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TWOFOLD INTEGRAL AND MULTI-STEP 
CHOQUET INTEGRAL 

YASUO NARUKAWA AND VlCENg TORRA 

In this work we study some properties of the twofold integral and, in particular, its 
relation with the 2-step Choquet integral. First, we prove that the Sugeno integral can be 
represented as a 2-step Choquet integral. Then, we turn into the twofold integral studying 
some of its properties, establishing relationships between this integral and the Choquet and 
Sugeno ones and proving that it can be represented in terms of 2-step Choquet integral. 
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1. INTRODUCTION 

Choquet and Sugeno integrals are one of the most well known integrals to oper
ate with fuzzy measures. In both cases, the functional calculates the integral of a 
function with respect to a fuzzy measure. 

In 1991, Murofushi and Sugeno [8] proposed the fuzzy t-conorm integral to unify 
both integrals in a single framework. The generalization is based on the definition of 
a t-conorm system for integration that generalizes the following pairs of operations: 
the product and sum (used in the Choquet integral) and the minimum and maximum 
(used in the Sugeno integral), t-norm-like and t-conorm operators are used for this 
generalization. A deeper study and overview over this topic can be found in the 
book [2]. 

The twofold integral, proposed in [16], is an alternative generalization. Roughly 
speaking, the generalization process is as follows. Instead of building the new integral 
in terms of operators generalizing both (• and min) and (+ and max), it defines the 
integral considering all these terms and, additionally, two fuzzy measures (the one 
used in the Sugeno integral and the one in the Choquet integral). 

The rationale of the approach is that the semantics of both measures are different. 
In particular, the one in the Choquet integral is seen as a "probabilistic-flavor" 
measure and the one in the Sugeno integral is seen as a "fuzzy-flavor" measure. Due 
to their semantic difference, the generalization - the twofold integral - considers 
both. Then, it was proven [16] that with a particular selection of these measures, 
the twofold integral either reduces to the Choquet integral or to the Sugeno integral. 



40 Y. NARUKAWA AND V. TORRA 

Since 1995, hierarchical Choquet integral or, in other words, 2-step Choquet 
integral, has been studied. Sugeno, Fujimoto and Murofushi [9, 15] present the con
ditions for Choquet integral to be decomposable into an equivalent hierarchical Cho
quet integral. Mesiar and Vivona [4] present some properties of the 2-step Choquet 
integral. Benvenuti and Mesiar [1] consider the functional which is monotone, homo
geneous and additive homogeneous and provide the hypothesis below, which remains 
an open problem. "A lower semi continuous functional which is monotone, homo
geneous and additively homogeneous can be represented as a many step Choquet 
integral." Narukawa and Murofushi [7] show that the above hypothesis is not always 
true. 

In this work we further study those integrals. In particular, we show that the 
twofold integral as well as the Sugeno integral can be represented as a 2-step Choquet 
integral with constant and then we study some of the properties of the former inte
gral. In particular, we study the integral of a crisp set and some of the relationships 
with Sugeno and Choquet integrals. 

The structure of the paper is as follows. In Section 2, we define the twofold 
integral and prove its relation with 2-step Choquet integrals. Then, in Section 3, 
we present some properties about the integral. Finally, in Section 4, we finish with 
some conclusions. 

2. MULTI-STEP CHOQUET INTEGRAL 

In this section we give some basic definitions that are needed latter on and we 
present some results in relation to multi-step Choquet integral. First, we present the 
definition of fuzzy measures (including an example of the fuzzy measure representing 
complete ignorance) and, then, Choquet, multi-step Choquet and Sugeno integrals. 
Finally, we prove that a Sugeno integral can be represented as a 2-step Choquet 
integral. 

In this paper, we assume that the universal set X is a finite set, that is, X := 
{x i ,X2 , . . . , x n } . 

Definition 1 . (See [14].) A fuzzy measure /x on (X, 2X) is a real valued set function, 

»:2X —>[0,1] 

with the following properties: 

1. /i(0) = 0, fi(X) = 1 

2. fi(A) < n(B) 

whenever Ac B, A,B e2x. 

