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K Y B E R N E T I K A — VOLUME 39 ( 2003) , NUMBER 5, P AG ES 521 - 546 

RESTRICTED IDEALS AND THE GROUPABILITY 
PROPERTY. TOOLS FOR TEMPORAL REASONING 1 

J. MARTINEZ, P . CORDERO, G. GUTIERREZ AND L P . DE GUZMAN 

In the field of automatic proving, the study of the sets of prime implicants or implicates 
of a formula has proven to be very important [17, 19, 20, 21]. If we focus on non-classical 
logics and, in particular, on temporal logics, such study is useful even if it is restricted to 
the set of unitary implicants/implicates [3, 4, 5, 6]. In this paper, a new concept we call 
restricted ideal/filter is introduced, it is proved that the set of restricted ideals/filters with 
the relation of inclusion has lattice structure and its utility for the efficient manipulation 
of the set of unitary implicants/implicates of formulas in propositional temporal logics is 
shown. We introduce a new property for subsets of lattices, which we call groupability, 
and we prove that the existence of groupable subsets in a lattice allows us to express 
restricted ideals/filters as the inductive closure for a binary non-deterministic operator and, 
consequently, the presence of this property guarantees a proper computational behavior of 
the set of unitary implicants/implicates. 

Keywords: lattice, ideal, induction, temporal reasoning, prime implicants/implicates. 

AMS Subject Classification: 03G10, 06A15, 68T15, 03D70 

1. INTRODUCTION 

The future of computat ion points to the incorporation of the non-determinism. In 
the literature, the concept of non-deterministic au tomata as a formal model of com­
putation has been widely developed. The necessity of the incorporation of non-
determinism has been also discussed in the literature. So, for example, in [25] the 
author presents a discussion about how the study of non-determinism is useful for 
natural language processing, in [9] the author shows how formal non-deterministic 
models are useful in describing interactive systems. Another example is designing 
a circuit or a network: non-determinism characterizes the flexibility allowed in the 
design [24]. 

The importance of expressing non-determinism in a logic program is well-known; 
for instance Prolog contains a spurious constructor, called the cut which is widely 
used to improve execution speed. The need of non-determinism is also emerging in 

lrrhis paper has been partially supported by Spanish DGI projects BFM2000-1054-C02-02, 
TIC2000-1109, TIC2003-08687-C02-01 and Junta de Andalucia project TIC-115. 
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deductive databases [10]. So, two main classes of logic-based languages have been 
extensively studied in the literature as the theoretical basis for relational database 
languages and their extensions. One is the class of first-order languages and another 
one is the class of Datalog languages. Different works [1, 2] have brought into focus 
the need for having non-deterministic operators in such languages in addition to 
recursion and fixpoint. 

Most works about non-determinism are based on simulation by means of algo­
rithms and deterministic automata. Nonetheless, in the future it will be necessary 
to develop a formal theory that regards this aspect as inherent to it. In the develop­
ment of a theory for non-determinism the classical operations need to be modified 
to account for the presence of non-determinism, that is, it is necessary to use non-
deterministic operators both of fixed and flexible arity (i.e., applications of An in 2A 

or of A* in 2A, respectively, where A* is the universal language over A) 
On the other hand, most objects used in Mathematica, Logic or Computer Science 

are defined inductively. By this we mean that we frequently define a set S of objects 
as: "the smallest set of objects containing a given set X of atoms, and closed under 
a given set T of constructors". In this definition, the constructors are deterministic 
operators. Therefore, we need to extend this notion for non-deterministic operators 
and, since the associative property is very restrictive for non-deterministic operators, 
we need a non-trivial extension of such property, that allows us to work with either 
binary or flexible arity non-deterministic operators. The new property that we have 
introduced is called groupability. 

Particularly, in the applied aspects, our interest is focussed in prime impli-
cants/implicates. The calculation of prime implicants/implicates of a formulae is 
useful in situations where satisfying models are desired as in circuits design, in error 
analysis during hardware verification and, more recently, in Artificial Intelligence 
applications (diagnosis, abductive reasoning, automated theorem proving, compila­
tion of knowledge bases and, more generally, in casual and hypothetical reasoning 
[17, 19, 20, 21]). So, the design of efficient methods for the computation of prime im­
plicants/implicates from a logical expression has been topic of research over decades 
and numerous algorithms have been proposed in the literature [16, 18]. 

If we focus in the field of automatic proving, such study is useful even if it is 
restricted to the set of unitary implicants/implicates [3, 4, 5, 6]. So, the results 
obtained by our research group [14, 15] are based on the efficient manipulation of 
these sets and they allow us a very important improvement in the efficiency of any 
prover. 

The greatest obstacle we have found when trying to apply the obtained results 
for Classical Logic and multivalued logics [8, 12, 14, 15] to non-classical logics and, 
in particular, to temporal logics, is the higher complexity of the set of unitary 
implicants/implicates with the relation of "logic implication". 

Prom this starting point, a theoretical study within the framework of lattice 
theory is carried out in this paper2. In order to make this work as self-contained as 

2We will assume that the concept of lattice and of ideal and filter of a lattice are known. 
Concretely, we will use the concepts of ideal and filter generated by a set K, which we will denote 
by (X] and by [K), respectively [11]. 
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possible, in Section 2, we introduce propositional temporal logics*which are extension 
of the Classical Propositional Logic, and we formalize them as abstract algebras. In. 
particular, we will focus on FNext and FNext±, which are propositional temporal 
logics with discrete and linear flow of time. In Section 3, we introduce the concept 
of unitary formula, in order to define the concept of temporal literal. In particular 
we describe the set of temporal literals for the logics FNext and FNext±. In Section 
4, concepts of implicant and implicate of a formula are introduced and we study, 
within a general theoretical framework, the ideals and filters of a lattice when they 
are restricted to a subset. In Section 5, we study the structure of the set of ideals of a 
lattice restricted to a subset. In Section 6, we introduce the operators we have called 
unon-deterministic operators" and we define a property, called "groupability", which 
is fundamental in order to manipulate efficiently restricted ideals. This property 
allows us to characterize restricted ideals in terms of inductive closure for a binary 
non-deterministic operator. In Section 7, we prove that the set of literals in both 
FNext and FNext± are groupable, what, all in all, guarantees that in these logics 
we can manipulate efficiently the sets of implicant/implicate literals of a formula. 

2. TEMPORAL LOGICS THAT ARE EXTENSIONS OF CLASSICAL LOGIC 

Now we introduce the formalization of temporal propositional logic as abstract al­
gebras and characterize those which are extensions of classical propositional logic. 
Given that a logical system is formed by a formal language and a model theory 
regarding such a language, temporal propositional logic is defined as (£ , I ) where C 
is a propositional language and 1 a set of interpretations for such a language. 

A propositional language can be defined as a fi-algebra freely generated by a set 
of atoms, V, in the ft category, in the following way : 

Definition 2 .1 . Let V = {p,g, . . . , p i , # i , . . . ,Pn,Qn,... } be a numerable and in­
finite set and ft = {opi , . . . , opr} a finite domain of operators such that fi(0) C V 
where fi(0) denotes the 0 arity operator set. A propositional language is the Q-
algebra of the words C = (V) = (L, op i , . . . , opr). Atoms or atomic formulae are the 
elements of V, logical constants are the f2(0) elements, propositional connectives are 
the elements of Q \ fi(0), and propositional formulae are the elements of C. 

The model theory is given by the interpretation set, such interpretations being 
defined in terms of fi-algebras as follows: 

Definition 2.2. Let C = (V) = (L,opi , . . . ,opr) be a propositional language. We 
call temporal interpretation of C any pair I = (Mt, h) where: 

• Mt = ((T, <), o p i , . . . , opr) where (T, <) is a flow of time and 
(2T, op i , . . . , opr) is a algebra similar 3 to C. 

