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T-EQUIVALENCES GENERATED BY SHAPE FUNCTION 
ON THE REAL LINE 

D U G HUN HONG 

This paper is devoted to give a new method of generating T-equivalence using shape 
function and finding the exact calculation formulas of T-equivalence induced by shape 
function on the real line. Some illustrative examples are given. 
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1. I N T R O D U C T I O N 

For the fuzzy set-theoretical modelling of verbal quantities and computing with these 
quantities, it appears useful to part the class of real numbers into fuzzy equivalence 
classes. Jacas and Recasens [8] considered the idea of generating fuzzy numbers as 
equivalence classes of a T-indistinguishability operator based on a scale function. 
The theoretical approach suggested in [10] and further developed in [11] indicates 
that partitions based on the concept of a shape function can be especially significant. 
De Baets et al [2] and Markova [12] characterized that the shapes by means of which 
T-equivalences can be generated, are based on the knowledge of idempotents of the 
T-addition of fuzzy numbers. 

In this paper, we give a new method of generating T-equivalence using shape 
function and finding the exact calculation formulas of T-equivalence induced by 
shape function on the real line. Some illustrative examples are given. 

2. PRELIMINARIES 

Definition 1. (Jacas and Recasens [8]) A fuzzy number is a mapping A : R —r 
[0,1] such that there exists a G R with A(a) = 1 and A is increasing on (—oo, a] and 
A is decreasing on [a, oo). 

Definition 2. (De Baets and Mesiar [3]) Consider a £-norm T. A binary fuzzy 
relation E on an universe X is called a T-equivalence on X if and only if it is 
reflexive, symmetric and T-transitive, i. e. if and only if for any (x, y, z) in X3: 

(i) E(x,x) = l; 
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(ii) E{x,y) = _ % , _ ) ; 

(hi) T{E{x,y), E{y,z))<E{x,z). 

Definition 3. (Jacas and Recasens [8]) A scale is a continuous non-decreasing 
surjective monotonic mapping S : R -> R. 

Definition 4. A shape is a non-increasing mapping <j> : R+ -> [0,1] such that 
0(0) = 1. 

Definition 5. A mapping d : X2 —> [0, oo] is called a pseudo-metric on X if and 
only if for any {x, y, z) in X3 

(i) d{x,x) = 0; 

(ii) d{x,y) =d{y,x)\ 

(hi) d{x, z) < d{x,y) + d{y, z). 

It is called a metric if it moreover satisfies, for any {x,y) G X2 

(iv) d{x,y) =0& x = y. 

Consider a scale s, then the mapping ds : R2 -> R+ defined by 

ds{x,y) = \s{x) -s{y)\ 

is a pseudo-metric on R. Now consider a shape </>, then we construct the binary 
fuzzy relation Es^ as follows: 

Es^{x,y) = (f){\s{x) -s{y)\). 

Definition 6. A generator (or source of vagueness) g is a scale such that g{0) = 0. 

A function T : [0,1] x [0,1] -> [0,1] is said to be a triangular norm [9,14] {t-
norm for short) iff T is symmetric, associative, non-decreasing in each argument, and 
T{x, l)=x for all x G [0,1], and, in general, T(xi, • • •, xn) = T{T{... T(T(xi, x2), x3), 
... ,xn-i),xn). Some well-known continuous t-norms are the minimum operator 
TM, the algebraic product Tp and the Lukasiewicz £-norm TL, defined by Ti{x,y) = 
max(x + y — 1,0). The minimum operator TM is the strongest (greatest) t-norm. 
The weakest (smallest) £-norm TV is defined by 

{ min(x,y) if max(x,v) = 1, 

0, elsewhere. 