Definition 2 . The fuzzy measure representing complete ignorance, denoted by /x*, 
is defined as follows: 

f 1 for all .4 # 0 

" ( A ) = 0 if .4 = 0 
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Definition 3. (See [5, 7].) Let /i be a fuzzy measure on (X,2X). The Choquet 
integral C^(f) of / : X —> R+ with respect to /x is defined by 

n 
CM) = J2f(Xs(j))(v(As{j)) -fl(4s(i+l))) 

3 = 1 

where f(xs{i)) indicates that the indices have been permuted so that 

0 < f(x8(l)) < ••• < f(xs(n)) < l,-4«(t) = {-Cfi(i),...,Xa(n)},.A,(n+1) = 0. 

The Choquet integral with constant b of / : X —> I?+ with respect to // is defined 

by 

c,M)-=CM) + b. 
Definition 4. Define the Dirac measure Sx of x for x G X by 

1 if x e E 
Ш) ••= , n .f 

0 II o.w. 

for E Є 2X. 

Then we have the following property: Csx(f) = f(x). 

Definition 5. (See [6, 7, 10].) Let X be a finite set with \X\ = n and I be a 
functional 1: i? + —> i ? + . A 1-step Choquet integral with constant is defined by 

X(x) = C^b(x) 

for x G i? + , and a fuzzy measure // on 2 X . The functional I is said to be a A> 
step Choquet integral with constant if there exist a natural number m^, kj(kj < k) 
step Choquet integrals with constant lj : R™ —> R+ for j = 1, . . . , m*. and a fuzzy 
measure fik on 2t1»--'mfc} such that A; = max{fcj|j = 1,.. . ,771*.} -F 1 and 

i(*) = cl>ltktbh(M*))-

Figure 1 gives a graphical representation of 2-step Choquet integrals. 

Example 1. Let X be X = {1,2,3,4}. Consider the function / : X —> R+ such 
that / ( l ) < /(2) < /(3) < /(4). Suppose that the Choquet integrals with constant 
bu',i = 1,2,3 with respect to the fuzzy measures /in,/xi2 and /ii3, respectively, 
satisfy 

C»HUMM) - C^/ii2,6i2^) - C»ni3Ms(f)' 
Let M2 := {1,2,3} and A 2 1 := {1,2,3},A22 := {2,3},A23 := {3} and fi2J]j = 1,2 
be a fuzzy measure on 2 M 2 . The 2-step Choquet integral TwCp 6 2 i (/); 1 = 1,2 
with constant 62i is defined by 

3 

TwC^,bJf) ••= E c*vii,6.i(1)^*(4y) - M A - i+i)) + 62. 
i=i 
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where i = 1,2 and A24 := 0. Suppose that TwC^ b (/) < TwC^ h (/). Let 
M 3 := {1,2} and A3X := {1,2}, A32 := {2}, A 3 3 := 0 and /i3 be a fuzzy measure on 
2M3 rj»he 3_step Choquet integral ThrC^ 6 (/) with constant b3 is defined by 

2 
ThrC^jJ<f) := E ^ ^ / X W ^ i ) "MA3 i+l)) +63. 

i = i 

( Г ) / Í///C 

C1 

( í î l / ^ h 

Г 

(C) di/ 

Fig . 1. 2-step Choquet integral. 

Definition 6. (See [14].) The Sugeno integral 5M(/) of a function / : X 
with respect to \i is defined by 

n 

SM)~ V /(^w))AM^o)) 

where f(xs^)) indicates that the indices have been permuted so that 

0 < /0&s(l)) < ••• < / ( ^ ( n ) ) < l 5 ^ S ( i) = {z.s(i),....Z s(n)},A s ( n +i) = 

[0Д] 
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Proposition 1. Sugeno integral can be represented as a 2-step Choquet integral 
with constant. 