3Two Q-algebras are similar if they have the same similarity, that is, if the lists made by the 
arities of their operators are coincident. On the other hand, although we use the same symbols for 
operators in C and in Mt, there is not ambiguity because it is clear in the context we use them. 
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• h is a homomorphism of £ in Mt. 

Definition 2.3. Let (C, X) be a temporal propositional logic with C = (L, op\,..., opr 

and X a set of temporal interpretations for C. 
A formula </> is true in a temporal interpretation / = (Mt,h), and denoted by 

(=/ (j), if /i(</>) = T. A formula </> is valid, and denoted by |= </>, if it is true for 
every / G X. A propositional formula, </> G L, is satisGable if for some temporal 
interpretation 7 = (Arf,/i) there exists a t E /*(</>); in this case, we say that h is a 
model of (j) in t. 

Two formulae </> and t/) are semantically equivalent, and denoted by cj) = tp, if, for 
each temporal interpretation J = (Mt,h), it is verified that h((f>) = /i(,0). 

2.1. Classical Logic Extensions 

We are interested in temporal propositional logics preserving all the laws of classical 
propositional logic. These are known as extensions of classical logic. In an informal 
way a temporal propositional logic is an extension of classical propositional logics if, 
for each instant of time, its restriction is a classical logic. Formally: 

Definition. 2.4. Let L = (C,X) be a temporal propositional logic, where C = 
(V) = (L, Q). L is an extension of classical logic if there exist T C Q and a matrix 
M = ({0,1},{1},J7), such that, for each t G T, L(t) = (C(t),M,X(t)), where 

1. C(t) = (L) = (L,T) 

2. X(t) = {I(t) | / G 1} where, if / = (Mt, h) G X 

I(t) : L — • {0 ,1} ; I(t)(<f)) = 1 if and only if t G h(</>) 

is a classical propositional logic. 

Our aim is to deepen, in a formal way, the study of implicate and implicant sets 
in temporal logics. We will begin by defining the semantic implication relation. 

Definition 2.5. Let L = (C,X) be a temporal propositional logic that is an exten­
sion of classical logic. We define a binary relation, <, in its language, C, as follows: 
let (j),i/j G C then <fi < i\) if and only if |= </> -» ip 

The jelation < is a preorder. Indeed, there are different </>, ip G C such that <̂> < ift 
and ip < <f). For example, (j) = (pVq)A(pV~^q) and ip = p. Therefore, in the quotient 
set C/=, the relation < defined as: [(f)] < [ip] if and only if (j) < ip is a partial-order 
relation, with a bounded lattice structure with element zero [JL] and element one 
[T]. Furthermore, (C/=, <) is a Boolean algebra. 
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2.2. FNext and FNextzb Logics 

We illustrate previous definitions by using FNext and FNext± logics. In these, 
the flow of time is (Z, <), and is infinite, discrete and linear and the propositional 
variable set is V = {p, q,... ,p\, q\,... ,pn^Qn, - • • }• FNext is the extension of classi­
cal propositional logic with the connectives: 0 ("tomorrow"), F ("sometime in the 
future"), and G ("always in the future"). 

Definition 2.6. FNext is a temporal propositional logic (CFNeTt,l) given by : 

• CFNext = (V) = (L F N e i , ,± ,T , - , e ,F ,G , -> ,V ,A) where the arity list of these 
operators (their similarity) is (0,0,1,1,1,1,2, *, *).4 

I , the interpretation set of the type (Mt, h) where: 

- Mt = ( (Z ,<) ,0 ,Z, c -0,F,G,-+,U,n) where: c is the complementary 
operator; 0,F,G : 2Z -> 2Z are given by 0T = {t G Z | t + 1 G T} 
FT = {t G Z | [t + l ) f i r 7- 0},5 GT = {t G Z | [t + 1) C T} and 
->: 2Z x 2Z -•> 2Z given by -> (Tur2) = Tf U T2. 

— h is any homomorphism of CFNext in Mt-

FNext± is an extension of FNext with past temporal connectives: © ("yester­
day"), P ( "sometime in the past"), and H ("always in the past"). 

Definition 2.7. FNex t i is the temporal propositional logic (CFNext± ,1) given by: 

CFNext± = (V) = (LFNext±, ± , T, -i, 0 , F, G, O, P, H, ->, V, A) where its similarity 
is (0,0,1,1,1,1,1,1,1,2,*,*) . 

• 1, the set of interpretations of the type (Mt, h) where: 

- Mt = ( (Z ,<) ,0 ,Z, c ,0,F,G,0,P,H,->,U,n) where c, 0 , F, G and -> 
are defined in the same way as in FNext, and 0,P,H : 2Z -r 2Z are 
given by QT = {t G Z | t - 1 G T} ?T = {t G Z | (t - 1] n T ^ 0} 
HT= {^GZ| ( t - i ] c r } 

- h is any homomorphism of CFNext± in Mt. 

3. UNITARY FORMULAE AND LITERALS 

In this section we introduce the concepts of unitary formula and literal. 

4The symbol * indicates that the operator has flexible arity. 
5[t + 1) denotes the filter generated by {t + 1} in (Z ,< ) . That is, [t + I) = {x G Z | t < x}. 
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Definition 3.1. Let (C,l) be a temporal propositional logic, an extension of clas­
sical logic, where C = (V) in the (1ft) category. We define the set of unitary formulae, 
Cmon, as the word algebra freely generated by V in the (f}(l)) category. 

Therefore, unitary formulae are the constants and the language formulae which 
only have monary connectives. For example, in FNext and in FNext i these are 

£?™t = {T,JL}u{7i...-ykeP I ep G v±, 7i e {-,©,F,G}, i<i<k} 

CN?..± = {T'-1}u {71 • "ikeP I ep G v±,li G {-,,©,F,G,G,P,H},I < i < k} 
where V+ is the set of classical literals, i.e., {p, -ip | p G V}. From now on, ip will 
denote a classical literal in p and ip will denote the opposite literal. 

Definition 3.2. Let (C,l) be a temporal propositional logic, an extension of the 
classical logic, where C = (V) in the ($7) category. We define the set of temporal 
literals6 as follows: 

Lit -= {[>] G C/= I [(f)] n Cmon ± 0 } 

Therefore, a literal is a class of C/= containing some unitary formula. 

The equivalence laws in FNext allow us to choose a canonical representative for each 
literal7 and define the FNext literals set, up to equivalence, as Lit+ = \Je eV± Lit+(£p) 
where Lit+(ep) = {T, _L} U {FGip,GFip} U { 0 % , F 0 n ep,G 0 n ep | n G N}. 

FNextdb equivalence laws and the algorithm described in [5] allows us to define 
the literal set of FNext ±,- up to equivalence, as : Lit+ = \Jt eV± Lit±(ep) where 

Lit±(ep) = {T, J_} U {FGep, GF^p, Frlip, HP^, F?ip, Grlip} 

u {enep,F Qn ip, G o n ip,p o n ep,nenev\ nez} 
and Gnev denotes: 0 n. 0^p if n > 0; 0 ~n Qep if n < 0, and 0 % = ep. 

4. UNITARY IMPLICATES AND IMPLICANTS 

Implicates and implicants are widely used in several areas of artificial intelligence. 
For example, they are used to formally model truth maintenance systems (TMSs) 
and assumption-based truth maintenance systems (ATMSs), for circumscription, 
model-based diagnosis, abduction, and relational databases [17, 19, 20, 21], 

Our research focuses on the field of automated deduction where it is possible to 
obtain good results using the concept of unitary implicants and implicates. The 
advantage of using unitary implicants and implicates resides in the large amount of 
information they provide with a lower cost. 

