
Kybernetika

Michal Krátký; Tomáš Skopal; Václav Snášel
Multidimensional term indexing for efficient processing of complex queries

Kybernetika, Vol. 40 (2004), No. 3, [381]--396

Persistent URL: http://dml.cz/dmlcz/135602

Terms of use:
© Institute of Information Theory and Automation AS CR, 2004

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/135602
http://project.dml.cz

K Y B E R N E T I K A — V O L U M E ^0 (2 0 0 4) , NUMBER 3, PAG ES 3 8 1 - 3 9 6

MULTIDIMENSIONAL TERM INDEXING
FOR EFFICIENT PROCESSING OF COMPLEX QUERIES1

MICHAL KRÁTKÝ, TOMÁŠ SKOPAL AND VÁCLAV SNÁŠEL

The area of Information Retrieval deals with problems of storage and retrieval within
a huge collection of text documents. In IR models, the semantics of a document is usually
characterized using a set of terms. A common need to various IR models is an efficient term
retrieval provided via a term index. Existing approaches of term indexing, e. g. the inverted
list, support efficiently only simple queries asking for a term occurrence. In practice, we
would like to exploit some more sophisticated querying mechanisms, in particular queries
based on regular expressions. In this article we propose a multidimensional approach of
term indexing providing efficient term retrieval and supporting regular expression queries.
Since the term lengths are usually different, we also introduce an improvement based on a
new data structure, called BUB-forest, providing even more efficient term retrieval.

Keywords: term indexing, complex queries, multidimensional data structures, BUB-forest

AMS Subject Classification: 68P05, 68P10, 68P20, 14Q15

1. INTRODUCTION

The area of Information Retrieval (IR) [1, 18, 22] deals with problems of storage
and retrieval within a huge collection of text documents. The most widely used
models in the IR, the vector model and the boolean model, specify a form in which
the documents are represented, queried and stored. In both mentioned models, the
semantics of a document is characterized using a set of terms. In general, the term
can be a word or a multi-word phrase. A common need to various IR models is an
efficient term retrieval provided using a term index. For efficient querying, the term
index must be implemented using a suitable persistent data structure [13], because
we must keep in mind that the term number can raise up to 106. The choice of data
structure is crucial since it must reflect query types to be supported.

One of the most important term index application is the inverted list (used in the
boolean model) based on B-tree [22], where to each term in the list a set of relevant
documents is assigned. However, existing approaches of term indexing, e. g. the
inverted list, support efficiently only simple queries asking for a term occurrence.

xWork is partially supported by Grant Agency of the Czech Republic under grant No.
201/03/0912.

382 M. KRATKY, T. SKOPAL AND V. SNÁŠEL

In practice, we would like to exploit also more sophisticated querying mechanisms,
in particular queries based on regular expressions. Such a general type of query
is highly applicable in unstructured as well as in structured information retrieval
(e.g. native XML databases). In XML retrieval [23], such query could look like
/ t i t l e s / t i t l e [keywords/keyword--(*comput ing '] .

1.1. Exist ing approaches

In the B-tree-based inverted list, a single term retrieval is realized in logarithmical
time complexity (relative to the number of terms). The B-tree indexes the terms
according to lexicographical order and thus it can efficiently process also the right
extension queries, i.e. regular expressions of form <string>*. However, execution
of another regular expression query could lead to a sequential scan over the whole
term index. In addition, a finite automaton corresponding to regular expression is
necessary to be constructed for searching the B-tree and all the terms must be put
into this automaton. Hence, the B-tree is not suitable structure for non-trivial term
indexing. In [11] the String B-tree was introduced for efficient querying of substrings.

Unfortunately, we cannot efficiently exploit neither the traditional cost-expensive
approaches like automata nor pattern matching algorithms [5, 20] since the volumes
of term collections are huge. Furthermore, an automaton cannot be stored on a
secondary storage device efficiently, in such case an efficient page transfer between
primary and secondary storage devices is impossible during a query processing.

In [1] the suffix arrays were proposed for term indexing. Suffix arrays are a space-
efficient implementation of suffix trees. This indexing structure views the text as
a single long string. Each position in the text is considered as a text suffix, i.e.
a string that follows from that text position to the end of the text. It is a main
memory data structure. Persistence of suffix arrays is known but the overhead is
too large. Moreover, the "interior" of words is not possible to retrieve and thus it is
not able to use suffix arrays for complex regular expression queries, e. g. for queries
of form *<string>*. In [22] string rotations were proposed for efficient processing
of regular expression queries. Each term is stored n times, where n is the number of
the term characters. This fact can be a problem for term collections of large volumes
thus string rotations do not provide an efficient solution of this problem.

Our objective was to propose a method for term indexing satisfying the following
conditions: a persistent method, minimal storage overhead, and an efficient sup
port of complex queries. In [7] a multidimensional approach was introduced for
an efficient term retrieval. The fundamental idea resides in modelling the term as
an n-dimensional point. The multidimensional approach enables to process regular
expression queries. In Sections 2 and 3, the approach is briefly recapitulated. In
Section 4 we introduce a new data structure, called BUB-forest, which allows effi
ciently index terms of variable lengths. In Section 6, some experimental results are
presented and the last section concludes contributions of the paper.

