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K Y B E R N E T I K A — VOLUME 41 (2005) , NUMBER 2, P A G E S 1 7 7 - 2 0 4 

APPROXIMATIONS OF LATTICE-VALUED 
POSSIBILISTIC MEASURES 

IVAN KRAMOSIL 

Lattice-valued possibilistic measures, conceived and developed in more detail by G.*De 
Cooman in 1997 [3], enabled to apply the main ideas on which the real-valued possibilistic 
measures are founded also to the situations often occurring in the real world around, when 
the degrees of possibility, ascribed to various events charged by uncertainty, are comparable 
only quantitatively by the relations like "greater than" or "not smaller than", including 
the particular cases when such degrees are not comparable at all. The aim of this work is 
to weaken the demands imposed on possibilistic measures in other direction: the condition 
that the value ascribed to the union of two or more events (taken as subsets of a universe 
of discourse) is identical with the supremum of the values ascribed to particular events 
is weakened in the sense that these two values should not differ "too much" from each 
other, in other words, that their (appropriately defined) difference should be below a given 
"small" threshold value. This idea is developed, in more detail, for the lattice-valued 
possibility degrees, resulting in the notion of lattice-valued quasi-possibilistic measures. 
Some properties of these measures are investigated and relevant mathematically formalized 
assertions are stated and proved. 

Keywords: possibilistic measure, almost-maxitive approximation, fuzzy measure, complete 
lattice, lattice-valued measure 

AMS Subject Classification: 28E10, 28E99 

1. INTRODUCTION. A BRIEF SKETCH OF SOME GENERALIZATIONS 
OF POSSIBILISTIC MEASURES 

Possibilistic (or possibility) measures were conceived by L. A. Zadeh in 1978 [11] as 
an auxiliary tool for numerical characterization and processing. They have emanci
pated, since, as an interesting mathematical model of the phenomenon of uncertainty, 
alternative to those offered by probability theory and mathematical statistics. The 
original very simple notion of real-valued and completely defined possibilistic mea
sure has been subjected to various modifications, generalizations and weakenings 
with the times going. Some of them were motivated, or even forced, by the demands 
resulting from the nature of uncertainty charging the data coming from the real 
world around, to which possibilistic measures should be applied, other modifications 
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were necessitated by the methodological demands of the mathematical tools used 
when building the mathematical theories under consideration. 

Let us consider a nonempty set ft (the universe of discourse). Each mapping n : 
ft -> [0,1] such that supwGQ 7r(u;) = 1 is called a (normalized real-valued) possibilistic 
distribution on ft; in what follows, we write V instead of sup. This distribution 
induces the (normalized real-valued) possibilistic measure U on the power-set 'P(ft) of 
all subsets of ft, setting U(A) = \JLjeA 7T(CJ) for every 0 ^ A C ft, so that n(ft) = 1, 
and applying the convention n(0) = 0 for the empty subset 0 of ft. Obviously, 
n(U-4) = V{U(A) : A G A} follows for each nonempty system A of subsets of 
ft, where \JA = \J{A : A € A}, in particular, U(A U B) = U(A) V U(B) holds 
for each A,B C ft. The same notion can be defined also axiomatically: (complete 
real-valued) possibilistic measure on 'P(ft) is a mapping n : V(Q) -» [0,1] such that 
n(0) = 0,n(ft) = 1, and U(\JA) = \/{U(A) : A G A} for each 0 / A C 7>(ft). 
Replacing the last condition by a weaker one, according to which n(.4 U B) = 
U(A) V U(B) holds for each A,B C ft, we arrive at the notion of (not necessarily 
complete) possibilistic measure, weaker than that defined constructively above using 
a possiblistic distribution. Indeed, if ft is infinite, n(.4) = 1 for infinite subsets of 
ft, and U(A) = 0 for finite A C ft, then n is a (not complete) possibilistic measure 
on 'P(ft), which cannot be defined by a possibilistic distribution on ft. 

As a matter of fact, the axiomatic approach to possibilistic measures will be very 
useful in what follows, as the considered modifications and weakening of the notions 
of possibilistic measures can be explicitly defined by the appropriate changes of the 
axioms imposed on the mapping n . One such weakening results when abandoning 
the idea that n is defined on the whole 'P(ft), supposing that the definition domain of 
n is a nonempty system 1Z C 'P(ft) and that the demands imposed on n are those as 
above but relativized to 1Z. Hence, a mapping n : 1Z —» [0,1] is a partial (normalized 
real-valued) possibilistic measure on 11, if n(0) = 0 and/or n(ft) = 1 supposing that 
0 G 11 and/or ft G 11, and U(A U B) = U(A) V U(B) for each A,B ell such that 
A U B €ll. The modification to the case of partial complete possibilistic measure is 
obvious. Let us recall that this notion is, indeed, very general, e. g., if 11 is a disjoint 
covering of ft not containing 0 and ft, then each mapping n : 11 —> [0,1] defines 
a partial complete possiblistic measure on 11, as no of the restricting conditions 
imposed on n applies. 