We will call t-norm T is Archimedean if and only if T is continuous and T{x, x) < 
x for all x G (0,1). Every Archimedean t-norm T is representable by a continuous 
and decreasing function / : [0,1] -> [0, oo] with / ( l ) = 0 and 

r ( x i , - - - , x n ) = /[-1 l ( / ( .r i) + --- + / (x n ) ) 
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for all Xi G [0,1], 1 < i < n, where /- - 1- is the pseudo-inverse of / , defined by 

f^(y) = lf~1{y) i f y 6 [ ° ' / ( 0 ) ] ' 
\ 0 i fyG[/(0),oo]. 

The function / is the additive generator of T. If T = Tp, then f(x) = logo;-1 and 
if T = TL, then f(x) = 1 - x. 

For arbitrary fuzzy numbers Ai, i = 1,- • •, n, n G V, on the real line, their 
T-sum is defined by means of the extension principle as follows: 

Ai ®T - - ®T An(z) = sup T(A1(x1),...,An(xn)), z e R. 
x\-\ \-xn=z 

Definition 7. Let J be a finite or countable set. Let {Ti\i G J} be a collection of 
£-norms and {(ai, bi)\i G J} a collection of disjoint intervals in [0,1]. We call ordinal 
sum of t-norms {Ti\i G J} to the following t-norm : 

fx — a* i/ — a * \ 
a. + (bi - at)Ti I -, T whenever (a;, y) G (a{, bi)2 

. \bi-ai bi-aij 
nx,y) = \ = (ai,bi) x (aubi), 

min(:r, y) otherwise, 

which is denoted by T = ((ai,bi,Ti)\i G J) , and only if all Ti are generated, then 
equivalently it can be used T = ((ai, bi, fi)\i G J) where fi is the additive generator 
ofT*. 

The following theorem gives a general classification of continuous t-norms [9]. 

Theorem 1. (Ling [9]) Let T be a continuous t-norm. Then T is Archimedean 
or T-min or T is an ordinal sum of Archimedean £-norms. 

3. T-EQUIVALENCE GENERATED BY SHAPES 

Consider a generator g and a shape (j), and the fuzzy relation Eg^, which is always 
reflexive and symmetric. Let T be a t-norm and </>n = <j) ®T * * • ©T </> (n-fold T-
sum of (/>). Then (j)n(x) < (f)n+i(x) for any x G R and for n G IV, the natural 
numbers. Hence the limit always exists. Let limn_>oo 4>n = </>*• We also note that if 
we define \(f)\ : R -> [0,1] such that \(j)\(z) = (f)(\z\) and \(/)\n = \(j)\ ®T • • • ®T |</>|, then 
\imn^00\(f)\n = \c/>\* = |<£* |. 

Theorem 2. For a continuous f-norm T, a generator g and a shape </>, the fuzzy 
relation E/^* is a T-equivalence on R. 

P r o o f . We only need to show that for any a,b,y G R 

T(Eg^(a,y),Eg^(y,b)) < Eg^(a,b), 
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or equivalently 

T(\<f>\*(g(y) - g(a)), \4>\*(g(b) - g(y))) < \<f>\*(g(b) - g(a)). (1) 

By the continuity of the t-norm T, we have 

T(\<l>\*(g(y)-g(a)),\<l>\*(g(b)-g(y))) 

= lim T(\4>\n(g(y) - g(a)), \<j>\n(g(b) - g(y)) 
n—>oo 

and 

T(\<t>\n(g(y)-g(a)),\<j>\n(g(b)-g(y)) 

= T[ sup T(\<l>\(x1)t---,\(/>\(xn)), 
\xi-\ \-xn=g(y)-g(a) 

sup T(|0|(a;n+i),---,|(/)|(x2n))j 
Zn+H \-x2n=g(b)-g(y) J 

sup T(T(\<j>\(Xl),---,\ct>\(xn)),T(mxn+1),---,\<f>\(x2n))) 
xi-\ \-xn=g(y) -9(a) 

x n + 1 + • - + x 2 n =9(*>) - ff(v ) 

< sup T(M(.ri),"-,M(s2n)) 
xi-\ \-X2n=g(b)-g(a) 

= \<i>Un(g(b)-g(a)) 

where the second equality comes from the continuity of T and the inequality comes 
from non-decreasing property of T, hence equation (1) is proved since limn_»oo |0,2n(<7(fr)-
g(a)) = \<t>\*(g(b)-g(a)). • 

The following theorem is due to B.DeBaets et al [2]. Here, we give a new proof 
using the idea of Theorem 2. 