Multidimensional Term Indexing for Efficient Processing of Complex Queries 3 8 3

2. MULTIDIMENSIONAL TERM INDEXING FOR EFFICIENT
PROCESSING OF COMPLEX QUERIES

In our approach [7], we model a term as a point in n-dimensional vector space [17],
where n is the maximal term length. The space is called term space. Each term is
thus uniquely represented with an n-dimensional tuple whose each coordinate value
determines a character from fixed alphabet (e.g. an ASCII code character).

Definition 1. (Term as n-dimensional tuple.) Let D be domain, D = { 0 , 1 , . . . , 2l —
1}, |D| = 2l, ft be a discrete finite n-dimensional vector space, ft = Dn, A be the
character alphabet, s = c\c2 .. .cn-\cn be a term of length n, where Ci G A is a
character, 1 < i < n. Then n-dimensional point (tuple) representing the term s is
defined as ts = (code(ci),code(c2),... ,code(cn)), ts G ft, code(ci) G D, where code :
A -> D is a function which encodes a character Ci into a binary number of the
bit-length I.

If a term length is lower than n, the extra tuple coordinates are set to a blank
value (in this case to zero). The terms, as a set of multidimensional points, are
then indexed using a spatial access method [4]. We have chosen the UB-tree [2] for
indexing. Spatial access methods (the UB-tree respectively) support range queries
algorithms which can be, in turn, applied for implementation of regular expression
queries. Due to the proposed multidimensional term model such regular expression
query implementation is possible and efficient.

2.1. Regular expression query construction

In multidimensional term indexing we exploit the maximal term length due to which
we are allowed to construct regular expression queries by a combination of several
range queries. In other words, such sequence of range queries can be defined as a
complex range query.

Definition 2. (Complex range query.) A complex range query is defined as qb\ U
qb2 U . . . U qbq, where qbi (the ith query box, 1 < i < q) is an n-dimensional hyper-
rectangle defining simple range query. If C\q

i=l Q^i = 0 then the complex range query
is processed by q range queries. Symbol U is meant for geometrical union and fl for
geometrical intersection.

A comprehensive description of the complex range query construction for general
regular expressions is out of scope of this paper where we demonstrate the query
construction just for three forms of regular expressions. Let k be the length of
s t r ing , n be the dimension of the term space fi, and maxn,. be the maximal value
of domain Di. A right extension query (expression <string>*) is perfomed by
a single range query (c r , c 2 , . . . ,ck, 0 , . . . ,0) : (c r ,c 2 , . . . ,ck,maiXDk+l,... ,max£>J.

A left extension query (expression *<string>) is processed by a complex range
query qh = (d , c 2 , . . . , c f c ,0 , . . . ,0) : (c r ,c 2 , . . . ,c&,0,.. . ,0) U qb2 = (0,ci,c2 ,

384 M. KRÁTKÝ, T. SKOPAL AND V. SNÁŠEL

. . . , C A , 0 , . . . ,0) : (max D l ,C i ,c 2 , . . . , c* ,0 , . . . ,0) U . . . U qbn-k+1 = (0 , . . . ,0 ,c i ,c 2 ,

. . . ,Cjb) : (maxn, , . . . ,maxD n_ f c ,Ci ,c2 , . . . ,c*).
A left-right extension query (expression *<string>*) is processed by a complex

range query qbx = (c i , c 2 , . . . , c * , 0 , . . . ,0) x (c x , c 2 , . . . ,cjfe,max£>fc+1,... , m a x D J
U qb2 = (0 ,c i , c 2 , . . . ,c*.,0, . . . ,0) : (max D l ,Ci ,c 2 , . . . , Q , m a x D H 1 , . . . , m a x n j U
. . . U <7&n-ifc+i = (0 , . . . , 0 , c i , c 2 , . . . ,Cjk) : (max D l , . . . ,maxDTl_fc,ci,c2, . . . ,ck).

Since the term space domains D{ are equal, we can label the maximal domain
values maxn. as maxD, where maxD = 2l — 1. If the ASCII encoding is used
then maxn = 28 — 1 = 255. The complex query can be processed either by several
"rectangular" range queries or by a single complex-shape range query (created by
hyper-rectangle union). In [10] is described how to efficiently process complex-shape
range queries. The result of a range query consists of all the relevant tuples. The
tuples retrieved from the multidimensional term index are inversely decoded back
into terms where the decoding is performed using an inversion function code~l. A
list of decoded terms is returned to the user as a query result.

2.2. Term clustering using Z-ordering

The main idea of multidimensional structure UB-tree [2] as well as BUB-tree [9]
resides in vector space ordering. If we order all the points within a discrete finite
vector space we will get an ordering according to which the tuples can be indexed
by a single-dimensional indexing structure (e.g. by the B+-tree). An important
property of such ordering is that it should partially preserve the tuple distances. In
other words, tuples that are "close" in the space (using a metric) should be "close"
also within the ordering. In [8] the Gray codes and the Z-ordering were introduced
for partial matching and range queries, respectively.

