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ON THE p-ENTROPY AND ITS HUDETZ CORRECTION1 

BELOSLAV RlECAN 

The Hudetz correction of the fuzzy entropy is applied to the ^-entropy. The new invari
ant is expressed by the Hudetz correction of fuzzy entropy. 

1. INTRODUCTION 

The fuzzy entropy h(T) of a dynamical system has been introduced in [5] (see also 
[1, 3, 8, 10]). Generalizing the notion of a fuzzy partition Mesiar and Rybarik have 
studied the p-entropy (see [7, 10, 11]) based on the Pap y-calculus ([9]). The notion 
is based on an increasing bijective function g : [0,oo] —> [0, oo], such that #(0) = 0 
and #(1) = 1. The choice g(x) = x leads to the fuzzy entropy. The corresponding 
theorem states that to any ^-decomposable measure there exists a fuzzy measure 
such that the p-entropy can be expressed by the fuzzy entropy. 

Of course, the fuzzy entropy depends on a family T of fuzzy sets. If ^contains 
all constant functions, then the fuzzy entropy equals infinity. This defect has been 
corrected by Hudetz ([4]) by introducing a correcting member in the definition of 
the entropy of a fuzzy partition. 

The aim of this paper is a study of an analogous correction in the case of ^-entropy. 
Similarly as Mesiar and Rybarik in [7] we prove the corresponding representation 
theorem. We construct also an example demonstrating that the Hudetz modification 
of ^-entropy can be used although the usual g entropy is not available. 

2. ^-ENTROPY 

Let (ft,<S,P,T) be the classical dynamical system, i.e. (ft,«S,P) is a probability 
space and T : ft -> ft is a measure preserving transformation, i. e. A G S implies 
T~\A) e S and P ^ " 1 ^ ) ) = P(A). 

We shall consider a cr-algebra T of <S-measurable fuzzy subsets of ft, i. e. functions 
/ : ft —> [0,1] satisfying the following conditions: 

(i) In 6 T\ 
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(ii) i f / i , / 2 G . ^ , t h e n ( / i - / 2 ) + G F ; 

(iii) if fn G T, n = 1,2,.. , then V~= i fn G T, 

(iv) i f / i , / 2 G T, then fx.f2eT. 

Consider further a 0-decomposable (with respect to a function g mentioned 
above) measure on T, i. e. a mapping ra : T —> [0,1] such that m(ln) = 1, ra(0pj = 
0, and 

m{g-1 (Jrg(fn)\ = g~l (f>(m(/n))J 

whenever fn G T (n = 1,2,...) are such that Yln°=i 9 ° fn < 1- (Recall that by [6] 
the function g o fn e T). If ra satisfies the above condition, then \x = g o m o g~l : 
T —• [0,1] is a fuzzy measure, i. e. 

( oo \ oo 

!t2fn) =Y1 V(fn) 
n=l J n=l 

whenever fn G T (n = 1, 2,. . .) and Y^=i fn < 1-
A family .4 = {/i,..., fk} C J7 is a g-fuzzy partition of fi, if ^ i = 1 g(fi(u>)) = 1 

for any cu G ft. The g-entropy Lz^(.4)) of the #-fuzzy partition A is defined by the 
formula 

where $ = g~l o tp o g, cp(x) = —x log x for x > 0, < (̂0) = 0, hence 

If A = {/i,.. . , fk} and £5 = {/ii,..., ht} are two g-fuzzy partitions, then their 
common refinement A V B is given by the formula 

.4 V B = {g-'ttg o /<) • (<? o fy)); » = 1 , . . . , k, j = 1 , . . . , t}. 