The difficulty of calculating unitary implicates and implicants sets in temporal 
logic is due to the fact that the sets can be infinite. In order to overcome this 
problem we must deepen the study of the structure of these sets. In this section we 
provide some glimpses into a study of this kind to justify the introduction of the 
new algebraic structures. 

6As we will only work with temporal literals, from now on we will omit the adjective temporal. 
7In [4] is shown an algorithm with linear cost to obtain the canonical representative 
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-F£ 

U^ 

-GFť 

-FM 

Ф-*ť"' 

F i g . 1. T h e lat t ice ( L i £ + ( £ p ) , < ) in FNext . F i g . 2 . The poset ( L i i + ( £ p ) , < ) in F N e x t i . 

Definition 4 .1 . Let (C,l) be a temporal logic, an extension of classical logic, let 
us consider (£ /= , <) and 0, ip G £/=• It <f) <ip, we say that 0 is an implicant of -0, 
and ^ is an implicate of </>. 

We take as a starting point the following result, which is a direct consequence of 
the definitions of ideal and filter in lattices [11]. 

Proposit ion 4.2. Let (C,Z) be a temporal logic, an extension of classical logic, 
and let us consider the lattice ( £ /= ,< ) and ip G C/=. The implicant set of cp is 
the ideal (</?], and the set of implicates is the filter [(/?) in the lattice ( £ / = , < ) . In 
this way, the sets of implicant literals and implicates are, respectively: ((p\ fl Lit and 
[(D) n Lit. 

Given that the concepts of implicate and filter are dual concepts of implicant and 
ideal, from now on we will only refer to the latter. 

Our aim is to design efficient algorithms for calculating the sets of implicant 
literals of a formula. To solve this, we need to make an algebraic study of the 
behavior of intersections of the type I C\ Lit where I is an ideal of (C/ =, <). 

Let (̂ 4, <) be a lattice, 0 / B C / 4 and X C A, we denote by: 

- X | f l , the restriction of XI to B, i.e., XlB= XI n B. 8 

3 X [ denotes the lower closure of K, that is, K|= [ J (x] = M {y £ A \ y < x} 
xex xex 
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- If / is an ideal of A, IB denotes the restriction of / to B. In more specific 
terms (X]B denotes the restriction on B of the ideal generated by X, (X]; that 
is, (X]B = (X] fl B and this is called ideal generated by X in B. 

Prom now on, we will use indistinctly (A, <) or (A,\/,A) to denote a lattice 
considered as an ordered structure or as an algebraic structure, respectively. 

4 .1 . Restr ic t ions of ideals 

We introduce here the concept of ideal restricted to the subset B of a lattice A and 
the basic results that call for the introduction of new structures. In a dual way, the 
corresponding results are obtained for filters. 

Definition 4.3. Let (A, <) be a lattice and 0 / B C A If X C B satisfies that 
(X]B = X, then X is an ideal restricted to B. 

Example 4 .1 . Let us consider the lattice (A, <), (A, <) i 
B = {0,a,b ,c , l} and X = {0,a,b ,c}. X is an t ( B , ~ } 

ideal restricted to B, because (X] = {0,a,b,c,d} y^tN. 
and (X]B = X. However, X is not a filter re- a

x J 
stricted to B because [X) = A and [X)B - - B / 
X. 

o 

,/t\ 
^ïл 

The following proposition justifies the above definition. 

Propos i t ion 4.4. Given a lattice (A, <), 0 / B C A and X C.B. Then: 

1. (X]B = {b G B | there exists a finite Xn C X such that b < Vxex0

 x}-

2. X is an ideal restricted to B if and only if there is an ideal I of A such that 
X = IB. 

3. (X]B is the intersection of all the ideals restricted to B including X. 

P r o o f . These results are a direct consequence of the well-known results about 
lattices [11]. 

Let see now some properties related with restricted ideals. 

Propos i t ion 4.5. Let (̂ 4, <) be a lattice, 0 / B C i and X C.B. 

i) If X is an ideal restricted to B, then X = X\,B. 

ii) If (A, <) is bounded and 0 € B, then 0 belongs to every ideal restricted to B. 
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P r o o f , i) Obviously, X C X\,B. On the other hand, (X]B = X, and so X | B C 
(X]B = X. Item ii) is an immediate consequence of item i). 

The next example ensures that the opposite of item 1 in 
the previous proposition is not true. (A,<) 

( в 'X 
L* 

Example 4.2. Let us consider the lattice (A, <), B = b- c 
{0,a,b,c,d) and X = {0,a,6,c}. XlB= X, however \ / 
X is not an ideal restricted to B because (X] = B and \ 

(X)B = B. 

Theorem 4.6. Let (A,V,A) be a lattice and X C B C A. If X is an ideal 
restricted to B, then X is an ideal of the partial lattice (S,VB, AB). 9 

P r o o f . From Proposition 4.5, we have that XlB= X. Moreover, if a, b e X and 
a V b exists in S, we have that ay b e (X]B = X. 

The following examples ensure that the opposite of the previous theorem is not true: 

Example 4.3. Let us consider the lattice (A, <), B — ^ '-' '-' 
{0,a,6,c} and X = {0,a, &}. < K 
(X] = A, (X] B = B ^ X, and so X is not an ideal re- f \ f e 

stricted to B, however, X is an ideal of the partial lattice a 
(B, VB, AB), because X is closed for V# and XlB= X. 

T 

X 

Now we give a new and useful characterization of restricted ideals. 

Theorem 4.7. Let (A, <) be a lattice, 0 ^ B C A and X C B. Then, X is an 
ideal restricted to B iff for every finite subset X0 C X, we have that (Xo]B C X. 

P r o o f. If X is an ideal restricted to B and X 0 is a finite subset of X, we have that 
{X0]B C (X] B C X. Conversely, let us suppose that for every finite subset Xo C X, 
we have that (X 0 ] B C X. We have to prove that (X]B C X. By Proposition 4.4, if 
b e (X] B , there exists a finite X 0 C X such that b e (X0]B and by hypothesis, we 
have that b e X. 

Example 4.4. Let us consider the lattice (2R,C). We have that 2Z is an ideal 
restricted to 2 Q because, for all {Ci, . . . , Cn} C 2Z, we have that 

({Ci,...,Cn}]2Q=2c>u-uC«C2z 

9 ( B , V B , A e ) is a partial lattice of (A,V,A) if B C A and Vfi and AB are the restriction to B 
of V and A, respectively. Moreover, 0 9̂  I C B is an ideal of ( B , V B , A S ) if it satisfies the two 
following conditions: (1) for all a, b 6 I, if a VB b exist then a Vfl 6 £ I; (2) if x < a G I then x £ I. 
See pages 52-54 in [11]. 
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Remark. From now on, when we say FNext (or FNext i ) , we mean the lattice 
(£F J V e i ( /E ) <) (or (£FJVe .1±/=, <)) and the subset B = Lit+ (or B = Lit*). 

Example 4.5. In the lattice (£FNext/=, <!)> w e have that: 

1. X = {G 0 m ep | m G N} U {_L} is an ideal restricted to Lit+. 

2. Y = Lit+-{T, Fep} is not an ideal restricted to Lit+ because {F©£p, ®^p} C Y 

and ({F e ePi ©MlL.t+ = ( F e ^ p v ®tP)lLit+ = v*ALit+ 2 Y 

Proposition 4.8. Let (A, <) be a bounded lattice and {0,1} C B C A. The 
unique subset of B 4hat is, simultaneously, an ideal and a filter restricted to JB, is 
B. 

P r o o f . Let us suppose that X C B is an ideal restricted to B and a filter 
restricted to B. Because X is a filter restricted to J5, we have that 1 G [X)B = X 
and, so Xl= A. On the other hand, X is an ideal restricted to B, and Proposition 4.5 
ensures that X = XiB. Then, we have that X = XiB = XI DB = An B = B. 