The shift from completely defined to partial possibilistic measures is inspired by 
the fact that very often the degree of possibility (the value of a possibilistic measure) 
is not known, or even not defined, for each event from the system of events charged 
by uncertainty under consideration. As a rule, some more conditions on the domain 
11 are imposed in order to obtain interesting and nontrivial results concerning the 
partial possibilistic measure in question (e. g., 11 is supposed to be a field, a <r-field, 
an ample field, a nested system, . . . ) . 

However, our knowledge of the degrees of possibility ascribed to various events 
(subsets of the universe ft, under our formalization) may be incomplete also in the 
sense that not the very numerical values of possibilistic measures, but only their 
qualitative relations to other values are at our disposal. Hence, what is known is 
that the value U(A) is greater than or equal to the value n(J5), that the value n(C) 
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is strictly smaller than that of n(I?), or that the values U(E) and 11(F) cannot be 
compared with respect to their sizes, A,B,C,D,E, and F being events (subsets of 
Q) for which II is defined. 

Formalizing mathematically this intuition behind, we arrive at the idea of pos
sibilistic measures, perhaps partial ones, with non-numerical values. The weakest 
condition to be imposed on the structure of the possibility degrees (values taken 
by non-numerical possibilistic measures) in order to obtain some non-trivial results 
seems to read that such possibilistic measures should take their values in a partially 
ordered set. Our reasoning will be much more easy and simple if we limit our consid
erations to complete lattices, i.e., to partially ordered sets, in which the supremum 
and the infimum of all nonempty subsets of elements are (obviously uniquely) de
fined, so that our results need not be conditioned to the cases when all the suprema 
and infima in question are defined. It is perhaps worth being re-called explicitly, 
that the notion of complete lattice seems to be the most specific (i.e., the least 
general one) still covering the two most often used structures for quantifying the 
uncertainty and possibility degrees: the unit interval of real numbers with respect 
to their standard linear ordering, and the complete Boolean algebra, in particular, 
the power-set of all subsets of a fixed space, partially ordered by the relation of 
set-theoretic inclusion. 

Perhaps for the first time the idea of non-numerical uncertainty quantification 
and processing was applied by J. A. Goguen in 1967 [7], who introduced and investi
gated fuzzy sets with membership degrees (values of the membership functions) in a 
complete lattice. Partial possibilistic measures defined on an ample field of subsets 
of the basic space ft and taking their values in a complete lattice were introduced 
by G. DeCooman in 1997 [3], who defined and proved numerous interesting and 
far going formal analogies between probabilistic and possibilistic measures resulting 
when interchanging mutually the operations of addition or series taking with that 
of supremum. 

However, still another weakening of the original idea and notion of possibilistic 
measures comes almost immediately into one's mind, namely, to weaken the relation 
binding the values ascribed by the possibilistic measure in question to the sets A, B, 
and this one ascribed to their union A\J B. In the most simple case of normalized 
real-valued possibilistic measure II defined on V(Cl) we replace, given a threshold 
value 0 < e < 1, the condition U(Al)B) = U(A) vn(JB), by a weaker one, according 
to which the inequality |II(A U B) - (11(A) V 11(B))| < e (or < e) holds for each 
A,B C H. If, moreover, 11(0) = 0 and U(Q,) = 1 hold, the mapping n will be 
called an e-quasi-possibilistic measure on V(£l). Obviously, for e = 0 we arrive at 
the original notion of possibilistic measure. 

In the rest of this paper we will present and analyze this idea at a more general 
and abstract level, introducing the notion of t-quasi-possibilistic partial lattice-valued 
possibilistic measure defined on a system A C V(£l) (very often A will be an ample 
field). Here £is a value from the lattice in question playing the same role as e in the 
real-valued case. It is why the next chapter will re-call and introduce some notions 
and properties related to complete lattices and necessary as preliminaries for our 
further reasoning and constructions. 
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An elementary explanation of possibility theory can be found in [4], the surveyal 
work [5] discusses the relations among various mathematical models and theories of 
uncertainty quantification and processing. 