Theorem 3. (DeBaets et al [2]) Consider a t-norm T, a generator g and a shape 
(f). Let H — {\g(u) - g(v)\\(u,v) G R2}. If for any x G H, (j)@T <j>(x) = (/>(x)> then 
the fuzzy relation EQ^ is a T-equivalence on R. 

P r o o f . Define 0o as follows : 

f <f>(x) ifxeH, 
<Po(%) = < 

[ ini{(j)(w)\w < x,w e H} if x £ H. 

Then <j>o is a shape with Eg^x^y) — Eg^(x,y) for (x,y) G i?2. We can also show 
that for any x G R, (f>o © T <f>o(x) = </>o(x)- It is because 0o 0 T 0o(-*O > <t>o(x) is 
always true and for x £ H, w G H and w < x, 

(j>o © T 0o (x) < <f>o © ^o (w) 
-= 0(uv) 
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and hence 

<t>o ®T </>o(%) < ini{(t)(w)\w < x, w G H} 

= <t>o(x). 

We now note that 0o = 0o and can prove that Eg^Q is a T-equivalence on R according 
to the exactly same method as Theorem 1 without the assumption of continuity of 
T using 0O ® T ^o = 0o- This completes the proof. • 

Recently, many authors [5,6,7,13] studied facts about T-sums of shape function 
and their limits. 

Theo rem 4. (Hong and Hwang [6], Hong and Ro [7], Mesiar [11]) Consider a 
continuous Archimedean t-norm T with additive generator / and a shape 0. If / o 0 
is convex, then 

<t>n(x) = f[-li(nfo<p(l)). 

Theorem 5. (Hong and Hwang [5]) Consider a continuous Archimedean £-norm 
T with additive generator / and a shape 0. If / o 0 is convex, then 0*(O) = 1 and 
for x > 0, 

lim Mx) = </>*(x) = fl-1](xf'_(l)<f>'+(0)). 
n-*oo 

Definition 8. Consider (a, b) G R, a ^ 6, then 0(a,6) is the linear transformation 
defined by 

Note that the inverse mapping <f>7a
l
h\ of 0(a,6) 1s given by (j>7a\h\ (x) = a + (b- a)x. 

Definition 9. Consider a fuzzy quantity A and (a, b) G [0, l ] 2 , a < b. 

(i) The fuzzy quantity -4ta'6l is defined as A^a^ = tr o 0(a>6) o A, i. e. Ala'6l(x) = 
ti((A(x) - a)/(b - a)), where tr : R -> [0,1] is defined by 

tr(x) = < 

(ii) The fuzzy quantity -4[a,6] is defined by 

0, if x < 0, 

x, if 0 < x < 1, 

Ll , i f x > l . 

^ H W - M - ' ^ ' " ( I ) > ° -
[ 0, elsewhere. 

We need the following result to generalize Theorem 5 to arbitrary continuous t-norm. 
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Theorem 6. (DeBaets and Markova [1]) Consider an ordinal sum of continuous 
£-norm T = ((a^, bi, fi)\i G J) written in such a way that UAeI[a*'^] — [0> 1] a n d a 
shape (j). If fi o (j)\.ai^bi\ is convex for all i G J, then 

^ n ( x ) - s u p { ( ^ ' [ a i ^ ) [ a i i 6 j ] ( a ; ) } 
iGI l J 

where < / £ ' [ a i ' % ) = / { " 1 ] {nfi o 0-fl-M (*)) . 