5. OPERATIONS WITH RESTRICTIONS OF IDEALS 

From now on, if (A, <) is a lattice and 0 / B C i , IdealsB(A) denotes the set of 
ideals restricted to B in A. We are interested in the structure of (IdealsB(A)tC) 
and so, we begin by analyzing the behavior of restricted ideals when they intersect. 

Lemma 5.1. Let (A, <) be a lattice and 0 ^ B C A. Let X\ and X2 be two 
ideals restricted to B. Then, X\ n X2 is an ideal restricted to B. 

P r o o f . Indeed, if X\ = (X\[B and X2 = (X2]B we obviously obtain that X\ H 
X2 C (X1 n X2]B. On the other hand, (Xx n X2]B C (XX]B n (X2]B = Xx n X2. 

The following example shows that the union of restricted ideals is not always a 
restricted ideal. 

Example 5.1. Let us consider the lattice w ; jj 
(A, <) and the subset B in the following di- / /\y \ 
agrams. The subsets X\ = {0,6, c , / , ^} and \ / ^ 
X2 = {0, b, c, e, / , z} of B are ideals restricted 
to B. For these subsets we have that: 

\ 
á 

(B .<) 

C 

• Xi n X2 is an ideal restricted to J5, and Xi n X2 = {0,6, c, / } = ({0, b, c, /}] f 

• However, Xi U X2 is not an ideal restricted to B, because 
XXUX2 = {0, b, c, e, / , y, i} C ({0,6, c, e, / , #, i}]fl = B 

Using the theorem below, we study the structure of (Ideals#(-4), C). 

i 
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Theorem 5.2. Let (A,<) be a lattice and 0 ^ B C A. (ldealsB(A),C) is a 
lattice; also 

inf (XUX2) = X1nX2] sup(XuX2) = (X,UX2]B 

P r o o f . The equality inf (Xi ,X 2) = X\ fl X2 is a direct consequence of Lemma 
5.1. On the other hand, to prove that sup (Xi, X2) = (X\UX2]B, it is enough to ver­
ify that (Xi U X 2 ] B exists, which is the case, because from item 2 in Proposition 4.4, 
(Xi UX 2 ] B is the intersection of all the ideals restricted to B having Xi UX 2 , among 
them, we find at least B = AB. 

The following example shows that the empty set can be an element oiIdealsB(A). 

Example 5.2. The diagrams show a lattice (A, <), the subset B = {d,g, h,j, 1, } 
and the lattice (IdealsB(A), C): 

(A,<) 1 (B,<) 1 ( l ] в (ldealsв(A),Ç) 

/ \ \ . / \ . 

/ \ 
9 d 9 

*C Ül, 
h 

d e f 

\ Xt \ / (d] (n] 
a b c VUJB \9\B 

\i/ \ / 

(ЧB (Jlв 

t t 

0 

We have that (ldealsB(A), C) and (Ideals(A), C) have both the lattice structure. 

Lemma 5.3, Let (A, <) be a lattice and X\,X2 C A. Then, we have that 

(X1UX2] = ((X1]\J(X2\] 

P r o o f . Since X1 C (X{\ and X2 C (X2], we have that X1 U X2 C (Xi] U (X2] 
and so, (Xi U X2] C ((Xi] U (X2]]. Conversely, if y G ((Ki] U (X2]] there exists a 
finite subset X 0 C (X\] U (X2] C (Xi U X2] such that y < \/xeX x, and therefore 
HE(X!UX2] 

Theorem 5.4. Let (A,<) be a lattice and 0 ^ B C A. (Idea/sB(.A),C) is 
isomorphic to a sublattice of (Idea?5(A), C). 

P r o o f . Let us consider / : IdealsB(A) -> Idea/5(A) defined by f(X) = (X]. 
Obviously / is injective. Let us prove that is an homomorphism. If X i , X 2 G 
Idealss(A), then f(X\ A X 2 ) = /(Xi) A /(X 2 ) and Lemma 5.3 ensures that 

/(Xi V X 2 j = (Xi U X2] = ((Xx] U (X2]] = f(Xy) V f(X2) 
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6. INDUCTIVE CLOSURE AND GROUPABILITY 

Once we have characterized the ideals and filters restricted to a subset, our aim is to 
obtain an efficient manipulation of them. For this reason, we introduce the operators 
we call non-deterministic operators [22, 23] for a set A, and we give a property for 
the subsets of a lattice, called groupability. 

Definition 6.1. Let A be a non-empty set. If F : An -> 2A is a total application, 
then we say that F is a non-deterministic operator (ndo) of arity n in A. If F : A* -> 
2A is a total application, where _4* is the universal language defined in A, we say 
that F is a non-deterministic operator of flexible arity in A. In this case, we define 
the n-particularization of F as the ndo with arity n in A given by Fn(x\,... ,xn) = 
F(x\ .. . ;rn), .for all x i , . . . , x n E A. 

For all X C / 1 , F(ax . . . , a,_i, X, a ,+ i , . . . , an) = \JxeX F(ai ... , az_i, x, a 2 +i , . . . , an) 
Therefore, F(ai . . . ,a z_i , 0 , a , + i , . . . , a n ) = 0. 

Definition 6.2. Let (A, <) be a lattice and 0 / B C A We denote by $ f the 
ndo of flexible arity: 

$ f : £T -> 2D $ f (6162 • • .&„) = (61 V b2 V • • • V bn)iB 

and by $ f its 2-particularization, i.e., $ f : B2 -> 2B with $ f (bi,b2) = (h Vb2HB • 

Obviously, $ f and 3>f are commutative. We can now to generalize the concept 
of inductive closure by using non-deterministic operators. 

Definition 6.3. Let A b e a set, X C A and T a set of nd-operators in A. We 
define the nd-inductive closure10 of X under T as Clj?(X) = \\ Xj, where, if ar(F) 

ieN 

denotes the arity of F , X0 = X and Xi+1 = X{ U | J F (Xf r ( F ) ) 
FGF 

We say that C£jr is an inductive closure operator and, if C£?(X) = X, we say that 
X is closed under T. 

Proposition 6.4. Let (A, <) be a lattice, 0 ^ B C A. For all I C B, we have 
that (X]B = C£$B(X). That is, (X]B is the inductive closure of X under <frf. 

P r o o f . It is a direct consequence of Proposition 4.4. 

The following example shows that this result is not true for $.f, and therefore we 
can not characterize (X]B as the inductive closure of X under $ f . 

1 0Or inductive closure if no confusion arises. 
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Example 6.1. Let us consider the lattice (_4, <) 
and B = {0, a, b, c, d] C _4. Let X = {b, c, d} C _5. 
We have that (X]B = B. However, the inductive 
closure of X under <_>f is {0,b, c, d) ^ (X]B be­
cause: 

* 2 > , c ) = {0,6,c}; *?(6,d) = {0,b,d} 

and ^ ( c . d ) = {0,c,d} 

(л,<) 1 

We are interested in establishing conditions for B that allow us to characterize 
(X]B as the inductive closure of X under $f . In our analysis, we begin with the 
following result relating the actions of 4>f and $f . 

From now on, [n] denotes the set of natural numbers {1,2,... , n} and, if X is a 
non-empty finite set of natural numbers, S(X) is the set of permutations of X. 

Proposition 6.5. Let (_4, <) be a lattice, 0 / B C 4 and u = bib2 ' -bn G B* 
with n > 2. For all permutation a G 5([n]) we have that 

$ 2

5 ($ 2

B ( . . .$ 2

3 ($ 2

3 (6 ( T ( 1 ) ,6 < T ( 2 )) ) & ( T ( 3)) . . . ,6 ( T ( n _ 1 ) ) 1 6 < T ( n ) )C$f(u;) (1) 

Therefore, 

| J * f ( . . . * f (*f (6lT(i),6.(2)), 6_(3)) ••• A(n)) C *f( W ) (2) 
«r€S([n]) 

Proof . We will prove it by induction over the length n of u. 