Definition 3. (Z-address.) Let ft be a discrete finite n-dimensional vector space,
ft = Dn, where D = { 0 , 1 , . . . ,2l - 1}, \D\ = 2l. For a tuple t G ft of the length
n, t = (a i , a 2 , . . . , a n) and a binary representation of the coordinate value ai =
a u - i a U - 2 •. .tti,o, where at G -D, / is the bit-length of the value a*, a^j is j t h bit
value of a;, 1 < i < n, 0 < j < Z, the function Z(t) (Z-address) is defined:

z w = EX>.;-jxn+i~1-
j=02=1

In our approach, we exploit the Z-ordering where a position of a tuple in the
Z-ordering is called Z-address. If we calculate the Z-addresses for all the points of n-
dimensional space ft we will get a Z-curve filling the entire space ft. See Z-addresses
and the Z-curve for 2-dimensional space 8 x 8 in Figure 1 a.

In our application, the tuples of terms which are close in the term space could
be considered as similar (from the lexical point of view). Due to the Z-ordering
properties we can say that similar terms have close Z-addresses, see Example 1.

Multidimensional Term Indexing for Efficient Processing of Complex Queries 385

0 1 2 3 4 5 6 7

>!
f-Ӯj-7
&W
léí?

4

AФ

з4aá
i_

4é4áІ46

>__*
14

32g3?627

44

t6>7

^Í3£

24
2é23á«1

56

49
54|

5tí 5?

гв.21
§ 2 3
Я6ЭД

м
6

,52 53
65
61

6? 63

(a)

0 1 2 3 4 5 6 7

.2

0 Ш
1 Ě
2
3
4
5
6
7

*-_/Э

- Ê Í Ê П Я

ttЫ"

34

32=зa-з_i sš$<

4(JҘИ|

42_4Я 4

и
i_

/
14-14

?<
Зđ 3_Uđ

л

7
7l/.đ__đ

ҙя
^ :

•ñ
м

ÌVL

ш ш
ж m
ñ

. ÉtИ
-49

mҗ
50ЄSA

вptff

я
221,231

541

Ӯ?

Я

Я^ :

MЧ

Я ^
ІЯ-63

(b)

Fig. 1. a) The Z-curve filling the entire 2-dimensional space 8 x 8 .

b) 2-dimensional space 8 x 8 with tuples t\ - ts.

These tuples define the BUB-tree Z-regions

partitioning [0:2],[7:11],[25:30],[57:62] with the node capacity 2.

E x a m p l e 1. (Transformation of terms into tuples.) Let us take terms t o , we, d o t ,

t a b , and t e n . In this case, function code uses the ASCII encoding. The domain is

D = {0,1, . . . ,255}, the cardinality of domain is \D\ = 256,1 < i < 3. Maximal

length of a term is 3 thus the dimension of the term space n = 3. Resultant term

tuples are:

tt0 = (codeCt'^codeCo'^O) = (116,111,0)

twe = (code('w'),code('e'),0) = (119,101,0)

tdot = (codeCd'),codeCo'),codeCt')) = (100, 111, 116)

ttab = (code('t'),code('a'),code('b')) = (116,97,98)

Uen = (code('t'),code('e'),code('n')) = (116,101,110)

For clarity, we present the Z-addresses in path notation, where each binary Z-

address (the left-most bit is the most significant) is shown as a block of n-bit numbers

(in this example n = 3). Z-addresses and their path notations in decimal form are:

Z(íto)

Z(£-ve)

z(w)
Z(ttab)

%(tten)

000011011001010011010010 = 0.3.3.1.2.3.2.2

000011011001000011001011 = 0.3.3.1.0.3.1.3

000111111100010111010010 = 0.7.7.4.2.7.2.2

000111111001000001100010 = 0.7.7.1.0.1.4.2

000111111001100111100010 = 0.7.7.1.4.7.4.2

It is obvious from the example tha t Z-addresses of tab and t e n or t o and we are
closer than Z-addresses of d o t and t a b or we and tab. In simple words, using the
Z-ordering the similar terms are approximately clustered together.

386 M. KRÁTKÝ, T. SKOPAL AND V. SNÁŠEL

3. THE BOUNDING UNIVERSAL B-TREE (BUB-TREE)

The Bounding Universal B-tree2 (BUB-tree) [9] is a multidimensional indexing struc
ture exploiting the Z-ordering. The idea of the (B)UB-tree is based on the Z-ordering
and the B^ -tree [21]. The B^ -tree is a balanced and persistent tree which provides
logarithmical complexities for basic operations and a minimal overhead. A node
utilization [13] over 50 % is guaranteed.

The (B)UB-tree indexes the Z-addresses of n-dimensional tuples into the B -
tree. Within a (B)UB-tree node hierarchy the Z-regions represent clusters of tu
ples that are close (according to the Z-ordering). Each Z-region resides in a single
disk page. Z-regions allow an efficient processing of multidimensional range queries.
A Z-region [a:/?] is defined as a space area bounded by the interval (a,/3) on the Z-
curve, a < ft. In Figure 1 b, four Z-regions in 2-dimensional space 8 x 8 are depicted.
In the case of UB-tree, the Z-regions define an ordered disjunctive partitioning of
the entire n-dimensional space. The BUB-tree does not partition the entire space
but it follows the tuples distribution thus it does not index the "dead space". E .g .
the empty interval (31,56) between Z-regions [25:30] and [57:62] in Figure l b is not
indexed by the BUB-tree.