It is possible to show the existence of the limit 

MAT) = Jim g"1 (lg(Hg ( V r ' ^ ) ) ' 

where T~{(A) = {/i o T \ ..., fk o T '} . The entropy of T is defined by the formula 

/i5(T) = sup{hg(A,T)]A is a #-fuzzy partition}. 
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As we have already mentioned, the fuzzy entropy h(T) can be obtained putting 
g(u) = u, u G [0,1]. In the following proposition the symbols Hg(A), hg(A,T), 
hg(T) are taken with respect to the given ^-decomposable measure m, the symbols 
H(/3), h(B, T), h(T) with respect to the induced fuzzy measure /i = g orno g~-. 

Recall that if A = {/i,... ,/&} is a g-fuzzy partition and hi = fi o g(i = 
1,2,...,&), then g(A) = {/ii,... ,/i&} is a fuzzy partition, i.e. X^i=i ^i = 1. 

Proposi t ion. For any dynamical system ($7, S, P, T), any g and any g-partition A 
there holds: 

(i) Hg(A)=9-1(H(g(A))), 

(ii) MAT) = .r1(MsM),T)), 

(iii) hg(T) = g~l(h(T)). 

P r o o f . [10], Proposition 10.6.6. • 

3. HUDETZ CORRECTION 

Let us start with a dynamical system (Ct,S,P,T). Define ft on the family of all 
integrable functions by the formula fi(f) = f n / d P . Let m = g~x o fio g. The 
Hudetz correction instead of entropy of a fuzzy partition B = {lii , . . . , life} 

H(B) = Y/<P(»(hi)) 
i=i 

Hb(B) = H(B)-F(B) 

F(B) = v(£<p(hi)J. 

Mention that the sum $^ i = 1 <p(h{)) need not belong to T, of course \x is defined on 
the family of all integrable functions on $7. We want to define a ^-analogy of the 
value F(B). Recall that in p-calculus 

uses the difference 

where 

a®b = g-1(g(a)+g(b)) 

(0 is a partial operation on [0,1], a 0 6 is defined if g(a) + g(b) < 1). Therefore the 
entropy Hg(A) can be reformulated as 

k 

H9(A) = ®Hm(fi)). 
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Similarly 
aQb = g-1(g(a)-g(b)), 

whence 
A V B = {fi 0 hj] i = 1 , . . . , fc, j = 1 , . . . , t}. 

Analogously a 0 b could be defined by the formula 

aQb = g~1(g(a)-g(b))1 

of course, only if g(b) < g(a), i.e. b < a. Since we want to define 

-7,M)=mf0*(/i)J> 

and 
ffbC4) = Hff(.4)eFs(.4) 

we must to prove the inequality Fg(A) < Hg(A). 

Lemma 1. Fg(A) = g~x(F(g(A))) for any g-fuzzy partition A. 

P r o o f . W e h a v e m - ^ ^ o / i o ^ , 0 * = i a. = g~l (E*=i 0(a*)) > * = 9~lo(P°9, 

9(A) = { j o / i , . . . , j o / f c } . Therefore 

m 0 *(/<)) = s-^ps^-Mt^"10^^)] 
Vi=l / \ i = l / 

= 5-1ME^°I*«)))=5"HE(5(A)JJ. D 

Lemma 2. i^(-4) < Hg(A) for any #-fuzzy partition A. 

P r o o f . By Proposition we have Hg(A) = g~x(H(g(A))), by Lemma 1 we have 
Fg(A) = g~l(F(g(A)). Since ip is concave, we have 

»(<P(hi)) = f <P(hi)dP <V>([ hidp\ = <p(fJL{hi)), 

hence 

( k \ k k 

~lf(hi) = ~ll*(v(hi)) < ~l<p(»(hi)) = H(g(A)), 
1=1 / i = l 1=1 

and 
Fg(A) = g-1(F(g(A))) < g-1(H(g(A))) = Hg(A). ° 
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Definition. For any g-iuzzy partition A = {/i> • • • > /fc} we define 

Hb

g(A) = Hg(A)OFg(A). 

T h e o r e m 1 . Hb(A) = g'1 (Hb (g(A))) for any g-fuzzy partition A. 