• If n = 2 the result is obvious, because $2
s(6i,62) = $B(&2,6i) = $ f (&i,&2)-

• Let us now assume that the result is true for length n. Let u = b\...bn+i and 
a G sn+i) then, 

*?(*•?(• • • *?(&<r(l), &<r(2)), • • • &<r(n))> ^(n+l)) 

Q*2(*?(K(l)b«2)---bt,(n)),b^+1)) 

tt 
C * f (6<r(1)6.(2)... &.(„)&„(„+!)) W <*>f M 

were we use the induction hypothesis in t; sind t t is also true because if 
b G $_?(&', &<-(n+i)) with b' G $ f (6_r(i)&_r(2) • • -K{n))i then it satisfies that 
b < b' V b_-(n+i) < 6_,(i) V b_,(2) V • • • V 6_-(n) V 6_r(n+i) and, consequently, 
b G $ f (&_r(i)&_r(2) •••&<r(n)&-r(n+i))- Furthermore, t t t is true by the commu-
tativity of $ f 

In the following example we show the case in which all the inclusions (1) of 
Proposition 6.5 are strict, and however the inclusion (2) is an equality. 
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Example 6.2. Let us consider the set U = {1,2,3,4,5,6}, the lattice (2^,(1), 
the subset B = {{1,2}, {3,4}, {5,6}, {1,3}, {4,6}, {1,3,5}, {2,4,6}}, X = {1,2}, 
Y = {3,4} and Z = {5,6}. We have that 

$f(XYZ) =B 

* ? ($?{X, Y),Z) = {{1,2}, {3,4}, {5,6}, {1,3}', {4,6}, {1,3,5}} 

*§($f{Y,Z),X) = {{1,2}, {3,4}, {5,6}, {1,3}, {4,6}, {2,4,6}} 

$f{$?(X,Z),Y) = {{1,2}, {3,4}, {5,6}, {1,3}, {4,6}} 

and we have that: 

* f (XYZ) = $ ? ($ f (X, Y), Z) U * ? (*? (Y, Z), X) U * ? (*? (X, Z), Y) = B 

In the following example we show that the inclusion (2), and therefore all the 
inclusions (1) are strict. 

Example 6.3. Let us consider the lattice A and the subset B of the example 6.1. 
If u = bed, we have that $ f (bed) = B. However, 

$Z($Z(b,c),d)U$Z($*(b,d),c)l)<l>Z($»(c,d),b) = {0,b,c,d}^B 

In order to simplify the study of the ideals restricted to B, it is advantageous 
that inclusion (2) becomes an equality. So, we introduce the following property: 

Definition 6.6. Let F be a ndo with flexible arity in A and F2 its 2-particularization. 
We say that F has the property of groupability if, for all u = b\b2 . . . bn £ A with 
Length(cO) = n > 2, we have that 

F(u)= (J F2(F2(F2( . . .F2(F2^^ 
<7E5([n]) 

Let (J4, <) be a lattice and 0 ^ B C A. We say that 2? is groupable if 4>f has the 
groupability property. 

Example 6.4. In the lattice (-4, <) of the example 6.1, B = {0,a,b, c, d] is not 
groupable. 

We can already ratify that we have obtained our objective, that is, a property that 
allows us to substitute a nd-operator with flexible arity by its 1-particularization and 
2-particularization in the inductive closures when we cannot ensure the associativity. 
Therefore we have the following theorem whose proof is trivial. 
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Theorem 6.7. Let A be a set, e the empty chain in A*, T a family of ndos in A, 
F E T with flexible arity, F\ its 1-particularizatipn, F2 its 2-particularization and 
Q = (f N {F}) U {FUF2}. If F is groupable, then, for all X C A: 

C£T(X)=C£G(XuF(e)) 

Moreover, if F(e) C F(x) for every x G A , then C£T- = C£g. 

The following corollary allows us to characterize (X]B as the inductive closure of 
Ar under $f , if B is a groupable set. 

Corollary 6.8. Let (A, <) be a lattice and 0 / B C A a groupable set. Then, for 
every I C B , w e have that (X]B =C£ B(X). 

* 2 

The example 6.1 shows that we can not eliminate in Corollary 6.8 the condition 
that B is groupable. As a consequence of Corollary 6.8, under the groupability 
hypothesis we can improve Theorem 4.7 that characterizes the restricted ideals: 

Corollary 6.9. Let (A, <) be a lattice, 0 / . 9 C . 4 a groupable set and X C B. 
Then, X is an ideal restricted to B if and only if for all x\,x2 £ X we have that 
({xux2}]BCX. 

(A><) \ ( B , < ) 

Example 6.5. Let us consider the lattice (A, <), T 
B = {0,a,6,c,l} C A and X = {0,a,b ,c}. It is y / \ \ / ^ | \ 
easy to see that B is groupable and Corollary 6.9 ->.6 c 
allows us to conclude that X is an ideal restricted \ t / 
to B. 

b c 

0 X 

c 
Example 6.6. Let us consider the lattice (A, <), (A, <) < x \ (£, <) 
B = {0, a, b, c} and X = {0, a, b}. We can see that I 
B is groupable and by Corollary 6.9, we have that a 

X is not an ideal restricted to B, because c < aVb 
(in A), and however, c $ X. 

Now, we give an useful characterization of groupability which justifies its name. 

Theorem 6.10. Let (-4, <) be a lattice and 0 7- B C A. B is groupable if and 
only if for every u G B* with Length(u) > 2 it satisfies that: 

*fM= [J *f(*f(Wl)u*) 
CJICU; 

Length(a;1)>l 
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P r o o f . It is equivalent to prove that, for all u = 6162 . . . 6 n G F?*, the following 
equality holds: 

I J * f ($ f Mu*) = ( J *f( . . . (*f(6-( l ) ,6«r(2)) . . . ,^(n)) 
wiCw <r65([n]) 

Length(u;i)>l 
u;2:--:t-v'\u;i 

Firstly, if 6 € * f ($ f (. . . $ f (*? ( f t ^ i ) , ^ ) ) , &„(3)) • • • A ( n - i ) ) A(n ) ) we have 
that for any 1 < r < n exists a; such that 

X G * ? ( * £ ( . . . * ? ( $ ? (6,(1), &«r(2)) , 6-(3)) • • • k ( r - l ) ) , K(r)) Q 

Ç Ф f f e ( i ) - * , ( ř ) ) 

and it satisfies 

6 G $ f ( * f ( . . . $ f ( $ f ( a : , 6 f f ( r + 1 ) ) , 6 f f ( r + 2 ) ) . . . Afn- i ) ) ,ba{n)) C 

C $ f (x.&^r+i) •••6(7(n)) 

where, in (f) we have used Proposition 6.5. So that, 6 G 3>f ( $ f (^i)uJ2) where 
vi = 6IT(1) • • • 60.(r) and CJ2 = 6 a ( r + 1 ) • • • 6 a ( n ) . 

Conversely, we prove by induction that there exists a G S([n]) such that 

(j $ ? ( $ f (W l)a; 2) C * ? ( $ 2
B ( . . . * ? ( * ? ( 6 „ ( 1 ) , 6,(2)), 6,(3)) . . . , 6 ^ - 1 ) ) , K(n)) 

U>\(ZUJ 
Length(a ' i )>l 

If n = 3 the result is obvious. Let us now assume that the result is true for any 
chain with length lower than n (being n > 3), and we will prove it for chains with 
length n. 