Let there be m tuples inserted into the UB-tree (BUB-tree respectively). The
space ft will then be partitioned by r disjunctive Z-regions [a; : /?;], 1 < i < r. Let
amm = o be the minimal Z-address and /3 m a x = 2nxl - 1 be the maximal Z-address
(see Definition 3). Then

[m : pi]n[aj : Pj] = 0 , i , j > l , t , j <r,i^j.

For UB-tree
r

\J[ai:Pi}^[amin,pm^}
i=\

a\ = amh\ßr
/эmax

aѓ+i = ßi + h for І < r,

For BUB-tree
r

\J[ai:Pi}C[amin,(3™*}
i=\

ax > a m i n , / 3 r < / 3 m a x .

Because the shapes of Z-regions evolve during the tuples insertion, the BUB-tree
does not index the "dead space" (contiguous empty space). This is an improvement
over the UB-tree which indexes the entire space. Due to this fact the range query
processing is more efficient in the BUB-tree. The (B)UB-tree hierarchy is depicted
in Figure 2. The leafs contain indexed tuples, the inner nodes contain Z-regions.

Basic operations (insertion, deletion and point query) share a common technique:
Transform the argument tuple into Z-address, find an appropriate leaf (the Z-region
of which matches the tuple's Z-address) and execute the operation on that leaf. If a

2UB-tree, the ancestor of the BUB-tree, was introduced in [2].

Multidimensional Term Indexing for Efficient Processing of Complex Queries 387

node overflows by a tuple insertion, the node must be split. Using a suitable splitting
policy a node utilization of up to 75 % can be achieved [14]. In the case of BUB-tree,
the splitting policies can be further enhanced by various heuristic methods keeping
the BUB-tree's efficiency at maximum.

index - hierarchy of
Z-regions

indexed tuples

Fig. 2. This BUB-tree indexes the tuples presented in Figure lb.

Unlike regions of other persistent multidimensional structures, e. g. the R-tree [12]
based on a hierarchy of bounding boxes, the Z-regions of (B)UB-tree are disjunctive.
This fact is very important especially for higher dimensionalities where the curse of
dimensionality takes place. The disjunction of Z-regions significantly helps to reduce
the negative aspects of searching in high-dimensional spaces. Some other structures
are also designed to keep their regions disjunctive, e. g. the R/ -tree [3], but here the
complexity just moves from the querying operations to the inserting operation.

It is clear from the previous descriptions that the BUB-tree storage overhead must
be greater than by the UB-tree. However, in our implementation of the BUB-tree
the leaf capacity is approximately two times higher than the inner node capacity.
This refinement causes the BUB-tree index file is approximately of the same size as
an equivalent UB-tree index file.

The most important and most difficult algorithm in the (B)UB-tree is the range
query algorithm. An exponential (according to the dimension) algorithm is presented
in [2]. A linear (according to the Z-address bit-length) algorithm is presented in [14,
16], but that description is very vague. For that reason, we have developed our own
linear algorithm implementation [19] based on intersection operation of query box
and Z-region.

4. BUB-FOREST

As in the case of term tuples, some tuple sets are of different dimensionalities.
Such variously dimensional tuples can be indexed in a single n-dimensional vector
space, where n is the maximal dimension over all the tuples in a given set. Shorter
(lower-dimensional) tuples can be aligned to n-dimensional tuples, where the extra
dimensions are set to a blank value. This solution was used in our previous UB-tree-
based term indexing. On the other side, this simple approach has a major drawback.
Since all the tuples are modelled in high-dimensional space there is a large amount
of redundant information (the blank values) stored within the extra dimensions of
possibly great number of aligned tuples.

388 M. KRATKY, T . SKOPAL AND V . SNÁŠEL

We deal with term indexing, let us take a term dataset as an example. The
term dataset was extracted from the TREC's collections of text documents [15], in
particular from LATIMES and FBIS collections. These collections contain 816,716
unique terms. Figure 3 a shows a term length frequency histogram of the whole
term dataset. Figure 3 b is another interpretation of Figure 3 a and shows how the
number of terms grows with growing maximal allowed term length (i. e. with growing
dimension of term space). We can observe that for majority of the terms the term
length is smaller than 15. Thus, creation of 40-dimensional BUB-tree will lead to
unnecessary storage overhead.

Term length frequency
in TREC's document collections

fc°
C

c ,

OO

o
/

00

o
o
o
o

10

• o - o - o - o - o

20
Length of term

Number of terms with maximal length
m in TREC's document collections

£8
o +
E *

Q O O O - O - O - O -

o
o

o
o

o /
o
/

o
o

b
oP

40

- I T —

10 20
Maximal length of term

I

30

(a) (b)

Fig. 3 . a) Term length frequency histogram of term dataset
extracted from the TREC's document collections LATIMES and FBIS.

b) Number of terms with growing maximal term length.

In this section we introduce a new multidimensional data structure, BUB-forest,
which was designed just to avoid unnecessary storage and performance overhead
when indexing variously dimensional tuple sets.