2. PRELIMINARIES ON COMPLETE LATTICES AND RELATED 
NOTIONS 

Let T be a nonempty set. A binary relation < on T (i. e., a subset of the Cartesian 
product T x T) is called pre-ordering on T, if (i) t < t (reflexivity) and (ii) if ti <t2, 
and t2 <t^, then t\ < £3 (transitivity) holds for each Mi,£2^3 € T. A pre-ordering 
< on T is a partial ordering if £1 = t2 holds for each t\,t2 G T such that t\ < t2 

and t2 < ti hold simultaneously (antisymmetry). If < is a partial ordering on T, the 
pair T = (T, <) is called a partially ordered (p. 0.) set with the support T. 

Let T = (T, <) be a p. o. set, let S be a nonempty subset of T. An element V S 
of T is called the supremum of S (w.r.to T), if (i) s < \J S holds for each s G S and 
(ii) if there is s0 G T such that s < s0 holds for each s G 5, then \J S < s0 holds 
as well. An element-/\ S of T is called the infimum of S (w.r.to T) , if (iii) AS < s 
holds for each s G 5 and (iv) if there is s\ G T such that si < s holds for each s e S, 
then si < f\S holds as well. 

In general, neither V S n ° t A & Reed be defined for every S C T, but if they are 
defined, they are defined uniquely. If \/T and/or / \ T are defined, we write I7- for 
V T (the maximum or the tmi£ element of T) , and we write 0 r for /\ T (the minimum 
or the zero element of T) . Supposing that l r and/or 0-7- are defined, we define V 0 = 
0 r and /\ 0 = I7- for the empty subset of T. If 5 = {a,b}, 5 = {a\,a2,...,a7l}, or 
S = { a i , a 2 , . . . } , we write often \J S = aVb, \/ S = a\Wa2\/.. .Van or V»5 = VlLi a*> 
and V 5 = V S i a*> a n ^ similarly for /\ 5 supposing that V S and/or /\ 5 are defined. 
P. o. set T = (T, <) is an upper semilattice, if 5 V t is defined for each s,t G T and 
this upper semilattice is complete, if V -S is defined for each 0 7- S C T. Dually, T 
is a /ouver semilattice, if s A £ is defined for each s,t G T and this lower semilattice 
is complete, if /\ 5 is defined for each 0 / 5 C T. T is a lattice, if it is an upper and 
a lower semilattice, and T is a complete lattice, if it is a complete upper semilattice 
and a complete lower semilattice. Hence, if T = (T, <) is a complete lattice, V *5 
and f\S are defined for any S C T (for 5 = 0 the conventions apply). As already 
noted above, the unit interval of reals equipped by their standard linear ordering, as 
well as the power-set V(X) of all subsets of a nonempty set X with the set inclusions 
as the partial ordering relation, are obviously complete lattices. 

Like as in the case of real-valued possibilistic measures, also when introducing 
their non-numerical variants the supremum operation plays the key role. So, when 
supposing that the structure over the set of values taken by non-numerical pos
sibilistic measures in just that of p. o. sets, we have to make relative, explicitly 
and repeatedly, all our statements to the cases when all the suprema and infima in 
question exist. In order to simplify substantially our position we will suppose that 
the non-numerical possibilistic measures under consideration take their values in a 
complete lattice T = (T, <) , so that the existence of all suprema and infima values 
follows immediately as it is the case for real-valued possibilistic measures. 
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As complete lattices do not contain an operation of complement as their primary 
notion, at least the two ways how to proceed can be considered. Either, we may in
troduce more specific structures with complement as one of their primary operations 
axiomatically bounded together with the other operations (this is the way leading 
to Boolean algebras, e.g.). Or, we can introduce a pseudo-complement operation 
weaker than that of complement in the unit interval (1 — x for x G [0,1]) or in 
Boolean algebras (e.g., set-complement operation), but definable in every complete 
lattice. Preferring this last approach and considering a complete lattice T = (T, <), 
we define for every t G T its (pseudo-) complement tc by 

tc = \J{seT:sAt = 0r}, (1) 

let us recall that Q)r = A T. The element tc is obviously always defined and this def
inition is close to that of complement in Boolean algebras. Indeed, if T = (V(X), c ) 
for some I / O , then for each A C X we obtain that Ac = X - A, as a matter 
of fact, for each complete Boolean algebra B = (S, V, A,-») we obtain that tc = ->t 
for every t G B. Contrary to this intuitive fact, if T = ([0,1], <), then for every 
0 < x < 1 we obtain that xc = \/{y G [0,1] : inf(x, y) = 0} = 0. 