If u — 61 . . . 6n and 6 G [J $ f ($ f (uJi)u;2) then there exist cr' G S([n]) such 
U>ICCJ 

Length(wi)>l 
U>2=W-^U>l 

that 6 G $ f ( $ f (cOi)cj2) with cOr = 6<r/(1) • • • 6ff/(r) and a;2 = 6<7/(r+i) • • • 6<r/(n). That 
is, there exists x such that x G $ f (cOr) and 6 G $ f (xu2). 

By induction hypothesis there exists cr" G S({cr'(l), • • • , cr'(r)}) such that 

X G *f(...($f(6 ( 7//( ( T/(i)), 6^/(^/(2)))... ,&<-•"(*'(*•))) 

and there exists cr'" G S({cr'(r + 1),••• ,cr'(n)}) such that 

6 G $ 2 (x . . . ( $ 2 (6<-///(<,-/(r+i)), 6cr///(a/(r+2))) • • • , 6<7///({r/(n)j) 

The permutation cr G S([n]) defined by: 

„ m _ / * ' V ( 0 ) . i f l < i < r 
a W _ \ cr"'(a'(i)), i f r < i < n 

verifies that b € $ ? ( * ? ( . • • ($2 (b<r{i)K(2)) K(3)) • • •) t\r(n-i)) &*(«))• 
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Definition 6.11. Let (-4, <) be a lattice and 0 ^ B C A. We say that $ f has 
the property of strong groupability if for every chain u = b\ ... bn G B* with n > 2, 
there exists a permutation a G -5([n]) such that 

The following result is immediate. 

Theorem 6.12. Let (A, <) be a lattice and 0 ^ B C A Then 

1. If i? is strong groupable, then B is groupable. 

2. If for any chain u = b\b2 . . . bn G £*, with Length(cj) = n > 2 we have that 
there exists a permutation a G S([n]) such that 

$fH = $f($f(. . .§f($f(^1 ) ly1 i . (j )). . .) , i ( M ))1 i . ( n )) 
then we have that B is strong groupable. 

7. GROUPABILITY IN Lit+ AND Lit* 

In the theoretical aspects, we have completed the study about ideals/filters of a 
lattice, when they are restricted to a subset, and we have characterized them as 
the inductive closure of a set using an ndo of flexible arity. The property called 
groupability allows us to characterize the ideals/filters restricted as the inductive 
closure of a set using a binary ndo. 

Taking up again the applied aspects that justified the theoretical study, we re­
member that the utility of the unitary implicants/implicates sets to improve the 
efficiency of any prover has been widely proved [3, 12, 13, 14, 15, 23]. The greatest 
obstacle we have found in temporal logic is that we will must manage flexible arity 
operators and its storage is not possible. However, the presence of the groupability 
property in the set of literals allows us to replace its management by using binary 
operators. This property also allows us to extend the results given in [3, 4, 5, 6] to 
these temporal logics and to other in which the literals set satisfy this property. 

In this section we prove that the set of literals for the logics FNext (Lit+) and 
FNext± (Lit1*1) are strong groupable. Firstly, we begin with some previous results. 

Lemma 7.1. Let T C Lit* and Tp = Y n (Lit±(p) U Li^tp)) for each peV. 

1- (r]Li*-= = Lit*- if and only if there exists p G V such that (Tp]Lit± = Lit*1. n 

2- [r)Lit± = Lit*1 if and only if there exists p G V such that [Tp)Lit± = Lit*1. 12 

11 Notice that the condition (T]Lit± = Lit^ ensures that F 7- 0 and that, if it is unitary, then 

12Notice that the condition [r)x,;t± = Lit* ensures that r y£ 0 and that, if it is unitary, then 
r r- {!}. 
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Let us consider a finite subset T C Lit*. Obviously, if T G T or there exist 
t\,t2 G r such that t\ < t2, we can ensure that (T]Lit+ = Lit*. However, there exist 
an infinite number of cases. Indeed, for all n G N we have that F © n + 1 tp V ®n*ltp = 
F 0 n tp and so, for all n G N: 

(G e n Tp, ®
n*Hp,..., ®n+ktp, F en*k tp] = Lit* 

The following theorem allows us to determinate the finite sets T C Lit* such that 
(T]Lit± = Lit*. 

Theorem 7.2. Let 0 / T C Lit* a non-unitary set. Then, (T]Lit± = Lit*1 if and 
only if one of the following conditions is satisfied: 

(i) There exist lu t2 G T such that T\ < t2. 

(ii) There exist tp G V^, and m i , m 2 G Z with m\ < m2, such that: 

{G 0 m i Tp, F Qm2 tp} U {Qmtp | m\ < m < m2} C T 

(hi) There exist tp G V±, and m i , m 2 G Z with m\ > m2 , such that: 

{H 0 m i Tp, P 0 m 2 tp} U {Qmtp | m\ > m > m2} C T 

(iv) There exist tp G V* such that 0 ^ m Lit*(Tp) ^ {_L}, and mi ,m 2 G Z with 
rri\ < m2, such that: 

{? Qmi tpiF Qm2 tp} U {Qmtp | mi < m < m 2 } C T 

P r o o f . As a consequence of the previous lemma, it is enough to prove that the 
result is true for any non-empty, non-unitary and finite T C Lit*(p) U Lit*(p). 

Its sufficiency is obvious. We show its necessity by proving that if no condition 
is satisfied then (T]Lit± ^ Lit*. 

If condition (i) is not satisfied, for all tp G V* we have that F?tp £ T, because 
FPtp = GH£P, and for the interpretation h such that h(tp) = Z, we have that 0 ^ 
h(\J t) and so, \J t ^ T, that is (T]Lit± / Lit*, 

eer ter 
Now, we consider the following cases: 

1. m { F 0 m p , F 0 m p | m G Z} = 0 and T n {P 0 m p,P 0 m p | m G Z} = 0. 

2. m { F 0 m p , F 0 m p | m G Z } / 0 and T n {P 0 m p,P Qmp \ m G Z} = 0. 

3. m { F 0 m p , F 0 m p | m G Z} = 0 and T n {P 0 m p,P 0 m p | m G Z} ?-0. 

4. There exists tp G {p,P} such that 

r n { F 0 m / ! p | m G Z } ^ 0 and T n {P 0 m tp \ m G Z} / 0 
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5. There exists lv E {P,p} such that 

T n {F ©m Up I m € Z} 7- 0 and T n {P ©m Tp \ m G Z} 7- 0 

For case I we have that 

r c { J_, FGp, GFp, GHp, PHp, HPp, FGp, GFp, GHp, PHp, HPp} U 

U {© r i P , . . . ,© r " ip}U{G© S l p , . . . ,G© s "2 P } u 

U {H GUl p , . . . , H ©u-3 p} u {©V lp,. . . , ©^<*p} U 

U {G 0™1 P,..., G ©^5 p) u {H ©2l p , . . . , H 0*»e p} 

ri < • ' ' < rni; si < • • • < sn2; ^1 < • • • < un3; 

V\ < ' • ' < Vn4 ; Wi < • • • < Wn5 ] Zi < - • < Zn6 

and as, by hypothesis, condition (i) is not satisfied, we can ensure that: 

• n ^ Vj for all 1 < i < ni and for all 1 < j < 714. 

• If GFtp e T with tp E {p,p} then FG^ £ T and GF^ £ V. 

• If HP£P e T with ^ E {pyp} then PH^ £ T and HP^ £ T. 