Definition 4. (The BUB-forest.) BUB-forest BFk(ni,n2,... ,nk) is a data struc
ture forest consisting of k BUB-trees BTi(ni), 1 < i < k. Let n be the dimension
of the original high-dimensional vector space. Every BUB-tree BTi(ni) indexes an
ni-dimensional space, where 1 < i < k, 1 < j < k ---.> rij+i > nj, and nk = n.

Let us have m tuples U of various dimensionalities, where di is the dimension of
the tuple U, 1 < i < m. Then tuple U is indexed by such BUB-tree BTj(nj) for
which di < nj A j > 1 => di > nj-i, for 1 < i < m, 1 < j < k. If d* < nj then
dimension of ti is increased to nj and values tik = blank value G D,di < k < nj.

In other words, the BUB-forest indexes each tuple U using such BUB-tree BTj(nj)
the dimension of which is the lowest but greater or equal to the dimension of U. The
blank value is often zero. An example of BUB-forest BF2, i.e. consisting of two
BUB-trees, is presented in Figure 4. In this example, the BUB-trees are of the same
heights but that is not a rule.

Multidimensional Term Indexing for Efficient Processing of Complex Queries 389

4.1 . Opera t ions on BUB-forest

Basic operations, i.e. insertion, deletion and point query, are performed by such a
BUB-tree BTj to which the argument tuple is assigned.

íгя^
F i g . 4 . Examp le of BUB-forest BF2.

Definition 5. (BUB-forest range query.) Let a query box QB is defined by
two n^-dimensional boundary points QL and QH, nqb < n. The range query
is in the BUB-forest BFk{n\,n2,... ,ny,. . . , n*) processed as a sequence of range
queries QBj, defined by n^-dimensional boundary points QLj and QHj, on BUB-
trees I?Ti(n;), for which nqi < ni, 1 < i < k. Let 1 < / < ny. If / < nqi then
QLjt = QLi and QHjt = QHi, else QLjt = QHjt = blank value. Query result of
the BUB-forest range query is the union of the particular BUB-tree query results.

Notes: In similar way there could be defined forests also for other existing data
structures, e. g. the B-tree or the R-tree. In the case of B-tree, there is only one
dimension but the use of forest could serve as a compression tool since keys of
variable lengths are stored in multiple B-trees. The forest data structure has been
already applied to S-trees [6] (signature trees).

Since BUB-forest is a persistent data structure we can further consider two vari
ants of disk cache. First, the BUB-trees of a BUB-forest share a single disk man
agement and thus single disk cache. Second, each BUB-tree has its own disk cache.
The latter possibility is obviously more efficient.

Each BUB-tree of a BUB-forest can index different number of tuples thus the
tree heights can differ.

4.2. Storage volume r e d u c t i o n

Let us now compare the storage volume required when indexing variously dimen
sional tuple sets using a single BUB-tree and using a BUB-forest. Let the tuple set
consists of m tuples, where m* is the number of di-dimensional tuples, Y^=i m * = m >
1 < i < n.

The following calculations are only auxiliary since the disk management of BUB-
tree as well as of BUB-forest produces some additional storage overhead. Suppose
that single coordinate of a tuple requires b bytes for storage.

When using a single space for indexing, the number of bytes Vtt required to store
the whole tuple set is Vtt = m x n x b. When using k spaces of dimensionalities
n\, ni,... , n& for indexing, the number of bytes Vbf required for the tuple set storage

390 M. KRÁTKÝ, T. SKOPAL AND V. SNÁŠEL

IS
k ni

vbf = j 2 J2 (mj x n*x b)-
i=\ j=ni-i

Thus the number of saved bytes (when using k spaces) is

k ni ni

Vbt - Vbf = ^ (^2 m3 X U X ^ ~ ^Z mj X ni x b)
i= l j=m-i j=ni-i

where no = 1. If we consider the minimal storage volume V for the tuple set
V = Y^i=\mi x i x b bytes, then obviously V < Vbf < Vbt- Equality V = Vbf
can be achieved if we increase the number of BUB-trees in BUB-forest to k = n.
Simultaneously, we must realize that greater number of BUB-trees in BUB-forest
leads to greater number of range query executions. Thus, the number of BUB-trees
should be chosen heuristically, following the statistical distribution of tuples. In
general, the lower-dimensional BUB-trees should index major part of the tuple set.

Example 2. (Storage volume reduction for term index.) Let us take the term
dataset used in Figure 3. Let the maximal term length be n = 40. When using
40-dimensional space, the storage volume will be Vbt = 816, 716 x 40 x 1 = 31.2 MB.

If we use A: spaces of dimensionalities 9, 17 and 40, we will get storage volume
Vbf = 509,258 x 9 x 1 + 280,050 x 17 x 1 + 27,408 x 40 x 1 = 10 MB. The smallest pos
sible storage volume is V = 7.1 MB. This simple example shows that the BUB-forest
saves (theoretically) 68 % of the single BUB-tree's storage volume. Furthermore, the
storage overhead is still about 41 % higher when compared with the ideal case.