P r o o f. By the definition of the operation Q, Proposition and Lemma 1 we obtain 

Hb

g(A) = Hg(A)QFg(A) 

= g-1(g((HgA))-g(Fg(A))) 
= g-1(g(g-1(H(g(A))) - g(g-1(F(g(A)))) 

= g-1(H(g(A))-F(g(A))) 

= g-HHb(g(A))). ° 

T h e o r e m 2. Hb

g (y^1 T~*A) = g-1 (H (y^1 T'^A)))) for any 5-fuzzy 
partition A. 

PTOoi.Weh^eT-i(A) = {f1oTi,...,fkoTi},T-i(g(A)) = {gofloTi

1...,go 
fk o T1}. Of course, recall the definition of the refinement of #-fuzzy partitions: 
Vr=o T~l(A) consists of all 0-products 

/ . l o ( / i - o r ) 0 . . . 0 ( / i n o T n - 1 ) 

= 9-1((9°fi1)-((9°fi2)oT)....-((gofinoTn-1)) 

i.e. of all functions g~x o h, where h e V̂ -To1 r~~t(g(A)). Therefore 

9rvVW) = y1
 T-'WA)), 

and 

<ś=0 / i=0 

flS(SH--r,(J,(;(2H)) 
= g'1 (H (V T-\g(A)X\ . D 

T h e o r e m 3. For any g-iuzzy partition A there exists 

h^T) := .Jm*-1 ( i ) ©*} ( V ^ ) ) -

and there holds 
hb(A,T)=g-l(hb(g(A),T)). 
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P r o o f . By the definition of 0 and Theorem 2 we have 

9"'(n)0H{(XT"'M)) 

= 9-(9(9-(i))a(,;(vV-(.,))) 

= 5-(i*(V-W)). 
Of course, 

lim -H ( \/ T-\g(Л)) ) = /.btøCД),Г). 
<i=0 

Since g - 1 is continuous, 

= ^ ( A . T ) . D 

Definition. Hudetz ^-entropy h^g(T) is defined by the formula 

hb

g(T) = sup{^(^l,T);^4 is a #-fuzzy partition}. 

T h e o r e m 4. h\(T) = g~l(h\T). 

P r o o f . By Theorem 3 

h\(A,T) = g-\h\g(A),T) < g~l(h\T)) 

for any #-fuzzy partition A. Therefore 

hb

g(T) = sup{^( .4,r); .4} < g~l(hb(T)). 

Now let B = {hi,... ,/ifc} be any fuzzy partition, i.e. J2i=i hi = 1- Then 
A = {g_1 o hi,... ,g~~l o hk) is a y-fuzzy partition, and g(A) = B. Therefore 

hb

g(A,T)<hb

g(T). 

But 
hb(A,T) = <r1(/.b(.?(.4).r)) = g~1(hb(B,T)). 
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We have obtained 
hb(B,T) = g(hb

g(A,T))<g(hb
g(T)) 

for any fuzzy partition B. Therefore 

hb(T) = sup hb(B,T)<g(hb
g(T)). 

Example . Let 0 = [0,1), S = B([0,1)) be the a-algebra of Borel subsets of [0,1), 
P = A be the Lebesgue measure, T : ft ->• U,T(x) = 2x(modl), i.e. T(x) = 2x, if 
x < 1/2, T(x) = 2x — 1, if x > 1/2, T be the family of all s-measurable functions 
/ :ft ->• [0,1], g(x) =x2. Let 

•4 = {/i,... , / * - } , 

where /< = k~2,i = l,2,...,k2. Then /. f l(.4,r) = (logA;2)1!2, whence 

hg(T) = oo. 

Put now B = {x<o,i/2))X<i/2,i)}- Then B is generating partition, whence 

hb(T) = h(B,T)=log2 

by [10] Theorem 10.3.16. Now 

^ ( T ) = (log2)1/2 

by Theorem 4. 

(Received March 18, 2002.) 
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