Theorem 5 can be easily generalized to arbitrary ordinal sums of continuous t-
norm T. 

Theorem 7. Consider an ordinal sums of continuous t-norm T = ((a-;, 6j, /*)|i G J) 
written in such a way that UAeI-ai' ^i] = -̂ > •'•] anc* a s h a P e </>• K / i 0 ^ ' ^ ' is convex 
for all i E J, then 

</>*(#) = lim </>n(x) 
n—»oo 

= sup{(^»'^)[oj>6i](s)}, 
iei l J 

where < ^ > ^ ( x ) = l im^oo $'lai'bi](x) = /}"1](x(/i)!.(l) ( 0 [ a ^ % ( O ) ) . 

4. EXAMPLES 

Example 1. Consider the product t-norm Tp with additive generator f(x) = 
l ogx - 1 , and a generator # and a shape function (f) defined by (j>(x) = max{l — x,0}. 
Then, by Theorem 5 (or see [5]), </>*(x) = e~x, and hence Eg^*(x,y) = e-^(x)-g{y)\ 
is a T-equivalence on R. 

Example 2. Consider the Lukasiewicz £-norm T_ with additive generator f(x) = 
1 — x, and generator g and a shape function <\> defined by <j>(x) = max{l — x,0}. 
Then, by Theorem 5 (or see [5]), <fi*(x) = <f>(x), and hence Eg^*(x,y) = max{l — 
\g(x) — g(y)\,0} is a T-equivalence on i?. 

Example 3. Consider the ordinal sums T = ((0, | , l o g x _ 1 ) , ( | , 1,1 —a;)), a gener­
ator g and a shape function <f> defined by <j>(x) = max{l — x,0}. Then, by Theorem 
7, (j)*(x) = m a x j l — x, | } , and hence Eg^*(x,y) = max{l — \g(x) — g(y)\, | } is a 
T-equivalence on J?. 

Example 4. Consider the ordinal sums T = ((0, | , 1 — x), ( | , l j loga; - 1)), a gen­
erator # and a shape function (j> defined by <j>(x) = max{l — x,0}. Then, by The­
orem 7, (j)*(x) = | + f e -2* since / ^ ' - s ' 1 . ^ ) = e - ^ and fTL^>*\x) = 1. Hence 
E9t4,*(x,y) == £ + le-2\9^)-9(y)\ is a T-equivalence on R. 
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Example 5. Consider the ordinal sums T = ((0, | , log re -1), ( | , 1,1 - x)), a gen­
erator g and a shape function </> defined by 

(J)(X) = 4 

Then, by Theorem 7, 

(1 if x = 0, 

| ( 1 - x ) if 0 < x < 1, 

0 otherwise. 

( 1 if x = 0, 

* - W = { j e - „the,wiSe, 

since 
T n ii f * if a = 0, 

[ 0 otherwise, 

and fTp^(x) = e"x . Hence 

(1 ifx = y, 
B ^ ( X , V ) = \ I C - | P W - ^ ) I otherwise, 

is a T-equivalence on R. 

Example 6. Consider the ordinal sums T = ((0, 5,1 — x), (\, l , logx - 1 ) ) , a gen­
erator g and a shape function <j> defined by 

<t>(x) = { 

Then, by Theorem 7, 

<j>*(x) = < 

( 1 if x = 0, 

| ( 1 - s ) i f 0 < x < l , 

0 otherwise. 

( 1 if re = 0, 

| ( 1 -x) i f | x | < l , 

. 0 otherwise, 

since 
(1 ifx = 0, 

[ 0 otherwise, 

and /Tjt"[°'3](a;) = 1 — x. Hence 

{ 1 H g(x) = g(y), 

§(l-\g(x)-g(y)\) it\g(x)-g(y)\<l, 

0 otherwise, 
is a T-equivalence on IJ. 
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