Usage of BUB-forest significantly reduces the storage volume and it can be calcu
lated that the additional BUB-forest overhead is relatively low (thanks to the node
utilization over 50%). The number of BUB-trees in BUB-forest was chosen in or
der to maximize the range query efficiency. Section 6 presents experimental results
which prove the above mentioned auxiliary outcomes.

5. COST ANALYSIS

A simple range query is processed by retrieval of those Z-regions (BUB-tree nodes
respectively) that intersect a given query box. Let r be the number of such Z-
regions and m be the number of indexed tuples. Then complexity of the range
query is 0(logc(ra) x r) , where c is a fixed node capacity (tree arity respectively). If
a complex range query is processed, the complexity is 0 (X ^ = 1 logc(m) x r*), where
q is the number of range queries and r* is the number of Z-regions intersecting the
ith query box. In the case of BUB-forest BFk, the complexity of a particular range
query is 0(X)i=i l°6c(m») x r*)> where ri is the number of Z-regions intersecting the
ith query box (i.e. query box constructed for the BUB-tree BTi).

In the case of term indexing, the blank value = 0. Let qbt be the number of
range queries required for realization of a regular expression query using a single

Multidimensional Term Indexing for Efficient Processing of Complex Queries 391

high-dimensional BUB-tree. Then (according to Definition 5), the number of range
queries required for performance of the regular expression query using BUB-forest
can be smaller than k x qbi.

Example 3. (Term indexing and querying in BUB-forest.) Let us take term
dataset from the Example 1. We want to index this dataset in the BUB-forest
Z?A/T2(2,3) consisting of one 2-dimensional BUB-tree and one 3-dimensional BUB-
tree. Tuples of length 2 are modelled in 2-dimensional space (see Figure 5 a) while
tuples of length 3 are modelled in 3-dimensional space (see Figure 5 b).

Query box 1 -2

J-
Query box 1-1

\

Б< >

^ л / e

І
i

I
t(116) w(119)

1s t character

(a)

1 s t character

(b)
Fig. 5. Spaces of BUB-forest BMT2(2}3) and query boxes for processing of query (t *) .

For regular expression query t * , the appropriate range query in the 3-dimensional
term space will be (code('£'),0,0) : (code('£'),maxD,niax£>) (see Section 2). Execu
tion of this query will retrieve all the tuples beginning with character ' t \

When using the BUB-forest, two query boxes must be constructed. The first one,
for the 2-dimensional BUB-tree, will be (code('£'),0) : (code('t'), max£>). The second
one, for the 3-dimensional BUB-tree, will be (code('£'), 0,0) : (corJe('t'),maxn,maxr;).
These query boxes, labelled as 1-1 (1-2 respectively), are depicted in Figure 5. The
1-1 query will retrieve term t o while the 1-2 query will retrieve terms tab and ten.

As we can see, the coordinates of query boxes constructed for regular expression
queries often contain either the same values or the minimal or maximal value, see
Section 2 and Example 3. Our experiments have shown that such range queries
(so-called narrow range queries) process only a small part of the BUB-tree which
means the query boxes intersect only a small number of Z-regions during the range
query execution.

6. EXPERIMENTAL RESULTS

In our experiments3, we used terms from the TREC's document collections (see
Figure 3), including 816,716 unique terms. Several regular expression queries were

3The experiments were executed on an Intel Pentium ®4 2.4Ghz, 512MB DDR333, under Win
dows XP.

392 M. KRATKY, T. SKOPAL AND V. SNÁŠEL

processed, each by the classical B-tree-based inverted list as well as by the multi
dimensional approach - using UB-tree, BUB-tree, and BUB-forest. Several term
datasets were created, according to choice of the maximal allowed term lengths.
The size of a dataset in the case of maximal term length 9 was 509,258, in the case
maximal term length 40 it was dataset consisting of 816,716 terms. All the term
datasets were indexed by B-tree, UB-tree, BUB-tree and BUB-forest.

The following tables summarize the index characteristics:

B-tree characteris t ics

tree height 4 nodes 27,857-46,494 utilization 73-68%
node capacity 26 index file 9.5-52.9 MB

9-40 tree height 4
27,182-43,594 utilization 71.3-71.2%
355-1192B index file 9.9-53MB

UB-t ree character is t ics

\D\ 28 dimension
nodes 29,121-46,657 Z-regions
node capacity 26 node size

BUB- t ree character is t ics

\D\ 28 dimension 9-40 tree height 4
nodes 26,358-37,027 Z-regions 24,322-34,180 utilization 66.9-66.6%
leaf capacity 31-36 node capacity 19
node size 422-1600B index file 10.6-56.5MB

According to the maximal allowed term lengths, BUB-forests
BFi(9) - BF4(9,13,17,40) were used.