Obviously, also the dual definition of (pseudo-) complement is possible and per
haps worth being considered, i.e., we could set 

td = f\{seT:sVt = lr] (2) 

for every t G T. E.g., when T = (V(X),C), both the definitions agree so that 
Ac = Ad = X — A of every A C X. However, let us focus our attention to the case 
(2.1), postponing a more detailed investigation of the alternative approach (2.2) till 
another occasioji. 

As can be easily seen (cf. examples in [8], e. g.), neither tcM = (dr n o r tcVt = lr 

holds in general in each complete lattice. A complete lattice T = (T, <) is called 
semi-Boolean, if tc A t = 0 r is valid for each t G T, and it is called Boolean-like, if 
also tc V t = l r holds for each t eT. The complete lattice T = ([0,1], <) can be 
introduced as an example of a lattice which is semi-Boolean but not Boolean-like. 
A complete lattice T = (T, <) is completely distributive (c. d.), if the identities 

tA(\Js)= \J(tAs)>tv(/\s) = /\(tVs) (3) 
sES s£S 

are valid for every t £T and 0 ^ S C T. A completely distributive complete lattice 
is called Brouwerian lattice ([1]). 

When introducing the basic idea of quasi-possibilistic measures in the case of 
normalized real-valued measures (the end of Chapter 1), we took the value \U(A U 
B) — (n(.A) VII(B))| as a reasonable quantitative distance between the real numbers 
U(A U B) and II(.A) V n(Z?), hence, we used the absolute value of difference of two 
real numbers as a metric on the real line and, in particular, on the unit interval of 
reals. Aiming to apply this idea to the case of lattice-valued possibilistic measures, 
we need to define a lattice-valued metric on the support set T of the complete 
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lattice T = (T, <) is question. Taking inspiration from the notion of symmetric 
difference in the elementary set theory, considering a complete lattice T = (T, <) , 
and taking profit of the notion of (pseudo-) complement defined by (2.1), we set for 
each t i , t2 E T 

p(t i , t2) = ( t i A t ? ) V ( t 2 A t f ) . (4) 

Indeed, if T = (V(X), c ) , we obtain easily that, for each Ai,A2 C X, p(Ax,A2) = 
Ai + A2 = (Ai - A2)U(A2 - AJ. 

The following assertion shows (cf. Theorem 2.1 in [8] and its proof) that the 
mapping p possesses certain properties due to which it can be taken as a lattice-
valued metric. 

Fact 2 .1 . Let T = (T, <) be a Brouwerian and Boolean-like lattice, let 
p : T x T -* T be defined by (2.4). Then this mapping is 

(i) reflexive, i.e., p( t i , t i ) = 0 r for each ti G T, 

(ii) symmetric, i.e., p(t i , t2) = ,o(t2,ti) for each t i , t 2 G T, 

(iii) triangular inequality holds, i.e., p(ti,ts) < p(h,t2)\/p(t2,ts) for each t i , t 2 , t3 G T 

As a matter of fact, the assertion (i) concerning the reflexivity of the relation p 
can be strengthened as follows. 

Lemma 2 .1 . Let T and p be as in Fact 2.1. Then p(ti, t2) = 0 r holds iff tx = t2. 

P r o o f . First of all, let us prove that under the conditions imposed on T the 
identity (tcf = t holds for every t G T As t A tc = 0 r , the inequality t < (tcf 
follows from the definition of (tcf. As t V tc = l r , we obtain that, due to the 
distributivity of T, 

(tcf = (tcf A l r = (tcf A (tc V t) = ((tcf A tc) V ((tcf A t) = (tcf A t, (5) 

as (tcf A tc = 0 r . Consequently, (tcf < t and also (tcf = t follows. 
Now, we have to prove that p(t i , i2) > 0 r holds for each ti 7-= t2 from T. The 

distributivity property imposed on T yields that 

p(ti , t2) = ( t i A t ? ) V ( t 2 A t f ) = = [ ( t i A t ? ) V t 2 ] A [ ( t i A t ^ ) V t f ] 

= [(ti V t2) A (tC V t2)] A [(ti V t f ) A (tC V tc)} 

= [ ( t i V t 2 ) A l r ] A [ l T A ( t ? V t f ) ] 

= ( t i V t 2 ) A ( t ^ V t f ) . (6) 

Let t i , t 2 G T be such that ti < t2 holds. Then 

p(t i , t2) = ( t i A t ? ) V ( t 2 A t f ) < ( t 2 A t ? ) V ( t 2 A t f ) 

= 0 r V (t2 A t f ) = t2 A t f (7) 
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follows. Suppose, in order to arrive at a contradiction, that t\ < t2 and t2Atc = 0 r 

hold simultaneously. Then t2 < (tc)c = t\ holds due to the definition of (tc)c and 
the contradiction follows. Hence, if t\ <t2, then t2 A tc > 0 r holds. 