P r o o f . Let X' : - - I U { 2 x \ { 0 } } . Define 0 - 1 fuzzy measure on (X',2X>) by 

J 1 if A U {A} C E for some Ae2x \ {0} 

1 0 o.w. 

for E e 2X' Then we have 

C„(F)= sup i n f \ F ( x \ (1) 
Ae2*\{0}ze^u{A} 

where F is a function from X' to [0,1]. 
Note that in fact, it follows from the definition of v that 

C(F)= sup C^AF) 
Ae2*\{0} 

where HA is a 0-1 a possibility measure defined by 

, „ f 1 lfAU{A}cE 
^E) := { 0 o.w. 

for E e 2X . Then, since CVLA (F) = inixeAU[Ay F(x), we have 

CV(F) = sup inf F(x). 
Ae2x\wx^Au{A} 

Next, for each CJ in 2X we define a 1st step Choquet integral denoted CUJ(f). This 
is a Choquet integral with constant of the function / with respect to the measure 
vu. The Choquet integrals are defined as follows: 

CuM) ifw = i 6 X 

C„„(/) + M^) ifw = A € 2 * \ { 0 } 
CЛÍ)'-Л „ , Л l ..,„ .,.. _ 0 x 

and where the fuzzy measure vu on (X,2X) are defined by 

(5a; if UJ = X G X 

0 if w = A e 2X \ {0} 
V* * - ì л .„ ч - 0 * 

where ^ is as in Definition 4. Since CM) *s a function from X ' to [0,1] it follows 
from Equation (1) that 

CV(CM))= sup inf CM). 
Ae2x\{<b}"£Au{A} 

If there exists x e A such that f(x) < ^i(A), we have 

inf Gw(/) = in f / (* ) . 
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If f(x) > M^) f° r aU x € A, we have 

inf CM) = KA). 
u)£A 

Therefore we have 

inf CM) = (inf f(x)) A »(A) (2) 
UJ£AU{A} x£A 

It follows from the definition of the Sugeno integral that 

CV{CM))>SM) 

On the other hand, since X is finite, there exist a positive integer k such that 
SM) ~ f(xsk) A/i(-4 sJ. Suppose that 

C„(CM)) = sup inf CM) > SM)-
Ae2x\{(d}u}^AuiA) 

Then there exist A e 2X such that 

inf C w ( / ) > / ( x j A / i ( \ ) . 
LJ£AU{A} 

Since .A is a finite set, there exists a positive integer fcn such that f(xSk ) = infxG^ f(x). 
Since A c ASkQ, it follows from the Equation 2 that 

f(xsk0) A/i(-4Sfc0) > f(xSkQ)Av(A) > f(xSk)Afi(ASk). 

This contradicts to the definition of S^. Therefore we have 

c.(CM)) < SM)- • 

Definition 7. A functional 1 : i?" —> R+ is said to be piecewise linear (for short 
PL) if there exists a finite family Vj : j G J of closed domains such that 

)JVj=R« 

and the restriction of 1 on every Vj is linear. A unique linear functional Jj on R+ 
which coincided with I on a given Vj, j G J is said to be a component of 1. 

It is obvious that the Choquet integral is a PL functional. Ovchinnikov [13] shows 
that the Sugeno integral is a PL functional. As composition of PL functionals is PL, 
Proposition 1 also implies this result. 
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3. TWOFOLD INTEGRAL 

This section studies some properties of the twofold integral. We start reviewing its 
definition. 

Definition 8. (See [16].) Let \ic and /is be two fuzzy measures on X, then the 
twofold integral of a function / : X -> [0,1] with respect to the fuzzy measures /is 
and /ic is defined by: 

n i 

r W c ( / ) = Y, ( ( V f(xsU))A»s(As{j)))(/ic(As{i)) - /ic(As{i+l)))) (3) 
i=l j=l 

where f(xs{i)) indicates that the indices have been permuted so that 

0 < f(xs{i)) < . . . < f(xs{n)) < l,-4s(i) = {xs{i),...,xs{n)},As{n+1) = 0. 

Now, we consider the relation between the twofold integral and Choquet and 
Sugeno integrals. 

Proposition 2. (See [16].) The twofold integral satisfies the following properties. 

When /ic = /!*, the twofold integral reduces to the Sugeno integral: 

TI»s^c(ai->- • • > an) = SI^,s(ai,. . . , a n ) 

When /is = /i*:, the twofold integral reduces to the Choquet integral: 

^ / t s , M c ( a 1 > - • • > a n) = C7/xc(a1>- . . , a n ) 

When /ic = /is = H*, the twofold integral reduces to the maximum: 

TIHS,Hc(ali--">an) = \J(al,'--,an) 

Additionally, the twofold integral satisfies the basic properties of aggregation 
operators. This is, it is monotonic, satisfies unanimity and, therefore, it yields a 
value between the minimum and the maximum. 