We denote by ki = min {ri, ^ i , ^1 , zi} and by fc2 = max{rn i , sn2, On4, wn5}. Let us 
consider any interpretation h such that 

where 

h{p) = A~ \J {vu... ,vn,}\J A+ 

f {/ci - 1} ifHPpET 

A~ = < {m\m<k1~l} if HPp E T 

{m I m < k\ - 1 and m is even} in other case 

f {A:2 + l} ifGFpEV 

A+ = i {m I m > k2 + 1} if GFp E T 

{m I m > k2 + 1 and m is even} in other case 

It is easy to prove that 0 £ h{ \J I) and so, \j l 7- T, that is {V}Lit± ^ Lii*. 
/elr lev 

For case 2, that is, if 

r n {F ©m p, F ©m p I m e z} ^ 0 and r n {p ©m P, P ©m P I m e z} = 0 
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we have that, as by hypothesis, condition (i) is not satisfied, if F Ok £p G T, then 
FQTP $ T, QFTP £ T and, for all m G Z, F ©m Tp £ T, and so: 

1 C- I J_, FGcp, GFcp, GHcp, PHtp, HPcp, GH£p, PHtp, HPcp j U 

U { 0 r i £ p , . . . , 0 r - i £ p } U { F 0 S l £ p , . . . , F 0 s " 2 £p} U 

U {GO*1 - V . . , G O * » s M U { H 0 U l £ p , . . . , H 0 u - 4 lv} U 

U { 0 V % , . . . , 0 v -5 Tp} U { G 0 ^ % , . . . , G 0W«6 £^} U 

U { H 0 2 % , . . . , H 0 ^ y 

7-1 < ' * * < rni; si < • • • < sn2; *i < • • • < Jn 3 5 ^ i < • • • < w n 4 5 

Wl < ' ' ' < Vn5 ; Wl < * ' ' < ^ n 6 ; Zl < • • • < Zn? 

where: 

• n / tLj for all 1 < i < n\ and all 1 < j < n5. 

• As F 0 S l £p = G 0 5 1 £p we have that *;n5 < si and uvn6 < si . 

• If HP£p G T then PH^" $ T and HP^ $ T. 

• If HP^" G T then PH£P $ F and HP^P £ T. 

and because condition (ii) is not satisfied, there exists k\ G Z with it;n6 < &i < si 
Ji that ©*l-fp £ T.13 

Let us consider any interpretation h such that 

h(£p) = A-U{vu...,vn5}U{k1} 

where, if k2 = min{ri,3i, i / i , v i , z i} , then 

f {k2-\} ifHP^pGT 

A~ = < {m | m < k2 - 1} if HP^ G T 

^ {m | m < &2 — 1 and m is even} in other case 

We have that $ i h(\J £) and so, \f £ ^ T, that is (V]Lif± ^ L i ^ . 

Case 3 is obtained by duality from case 2. 

For case 4, that is, if there exists £p G {p,p} such that 

r fl {F 0 m £p | m G Z} ^ 0 and T fl {P 0 m ^ | m G Z} / 0 

13If does not exist G ©m £p G T, then exists ki < si such that Gkl£p £ T because T is finite. 
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then, as condition (i) is not satisfied, we have that 

T C {i_, FG^p, GF^p, GH£p, PH^p, U?£V1 Q\\TV} U 

{ © r % , . . . , 0 r n i £v} U {F 0 s ' £ p , . . . , F ©*"2 £p} U 

{G0*i £ p , . . . , G 0 f n 3 £ p } U { P 0 U l ^ p , . . . , P 0 K n 4 £v} U 

{ H e v i £v,... ,H0V n5 £p} u {owlIp~,...,GW^TV} u 

{G GyiIp~,..., G 0^n7 M U {H 0 2 1 £p~,..., H ©*»8 ^ } 

r\ < • • • < rni; s i < • • • < s n 2 ; t\ < • • • < tn3; u2 < • • • < un4; 

ui < • • • < u„6 ; uvi < • • • < wn6] y\ < • • • < y n ? ; *i < • • • < zri8 

where: 

• Ti ^ Wj for all 1 < i < ri\ and for all 1 < j < TIQ. 

Because F 0 S l £v = G 0 5 1 £v we have tha t wn6 < s\ and yni < s\. 

• Because P 0U n4 £p = U 0Wn4 £p we have tha t un4 < w\ and uU4 < z\. 

In this case, we have two subcases: 

a) T C Lit^(£v) and so, neither (ii) neither (iii) nor (iv) are satisfied. For any 

interpretation h such tha t h(£v) = Z we have tha t 0 ^ h(\j £) and so, y £ ^ 
teT teT 

T, tha t is (T]Lit± ^ L i i * . 

b) TdLi^^p) ^ {-L} and so, as condition (ii) is not satisfied, there exists m i G Z 
such tha t yn? < m\ < s\ and Qmi£v £ T; as condition (iii) is not satisfied, it 
is necessary tha t there exists m 2 G Z such tha t un4 <m2 < z\ and Om2£v £ T 
and, as condition (iv) is not satisfied, it is necessary tha t it exists 7713 G Z such 
tha t un4 <m3 <s\ and 0 m 3 ^ p £ T. 

It we consider k\ = m a x { m i , m 3 } 1 4 , k2 = m i n { m 2 , m 3 } 1 5 and any interpreta­

tion h such tha t h(£v) = {w\,... , i0 n 6 } U {k\,k2} we have tha t 0 $ h(\J £) 

teT 
and so, y £ 7-= T , tha t is (T]Lit± ^ Li^. 

teT 

14this ensures us that Qkl£p g T and ynj < k\ < s\ and uU4 <k\ <s\ 
15this ensures us that Qk2£p £ T and un4 < k2 < z\ and un4 < k<i < s\ 
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For case 5, that is, if it exists £p G {p,p} such that 

r n { F 0 m g m G Z } / 0 and m { P 0 m ^ | m E Z } / 0 

as condition (i) is not satisfied, we have that: 

V C {J_, FG£P, GF£P, GH p̂, PH^, HP^, GH^} U 

{ 0 r i ^ . . . , 0 r " i y u { F 0 S l e / / p , . . . ,F0 s -2 £p} u 

{G©*1 £ P , . . . , G 0 ^ 3 £p}u{EGUl f p r . . , H 0 ^ £p} U 

{ P 0 % , . . . , p e V n 5 Tp)u {ow%,...,oWne£p~} u 

{aoyiIp~,...,G©»«7 Tp) u {HQ)Z1 Tp,...,Ho^s Tp) 

r\ < - • • < rni; S\ < • • • < s1l2; f i < • • • < tn3; U\ < • • • < uri4; 

f l < • • • < vn5; iOi < • • • < wn6; 2/i < • • • < 2/n7; zi < • • • < zm 

where: 

• T{ / uVj for all 1 < i < n\ and for all 1 < j < n§. 

• Because F 0 S l £p = G 0 S l £p we have that wn6 < s\ and yni < s\ 

• Because P 0Vn5 £p = H 0Vn5 ^p we have that vn5 < r\ and vU5 < u\. 

In this case, condition (iv) is not satisfied. Because condition (ii) is not satisfied, it 
is necessary that it exists mi G Z such that yn? < m\ < s\, Qmi£p £ T and, because 
condition (iii), it is necessary that it exists m2 G Z such that vn5 < m2 < u\ and 
Qm2£p $ T. If we consider any interpretation h such that 

h(£p) = (~oo,vn5]\J {w\,...,wm}U{m\} 

we have that 0 $ h( \f £) and so \J £ / T, that is (V]L^± ^ Li**. 

The following corollary of Theorem 7.2 allows us to describe the finite sets T C 
Lit+ such that (T]Lit+ = Lit+. 

Corollary 7.3. Let 0 / T C Lit+ a non-unitary set. (r]L^+ = Lit+ if and only 
if it is satisfied one of this two conditions: 

(i). There exist £\,£2 G T such that T\ < £2. 

(ii). There exist £p G V ± , and m\,m2 G N with mi < m2 such that: 

{G 0 m i Tp, F 0 m 2 £p} U {®m£p | mi < m < m2} c r 

As an immediate consequence of Theorem 7.2, we have that: 
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Corollary 7.4. Let 0 ^ T C Lit* and e0 G LzF^p). Then ^0 e ( r ] L i t i if and 
only if it is satisfied one of the following conditions: 

(i). ( r ] L t t ± = Lit*. 

