diagonal.
Since dj.i-i can reach k +1, the value of expression dj.i-i +j +1 can be greater than
m and in that case Pdjti-i+j+i would give undefined value. To solve this problem we
can add some if statements but it increases the time of the computation. A better
solution is to put some symbols, that are not in input alphabet S, at positions m + 1
and m + 2 of the pattern - for example symbol (end of string).

Term c/j+i}i_i + 1 represents insert transition. In Figure 2, edit operation insert is
represented by vertical transition also labeled by mismatching symbol Pdj+1 i_1+j+2-
The active state on diagonal j + 1 and on level dj+i^-i moves to level dj+i^-i + 1
on diagonal j .

From these transitions we get minimum in order to obtain the highest active
state on each diagonal. An example of matrix G for pattern P = adbbca is shown

86 J. HOLUB

in Table 1 and the process of searching for pattern P = adbbca with at most k = 3
errors in text T = adcabcaabadbbca is shown in Table 2.

Table 1. Matrix G for pattern P = adbbca
and k = 3.

G a ò c d E — {a, 6, c,d}
1 0 2 4 1 4
2 4 1 3 0 4
3 3 0 2 4 4
4 2 0 1 4 4
5 1 4 0 4 4
6- 0 4 4 4 4
7 4 4 4 4 4

Table 2. Matrix D for pattern P = adbbca, text T = adcabcaabadbbca,
and A: = 3.

£> - a d c a ò c a a 6 a d 6 6 c a
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 4 0 1 1 0 1 2 0 0 1 0 1 2 2 3 0
2 4 4 0 1 2 1 2 3 4 1 2 0 1 2 3 4
3 4 4 4 2 3 4 2 3 3 4 3 4 0 1 2 3

Below we also present an algorithm that uses the dynamic programming for the
reduced NFA for the approximate string matching using the Levenshtein distance.
While in Formula 1 there were evaluated the transitions incoming to the diagonals,
in this algorithm there are evaluated the outgoing transitions. It simplifies the
computation because there is only one test whether input symbol U is matching
symbol. This test is necessary for deciding whether to use only match transition or
to use replace, insert, and delete transitions.

At the beginning we perform the initial setting - only Oth diagonal contains active
state. Then in each step i of computation we take the highest active state in each
diagonal, perform transitions leading from this state with respect to the current
input symbol, and according to the transitions we set the highest active states of
the adjacent diagonals.

In the Oth diagonal we evaluate only transition match. Transition replace has
no effect since the initial state is always active. In the first diagonal we evaluate
transitions match, delete, and replace. Transition insert has no effect since it leads
into the Oth diagonal. Then in each following diagonal all transitions are evaluated
except the last diagonal, where there is no match transition.

Dynamic Programming for Reduced Nondeterministic Finite Automata... 87

Algorithm 1. DP for the reduced NFA for the approximate string matching using
the Levenshtein distance
Input: Pattern P = P1P2 • • -Pm> text T = t^2 .. .tn, maximum number of differ­
ences allowed k.
Output: Matrix D of size (m - k + 1) x (n + 1).
Me thod :

/* the initial settings of Oth diagonal */

/* the initial settings of other diagonals */

dn,o : = 0
for j' := 1,2,.. . ,m — k do

dj,o : = k + 1
endfor
for i := 1,2,.. . ,n do

do,i : = 0
di.i := gi,u
if PdM_1+2 = U then

d2,i : = di }i_i
else

d2yi := rnin^, ._1+2,«. + dM_i , k + 1)
d M := min(dM__i + l , d M)

endif
for j := 2, 3 , . . . ,m - k — 1 do

if Pdj-.i-i-H+i = U then
dj+i,i := d^i-i

else
dj+lfi : = m i n (# d i i _ 1 + J + M . + d^-i-fc + 1)
dJ}i := m i n ^ i - i + l.d^i)
dj-i^ := min(d j>i_i + l ,d j_ M)

end if
endfor
j := m — k
i f Pdi.i-i+i+i # *i t h e n

d^i := min(d i) i_i + l,dj,.i)
d j . i ^ := min(djfi.-i + l jdj-i^)

endif
if dm-k,i < k + 1 then

write ("pattern found at position z")
endif

endfor

The first command of the second for cycle in the algorithm (dn,i := 0) represents
the self-loop of the initial state - the highest active state on Oth diagonal is always
on level 0 and this is the initial state.

The second command (di,i := <7i,*J represents the only transition that leads from
Oth diagonal, which is match transition. #1^. gives the position / of the pattern, on
which symbol ti is located, or k + 1, if U is not in the pattern. If / < k + 1, then this
position I is equal to the level of the 1st diagonal, in which there is the active state
that arose by using match transition for U going from Oth diagonal.

/* Oth diagonal (j = 0) */
/* delete & match from the initial state *** */

/* 1st diagonal (j = 1) */
/* match */

/* delete h match */
/* replace */

/* *** */

/* the following diagonals */

/* match */

/* delete & match */
/* replace */
/* insert */

/* *** */

/* the last diagonal */

/* replace */
/* insert */

J. HOLUB

The first if statement represents transitions leading from the highest active state
of the first diagonal. In this case we do not evaluate insert transitions because they
always lead to Oth diagonal, where the initial state is always active. If input symbol ti
is the same as the symbol Pdjfi_i+2 used as a label of match transition leading from
the highest active state in 1st diagonal, then we evaluate only this match transition
(d2,f := d\^-\). If the symbols are different, then we evaluate delete and replace
transitions. For delete transition we search for the next occurrence of input symbol U
in the pattern behind position d^i-\ + j + 1 (the number of the diagonal plus the
number of the level gives the position in the pattern corresponding to the state on
that level of that diagonal). At first we perform delete transition (we move the
highest active state down in the diagonal) and then we perform match transition
for input symbol ti. For replace transition we move the highest active state of the
diagonal to the next lower position of the same diagonal.