Proposition 3. (See [16].) Let X be a finite set and let /ic and /is be two fuzzy 
measures on X, then 

for all functions / i and f2 over X such that f2(x) > fi(x) for all x G X: 

TIns,nc(h) > TI»s,nc(fi)> 

for all a = ( a , . . . ,a ) , 
TIns,nc(*) = a> 
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for all functions / on X, 

min/ (x) < TIps^U) < max/ (x) . 
x£X xEX 

Now, we study some new properties of this integral. We start considering the 
integration of the characteristic function of a set A and proving that in this case, 
the integral is the product of the two measures for this set. 

Proposition 4 . Let A be a subset of X and let 1A be the characteristic function 
of A (this is, / is defined for x as one if and only if x G A and zero otherwise), then 
the twofold integral of 1A with respect to the two measures fis and fie is equal to: 

TIIAS%IAC(1A)=VLS(A).IIC(A) 

P r o o f . First, let us note that /(^s(j)) is ordered with respect to 5 so that 
f(xs(i)) = 0 for i < \X\ -\A\ + 1 and that f(xs{i)) = 1 for all i>\X\~ \A\ + 1. 

Therefore, the terms 
i 

V 1A(XS(J)) Av>s(As{j)) 
j=l 

are equal to 0 for i < \X\ - \A\ + 1 and equal to fis(A) for i > \X\ - \A\ + 1. 

Now, replacing these values in the twofold integral we get: 

\X\-\A\ 

J2 (0(/-c(.4.(.)) - A»c(^,(.+i)))) 
І=\ 

n 

+ J2 (t*s(A)(vc{Aa(i))-vLc{Aa(i+i))j) 
i = | X | - | A | + l 

In this expression, the first term is zero and the second can be rewritten as: 

l*s(A)(nc(A8(\X\-\A\+i)) - l*c(A8(n+i))) 

That, being /xC(-4s(n+1)) = 0 because As{n+1) = 0, and being fiC(As{\X\-\A\+i)) = 
Hc(A) because .A5(|x|-|A |+i) = -4, is equivalent to: 

fis(A)iAC(A8(\x\-\A\+i)) = Vs(A)v>c(A). 

Therefore, the proposition is proven. • 

Proposition 5. For all /, the following inequality holds: 

rw c (/)<sw/) 
where SI stands for the Sugeno integral. 
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P r o o f . Let us define a as follows: a := SIfis(f) = Vj=i f(xs(j)) A ^s(As(j)). 
From this definition, it is clear that the following inequality holds: 

i 

V f(xs(j))^Vs(As(j)) <a 
i=i 

for all i. From this inequality, we can proof the following: 

n i 

5Z (( V f(x*U)) A fis(As(j))) (vc(As(i)) - /iC(-45(i+i)))) 
i = i j=i 

n 

^ 5ľ {a(џc(As{i)) - џc(As(i+i)))) 
2 = 1 

As the right hand side of this inequality is equal to a, the proposition is proven. • 

Proposition 6. For all /, the following inequality holds: 

TItts^c(f)<CI,c(f) 

where CI stands for the Choquet integral. 

P r o o f . First, we shall prove that Vj=i f(xs(j)) A f1s(As(j)) < f(xs(i)). This is 
so, since 

/(z«,(i)) < f(xs(2)) < • < f(xs(i)) 

and, additionally, 

f(xs(j))AfiS(As(j)) < f(xs(j)). 

Therefore, the following holds: 

n i 

Ys (( V /(*««)) A Vs(As(j))) (iic(As(i)) - M^i+i)))) 
i = l j=l 

n 

< Yl (f(xs(i)){vc(As(i)) -liC(-45(i+i)))) 
i = l 

As the right hand side of this expression is the Choquet integral of / with respect 
to the measure \xc the proposition is proven. • 

Since monotone convergence theorem is valid for both Choquet and Sugeno inte
gral with finite universal set X, it is also valid for the twofold integral. 