(ii). £0 G r+L i t±. 

(iii). There exist m i , m 2 G Z such that mi < m2, ô = F Om i ip and 
{F 0 m 2 ip} U {Qmip I mj < m < m2} C T. 

(iv). There exist mi,m__€ Z such that mx < m2, i0 = G Q"'2 ip and 
{G ©m i £p} U {QmTp I mi < m < m2} C T. 

(v). There exist mi,m2,m3 € Z such that mi < m3 < m2, io — Qm3iP and 
{G 0 m i £P,F 0 m 2 Tp} U {©mIp" | m i < m < f f l 2 y m / m3} C T. 

(vi). There exist m i , m 2 € Z such that mi > m2, 4 = P 0 m i ip and 
{P 0 m 2 ip} U {©*% | mi > m > m2} C T. 

(vii). There exist mi,m__€ Z such that mx > m2, 4 = H 0 m 2 ip and 
{H 0 m i ^p} U {QmTp | mi > m > m2} C T. 

(viii). There exist mi,m__,m3 € Z such that mi > m3 >m2, io = Qm3iP and 
{ H 0 m i f p , P 0 m 2 y u { 0 % | m i >m>m2 y m ^ m 3 } C T. 

(ix). There exist m i , m 2 G Z such that mi < m2 , ^0 < FP^P, and 
{P ©mi ip,F 0 m 2 £P} U {©*% | m i < m < m 2 } c r . 

(x). There exist m i , m 2 G Z such that mi < m2, io = H 0 m i ^p, 
T n Li^^p) % {_L} and {F 0 m 2 T,} U { 0 " % | mj < m < m2} C T. 

(xi). There exist mi,m2 G Z such that mi < m2, ^0 = G 0"12 ^p, 
T n Lit+(ip) £ {_L} and {P 0 m i T,} U {©»% | m , < m < f f l 2 } c r . 

(xii). There exist mi,m2,m3 € Z such that mi < m3 < m2, 4) = Qm3iP, 
{P 0 m i Tp, F 0 m 2 Tp} U { 0 m ^ | mi < m < m2 y m 7̂  m3} C T and 
m Lit+(ip) _\ {_!_}. 

The following corollary particularizes for Lit+ the results of Corollary 7.4. 

Corollary 7.5. Let 0 -_. T C Li.+ and 4 G Lit+(ip). Then 4 e ( r ] L t t + if and 
only if it is satisfied one of the following conditions: 

(»)• (r]t t t+ = Lit+. 

(ii). ioenLu+-

(iii). There exist m i , m 2 G N such that mi < m2, i0 = F ©m i >̂ a n d 
{F 0m2 £p} u {ero£p I mx < m < m2} C T. 
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(iv). There exist rai,ra2 G N such that m\ < m2, to = G ®m2 ep and 
{G 0 m i ep} U {®mIp | m\ < m < m2} C T. 

(v). There exist m\,m2jms £ N_such that m\ < ra3 < m2, t0 = ®m3^> and 
{G0 m i ^ F 0 m 2 y u { © % | mi <m<m2 y m ^ m3} C T. 

Theorem 7.6. In FNext and FNext± we have that Lit+ and Lit*1, respectively, 
are strong groupables. 

P r o o f . We will only prove the second affirmation, because the first one is similar. 
Firstly, if (u]Lit± =-{u>}lLit± then *?**(») = ^H± (^u± (t\yt2)u;\) where eue2e 
(jj y u\ -u \ {t\,t2}. 
If there exist t\,t2 £ v such that £1 < £2 then 

* ^ f t ± M = ^ ( T ^ i ) = ^ ( ^ ( ^ V J ) 

where tJi -= cO \ {t\,t2}. In other cases, as a consequence of Corollary 7.4, we 
can ensure that there exists a permutation of LJ such that we can apply one of the 
following possibilities: 

1. Because Gmtp V F ©m tp = F O™"1 ^p we have that 

$Zit±(QmepFQmepui) = ^ii±(FQ)rn-'ltpu\) = ^ ^ ( ^ ^ ( O ^ p ^ O ^ p J c J i ) 

2. Because (G 0 m £p, Q
m+%]Lit± = {G © m + 1 -?p, O

m+%} iLit± we have that 

$Jtt± (G 0 m £p 0 m + 1 V O = $^it=t (G 0 m + 1 tp 0 m + 1 V i ) 

Corollary 7.4 ensures that 

(G ©m+1 ep Q
m+1 v , ] [ j i ± = (G ©m+1 v < i ( ± u ( 0 ' n + I ^ ] i j i ± 

and so that 

^it±(GQmipQ
m+1Tpul) = ^it±(^u±(GQm+1 tp,Q

m+1Tp) ui) 

3. Because (G 0 m £P,F Qm+1 ~QLit± = {©m + 1£p ,F © m + 1 ^ } 4,W(± we have that 

$Lit± (G 0 m ^ p 0 m + l "T^ ) = $Lit=- ( 0 m + l ^ p 0 m + l "T ^ ) 

= ^U± ($%U± (Qm+Hp, F 0 m + 1 Tp) ui) 

4. By duality from cases 1, 2 and 3, we have that 

^Lit* ( 0 m ^ p 0 m £ p W i ) = $ L i t - ($Lit± ( 0 m ^ p 0 m ^ ^ 

$iu± (H ©m *!p 0 " 1 - 1 TpUx) = ^U± ($%u± (H 0 m - J ep, Q"1'1!^)^) 

^it±(HQm£pPQm-1i;uj1) = ^ , ± ( $ J t t ± ( 0 m - % , P 0 m - 1 ^ W i ) 
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5. If m i < m 2 , because F © m i £PVP 0 m * £p = F P £ p w e h a v e t h a t 

$ ^ F © m % P © m % . x ; i ) = *?'*(FPlpw) = *?'* (*%H± (FQmHPi?OmHp) u>x) 

We finish this work hinting at the importance of the groupability property in 
the calculation of the uni tary implicants and implicates of these and other temporal 
logics. The set of unitary implicants of a formula (ideal restricted to the set of 
literals) can be infinite, and therefore, difficult to manage. For example, 

(F 0 p V P 0 q]Lit± = {-L, GHp, GFp, FGp, GHq, PHq, HPq} U {G 0 n p, H Qn q \ n G Z } 
U { 0 n p | n > 2} U {F 0 n p | n > 1} U {H 0 n p | n > 3} 
U { 0 n q | n < - 2 } U {P 0 n q \ n < - 1 } U {G 0 n q \ n < - 3 } 

The tools we have developed [7] to solve this problem are based on their substi tution 
by the set of maximal elements (which we called base) This set is always finite in 
the logics we have worked with. The main problem is how to determine it, and 
in that regard, the algebraic multisemilattice structure in [23] and the groupability 
property play an important role. For instance: How do we know if a set T of uni tary 
formulae is a base? Is it sufficient tha t T is an antichain, i.e. tha t its elements 
are not comparable two by two? Obviously it is not, as it is also necessary tha t 
{T]LU = PJ-Lit- But how can we determine effectively if this condition is met without 
having to calculate (T]LU? The following proposition gives us the answer, t ha t we 
back with an example. 

P r o p o s i t i o n 7 .7 . Let (A, <) be a lattice, B C A and r C B . If B is groupable 
then the following two conditions are equivalent: 

(i). (r]Lit =-nLit 

(ii). for all x, y G T if a < x V y and a G B then a < x or a < y 

For example, the following set is a base in FNex t± . 

{p e p, ep, F e p, HPq, 0q, q, eq, e3q, G 0 5 q} 
(Received February 3, 2003.) 
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