In the next for cycle the transition leading from the highest active state of the
next diagonals except the last one are evaluated. It is done in the same way as
described in the previous paragraph but in addition insert transition is evaluated.
For this insert transition we put the level of diagonal j increased by one to the
previous diagonal j — 1.

In the last diagonal we evaluate only replace and insert transitions because match
transition has no diagonal, into which it could lead.

Fig. 3. Reduced NFA for the approximate string matching
using the generalized Levenshtein distance (m = 4, k = 2).

This method can also be used for the simulation of the run of the reduced NFA
for the approximate string matching using the generalized Levenshtein distance. An
example of such reduced NFA for m = 4 and k = 2 is shown in Figure 3. We have
only to add term representing edit operation transpose. In Formula (1), the added
term is as follows:

Іf Pd i- i .ť-2+i+l = *ť-l a n d Pdj.
then dj-_lfi_2 + 1
else k + 1,

2+j — H
transpose
0 < j <m k, 1 < i < n (3)

Dynamic Programming for Reduced Nondeterministic Finite Automata... 89

And in Algorithm 1, the added command is as follows:

if Pdjti-2+j+2 = U-i and pdji_2+j+i = U then
dj+i.i := min(dj5i_2 + l,dj+i.t)

endif
/* transpose */

This command should be inserted into each part of Algorithm 1 where 0 < j < m — k
and 1 < i < n. Such places are behind the lines marked by '***'.

Fig. 4. Reduced NFA for the approximate sequence matching
using the Levenshtein distance (m = 4, k = 2).

This type of simulation of the reduced NFAs can also be used for the reduced
NFAs for the approximate sequence matching using the Levenshtein and generalized
Levenshtein distances [4]. An example of the reduced NFA for the approximate
sequence matching using the Levenshtein distance for m = 4 and k = 2 is shown in
Figure 4.

To modify the presented algorithm so that it could simulate this reduced NFA
we have to implement the self-loops in each non-final and non-initial state. It can
be performed by inserting the following term into Formulae (1) and (1+3) for the
approximate string matching.

if Pd^-i+i+i / U
then djyi-i self-loop
else fc + 1, 0 < j < m — k,0 <i <n
if Pd^i-i+j+i ¥" U a n d djfi-i < k
then djyi-i self-loop
else & + 1, j = m — k,0 <i <n

(4)

The presented formulae and algorithm compute whole matrix D but in the prac­
tice only two (three for the generalized Levenshtein distance) columns from this
matrix are used in each step of computation.

90 J. HOLUB

4. CONCLUSION

The resulting simulation runs in time 0((m — k)n + mfi) and needs space C?(m/i),
where ji is the number of different symbols used in the pattern. We can decrease
the space complexity by using another implementation of auxiliary matrix G but it
increases the time complexity. Our algorithm also uses only one input symbol in
each step of computation in case of the Levenshtein distance and two input symbols
in case of the generalized Levenshtein distance.

The resulting algorithm has the time bound better than [6, 7], which runs in
time 0(mn) and for k > y it has also the time bound better (not considering
the preprocessing time) than [2], which runs in time 0(kn -f- mlogm), where m =
min(m, |S|).

(Received May 12, 2000.)

REFERENCES

[1] R. A. Baeza-Yates and G. H. Gonnet: A new approach to text searching. Comm. ACM
35 (1992), 10, 74-82.

[2] Z. Galil and K. Park: An improved algorithm for approximate string matching. In:
Proceedings of the 16th International Colloquium on Automata, Languages and Pro­
gramming (G. Ausiello, M. Dezani-Ciancaglini, and S. Ronchi Delia Rocca, eds., Lec­
ture Notes in Computer Science 372), Springer-Verlag, Berlin, Stresa 1989, pp. 394-
404.

[3] J. Holub: Reduced nondeterministic finite automata for approximate string matching.
In: Proceedings of the Prague Stringologic Club Workshop'96 (J. Holub, ed.), Czech
Technical University, Prague 1996, pp. 19-27. Collaborative Report DC-96-10.

[4] J. Holub: Simulation of NFA in approximate string and sequence matching. In: Pro­
ceedings of the Prague Stringology Club Workshop'97 (J. Holub, ed.), Czech Technical
University, Prague 1997, pp. 39-46. Collaborative Report DC-97-03.

[5] B. Melichar: String matching with k differences by finite automata. In: Proceedings of
the 13th International Conference on Pattern Recognition, volume II, IEEE Computer
Society Press, Vienna 1996, pp. 256-260.

[6] P. H. Sellers: The theory and computation of evolutionary distances: Pattern recogni­
tion. J. Algorithms 1 (1980), 4, 359-373.

[7] E. Ukkonen: Finding approximate patterns in strings. J. Algorithms 6 (1985), 1-3,
132-137.

[8] S. Wu and U. Manber: Fast text searching allowing errors. Comm. ACM 35 (1992),
10, 83-91.

Ing. Jan Holub, Ph.D., Department of Computer Science and Engineering, Czech Tech­
nical University, Karlovo nam. 13, 121 35 Praha 2. Czech Republic,
e-mail: holub@fel.cvut.cz

		webmaster@dml.cz
	2015-03-24T22:49:25+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document