Theorem 1. Let fie and fis be two fuzzy measures on (X, 2 X ) . If the monotone 
increasing sequence {/n} of functions fn : X -+ [0,1] converge to a function /, that 
is, fn t /, then 

1 Jfis^c \fn) t J lns,Hc \f) 

as n -> oo. 
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P r o o f . Since X is finite, the fuzzy measure fis is continuous. So we have 

i i 

V fn(xs{j))^V>s(As{j)) t V f(xs(j))A^s(As{j)) 
j=\ 3=1 

as n -» co. Since fie is also continuous, we have 

i i 

Cnc(\J fn(xs{j)) Afis(As{j))) t Cpc( V f(xs{j)) AfiS(As{j))) 
j=l j=l 

as n -> oo. • 

Calvo et al [3] propose a new construction method for aggregation operators 
based on composition of aggregation operators, that is one of the generalizations of 
twofold integral on a finite universal set. They present the generalized proposition 
of Proposition 4 and Theorem 1. 

Narukawa and Torra [11] present a definition of twofold integral generalized to 
an arbitrary universal set X and show Proposition 5 and 6 generally. 

Applying Proposition 1, it is obvious that the twofold integral is represented as 
3-step Choquet integral with constant. Moreover since 3-step Choquet integral with 
constant is piecewise linear, the twofold integral is represented as 2-step integral 
with constant. 

Theo rem 2. The twofold integral is represented as the 2-step Choquet integral with 
constant. 

P r o o f . Let / G Rn and 

i 

S»Si(f) '•= V f(xs(j))AVs(As{j)). 

Suppose that / < g for / ,g G Rn. Then we have SpS i(/) < Sns.(g). Since Choquet 
integral is monotone, we have 

O^(^Si(/))<G^(Ws))-
That is, twofold integral is monotone. Since Sugeno integral is piecewise linear, there 
exists a set V of functions such that 

W / + s) = -W/) + W-0 
for f,9 £ D- Suppose that V C Rn is a set of functions satisfying 

W / ) < S»Sj(f) => S^Si(g) < S„Sj(g). 
Then the twofold integral TI is piecewise linear on V fl V. Therefore applying 
Ovchinnikov's theorem [12] TI has a max-min representation. It is shown similarly 
to the proof of Proposition 1 that the max-min representation is represented by 
2-step Choquet integral with constant. • 
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Remark. Benvenuti and Mesiar [1] proposed the following hypothesis: 

Hypothesis 1. A lower semi-continuous functional 1 : i?+ —> i?+ which is mono
tone, homogeneous and additively homogeneous can be represented as an n-step 
Choquet integral, where lower semi continuous means that xn t x implies l(xn) t 
l(x). We say that the functional I on J?" is additively homogeneous if I(f + a) -= 
1(f) + a for / £ R+ and a > 0 is constant. 

Narukawa and Murofushi [7] presented the counterexample that show that the 
above hypothesis is not always true. Conversely since the constant a is comonotonic 
with every function / , it is obvious that the n— step Choquet integral is monotone, 
homogeneous and additively homogeneous. 

The Choquet integral with constant is a one example of monotone and additively 
homogeneous functional. In fact, monotonicity is obvious and since ii(X) = 1 for all 
fuzzy measures in this paper, we have 

Cfl,b(f + o) = Ctl(f + a) + b = C^f) + a + b = CM,6(/) + a, (4) 

that is, the Choquet integral with constant is an additively homogeneous functional. 
On the other hand, an n— step Choquet integral with constant is not always addi
tively homogeneous, since the Sugeno integral, that is 2-step Choquet integral with 
constant, is not always additively homogeneous. 

Theorem 1 shows that the twofold integral is lower semi-continuous in the Ben
venuti sense. Twofold integral is also one of the examples of 2-step Choquet integrals 
with constant that are lower semincontinuous but not additively homogeneous. 

4. CONCLUSIONS 

In this work we have studied the 2-step Choquet integral. We have shown that the 
Sugeno integral can be represented in terms of the 2-step Choquet integral. Then we 
have revised the TI and given some new results. In particular, we have established 
some relations with the Sugeno and Choquet integrals. Moreover, we have also 
proven that the twofold integral can be represented in terms of the 2-step Choquet 
integral. 
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