BUB-forest -9F4(9,13,17,40) character is t ics

\D\ 28

BTi:
nodes 26,358
node capacity 19

BT4:
nodes 1,252
node capacity 19

index file 20.8MB
dimension 9
Z-regions 24,322
leaf capacity 31

dimension 40
Z-regions 1,159
leaf capacity 36

tree height 4
utilization 67.8%
node size 422B

tree height 3
utilization 68.2%
node size 1600B

items 509,258

items 27,408

The left, right and left-right extensions were tested. For the left extension, ex
pressions soft*, atom*, and sub* were specified, for the right extension, expressions
*sof t , * less , and *sess ion were specified, and for the left-right extension, expres
sions *machine*, *na l i s t* , and *sc ien t* were specified. In all cases, disk access
costs (DAC), number of compared terms, and query processing realtimes were ob
served with respect to increasing length of terms. The values of particular results
were averaged. The DAC was computed as the number of logical accesses to disk
pages times the size of disk page (which is fixed). In order to particular regular
expression query and the maximal length of terms, the number of retrieved terms
(i.e. the query selectivity) was between 0 and 1182.

Multidimensional Term Indexing for Efficient Processing of Complex Queries 393

Disk access costs Number of compared terms Query processing time

B-tr
UB-tr
BUB-tг
BUB-for st

..•'•' ..••- ::*

..•"

< - X XX — X-X X X î

v&l *ž&*

-r

/

- н - B-tre
•+• UB-tr e
-7- BUB-tr

- e - BUB-tor st

X X X X — x - x -

-*- B-tгe
v UB-tr
•4- BUB-tr
-в- BUB-for st

,-Л:" ,.-л ;r.:-.-.*:-ł

У-—
X - X - X — X

10 15 20 25 30 35 40
Dimension (Maximal term length)

10 15 20 25 30 35 40
Dimension (Maximal term length)

10 15 20 25 30 35 40
Dimension (Maximal term length)

(a) (b) (c)

Fig. 6. Statistics of right extension test.

Results of the right extension query are presented in Figure 6. In the case of
B-tree, this query was performed very efficiently since the disk access costs and the
number of compared terms are lowest. This fact is also reflected by the achieved real
times. When compared with UB-tree and BUB-tree, the BUB-forest stores shorter
Z-addresses which is reflected by lower disk access costs and the query processing
times (see Figure 6 a and 6 c).

Results of the left-right extension query and the left extension query are presented
in Figures 7 and 8. For processing of the queries by B-tree, all the terms must
be sequentially retrieved and compared against the query (see Figure 7 b). The
costs are thus linear according to the number of terms. For the multidimensional
approach, the number of compared terms (Figures 7 b and 8 b) as well as the number
of disk access costs (see Figure 7 a and 8 a) are lower than by the B-tree. For
the multidimensional approach, the efficiency significantly decreases with growing
dimension since for dimensionalities 9 and 15 the number of indexed terms increased
by 50% but the number of compared terms increased up to 32 times during the
queries execution.

Disk access costs

B-tr
UB-tr
BUB-tr e
BUB-for st

*"í

8
+

I-
ш

?

I*

Number of compared terms Query processing time

„x-x x x x

/
- * - B-tr
••*- UB-tre
-f- BUB-tr

- - BUB-forest ..-*"

J*

-*- B-tree
Лf- UB-tre
-f- BUB-tr
-»- BUB-forest

У

*' o

u
10 15 20 25 30 35 40

Dimension (Maximal term length)
10 15 20 25 30 35 40

Dimension (Maximal term length)
10 15 20 25 30 35 40

Dimension (Maximal term length)

(a) (b) (c)

Fig. 7. Statistics of left-right extension test.

The results show that the BUB-forest does not solve the problem of curse of
dimensionality itself. However, storage of shorter Z-addresses is beneficial as we
can observe from the disk access costs (see Figure 7 a and 8 a) as well as from the
query processing realtimes (see Figure 7 c and 8 c). The efficiency improvement of

394 M. KRÁTKÝ, T. SKOPAL AND V. SNÁŠEL

the BUB-forest over the UB-tree or the BUB-tree is up to 50%.

Disk access costs Number of compared terms Query processing time

+>
/ V +/

.V

,+•;.. v
\'v*"

^o—"""""

+
7

o

+>
/ V +/

.V

- v - UB-tr
- + - BUB-tr
- * - BUB-for st

+>
/ V +/

.V

1 1 1 i i 1

***£ B-tree
UB-tree
BUB-tree
BUB-forest

- > - • '
Л^°"

0 15 20 25 30 35 40
Dimension (Maximal term length)

10 15 20 25 30 35 40
Dimension (Maximal term length)

l 1 1 1 1 —

10 15 20 25 30 35 40
Dimension (Maximal term length)

(a) (b) (c)

Fig. 8. Statistics of left extension test.

If we take into account that most of the real-world terms are shorter than 15
characters (see the term length distribution in Figure 3), we could claim that mul
tidimensional approach is very efficient.

7. CONCLUSION

The paper described a multidimensional approach for an efficient term indexing for
complex queries processing. The multidimensional approach provides broad usabil
ity for efficient term retrieval, especially in the sense of regular expression queries.
When compared with the B-tree-based inverted list, for some types of regular expres
sion queries the multidimensional approach offers much better efficiency. Regular
expression queries are processed using UB-tree or BUB-tree by a single range query
or by a complex range query (a sequence of range queries). This paper introduced a
new indexing structure, the BUB-forest, even more reducing the storage and retrieval
costs of the multidimensional approach.

In our future work, we would like to further improve the abilities and the efficiency
of the multidimensional approach. In particular, we are going to develop method for
a range query construction supporting all (or at least a significant subset) of regular
expression queries. Furthermore, at the current state a single disk page can be
retrieved and processed multiple times during the complex range query processing
consisting of several simple range queries. For that reason, it could be useful to
develop an algorithm executing the complex range query more efficiently. Basics of
such algorithm were proposed in [10].

The boundary points of query boxes often have fixed coordinates when construct
ing regular expression queries and this fact negatively reflects in higher number of
non-relevant Z-regions processing. Thus we want to enhance the index structures to
better support this narrow range query.

Multidimensional Term Indexing for Efficient Processing of Complex Queries 395

ACKNOWLEDGEMENTS

We would like to thank Professor Jaroslav Pokorny, Charles University, Prague, Czech
Republic, for many valuable comments.

(Received October 28, 2003.)

REFERENCES

R. Baeza-Yates and B. Ribeiro-Neto: Modern Information Retrieval. Addison Wesley,
New York 1999.
R. Bayer: The universal B-tree for multidimensional indexing: General concepts. In:
Proc. World-Wide Computing and its Applications'97, WWCA'97, Tsukuba 1997.
N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger: The R*-tree: An efficient
and robust access method for points and rectangles. In: Proc. 1990 ACM SIGMOD
Internat. Conference on Management of Data, Atlantic City, NJ 1990, pp. 322 331.
C. Bohm, S. Berchtold, and D. A. Keim: Searching in high-dimensional spaces - Index
structures for improving the performance of multimedia databases. ACM Comput.
Surveys 33 (2001), 322 373.
M. Crochemore and W. Rytter: Text Algorithms. Oxford University Press, Oxford
1994.
U. Deppisch: S-tree: a dynamic balanced signature index for office retrieval. In: Proc.
9th ACM SIGIR Conference, Pisa 1986, pp. 77-87.
J. Dvorsky, M. Kratky, T. Skopal, and V. Snasel: Term indexing in information
retrieval systems. In: Proc. CIC03, CSREA Press, Las Vegas 2003.
C. Faloutsos: Gray codes for partial match and range queries. IEEE Trans. Software
Engrg. 14 (1988), 10, 1381-1393.
R. Fenk: The BUB-Tree. In: Proc. 28rd Internat. Conference on VLDB, Hongkong
2002.
R. Fenk, V. Markl, and R. Bayer: Improving multidimensional range queries of non
rectangular volumes specified by a query box set. In: Proc. Internat. Symposium on
Database, Web and Cooperative Systems (DWACOS), Baden-Baden 1999.
P. Ferragina and R. Grossi: A fully-dynamic data structure for external substring
search. In: Proc. ACM Symposium on Theory of Computing, 1995.
A. Guttman: R-Trees: A dynamic index structure for spatial searching. In: Proc.
ACM SIGMOD 1984, ACM Press, Boston 1984, pp. 47-57.
Y. Manolopoulos, Y. Theodoridis, and V. Tsotras: Advanced Database Indexing.
Kluwer, Dordrecht 2001.
V. Markl: Mistral: Processing Relational Queries using a Multidimensional Access
Technique. Ph.D. Thesis. Technical University Miinchen 1999,
http://mistral.in.turn.de/results/publications/Mar99.pdf.

NIST: Text REtrieval Conference (TREC). 2003, h t t p : / / t r e c . n i s t . g o v / .
F. Ramsak, V. Markl, R. Fenk, M. Zirkel, K. Elhardt, and R. Bayer: Integrating the
UB-tree into a database system kernel. In: Proc. 26th VLDB Internat. Conference
(Cairo 2000), Morgan Kaufmann, San Franciso, CA 2000.
S. Roman: Advanced Linear Algebra. Springer-Verlag, Berlin 1995.
G. Salton and M. J. McGill: Introduction to Modern Information Retrieval. First
edition. McGraw Hill, New York 1983.

[19] T. Skopal, M. Kratky, V. Snasel, and J. Pokorny: On Range Queries in Universal
B-trees. Technical Report No. ARG-TR-01-2003, Department of Computer Science,
VSB-Technical University of Ostrava 2003,
h t tp : / /www.cs .vsb .cz /a rg / t echrepor t s / range .pdf .

396 M. KRÁTKÝ, T. SKOPAL AND V. SNÁŠEL

[20] G.A. Stephen: String Searching Algorithms. Lecture Notes Series on Computing,
World Scientific, 1998.

[21] N. Wirth: Algorithms and Data Structures. Prentice Hall, Englewood Cliffs, N. J.
1984.

[22] I. H. Witten, A. Moffat, and T. C. Bell: Managing Gigabytes, Compressing and In
dexing Documents and Images. Van Nostrand Reinhold, New York 1994.

[23] W3 Consortium: Extensible Markup Language (XML) 1.0. 1998, http://www.w3.org/
TR/REC-xml.

Michal Krátký, Tomáš Skopal, and Václav Snášel, Department of Computer Science,
VSB Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava. Czech Republic.
e-mails: michal.kratky, tomas.skopal, vaclav.snasel@vsb.cz

		webmaster@dml.cz
	2015-03-23T13:51:49+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document