For each t\,t2 G T,if t\ ^ t2, then t\ A t2 < t\ V t2 and, consequently, either 
t\ < t\ V t2 or t2 < t\ V ̂ 2 holds, without any loss of generality let us consider only 
the case t\ <t\\/t2. Applying what we have just proved to this case, we obtain that 

0 T < P(h V t2,t\) = (t\ V t2) A tc < (t\ V t2) A (tc V tc) = p(t\,t2) (8) 

holds due to (2.6). The lemma is proved. • 

For more details on lattices and related notions, e.g. [2, 6] and [10] can be 
recommended. 

3. PARTIAL LATTICE-VALUED POSSIBILISTIC AND 
QUASI-POSSIBILISTIC MEASURES 

The following definition tries to copy, within the framework of complete lattices, 
that one of normalized real-valued partial possibilistic measures, conserving also the 
same high degree of generality. The only new more specifying and simplifying condi
tion will be that the domain 1Z of partial possibilistic measures under investigation 
contains the empty subset of ft and ft itself. 

Definition 3.1 . Let T = (T, <) be a complete lattice, let ft be a nonempty set, 
let {0,ft} C 1Z C V(U) be a system of subsets of ft. 

(i) A mapping II : 1Z —> T is called a partial T-(-valued) (normalized) monotone 
measure on 1Z, if 11(0) = 0T,II(ft) = l r , and II(.A) < n(J5) holds for each 
A, B G 1Z such that A C B (instead of "monotone measure" sometimes also 
the term "fuzzy measure" is used). 

(ii) A mapping II : 1Z -» T is called a partial T-(valued) (normalized) possibilistic 
measure on 1Z, if 11(0) = 0 r , II(ft) = l r , and U(A U B) = U(A) V U(B) 
for every A,B, A U B G 1Z (it follows easily that each partial T-possibilistic 
measure on 1Z is also partial T-monotone measure on 1Z). 

(iii) A partial T-possibilistic measure II and 1Z is called complete, if II(|j7?,n) = 
\/{U(A) : A G IZo) holds for each 0 ^ 1Z0 ClZ such that I J ^ o ( = \JAen0

 A) 
is in 1Z. 

(iv) Let t G T be fixed. A mapping II : 1Z -» T is called a partial T- (valued) 
(normalized) t-quasi-possibilistic measure on 1Z, if 11(0) = 0 r , I I ( f t ) = l r , 
and for every A,B,A U B G 1Z the relation p(U(A U B),U(A) V 11(B)) < t 
holds, where p is defined by (2.4). 

(v) A partial T-£-quasi-possibilistic measure on 1Z is called complete, if the relation 
p(nfljfto), V ( n ( ^ ) : A € ? M ) < t holds for each 0 ?- 1Z0 C 1Z such that 
U^oeft-
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If T satisfies the conditions of Fact 2.1, then the identity U(Al)B) = U(A) VU(B) 
implies that 

p(U(A U B), U(A) V U(B)) = 0 r < t (9) 

for each t 6 T, so that the notion of t-quasi-possibilistic measure is a straightforward 
weakening of that of partial T-possibilistic measure (the modification for the case 
of complete measures is obvious). 

A class of lattice-valued partial quasi-possibilistic measures can be obtained when 
applying the following construction. 

Theorem 3.1. Let T = (T, <) be a Brouwerian Boolean-like lattice, let A be a 
nonempty ample filed of subsets of a nonempty space fi (so that, for every A G A 
and U / ^o C i , the sets fi - A, [j Ao and f] Ao are in A), let t0 G T be fixed, let 
III • A -> T be a partial complete T-possibilistic measure on A, let Il2 : A -> T be 
any mapping such that II2(0) = 0 r and n2(fi) = l r - Set, for each A G A, 

U(A) = (IIi (A) A t c ) V (n2(i4) A to) (10) 

Then II is a partial T-to-quasi-possibilistic measure on A. 

P r o o f . Let us prove, first of all, that for each s, t i , t2 eT the inequality 

p(sWtusyt2)<p(tut2) (11) 

is valid. Indeed, under the conditions imposed on T, for each s i , s 2 G T such 
that si > s<2 holds, the inequality sc < sc follows. In particular, s V ti > s and 
s V t i > ti yields that ( s V t i ) c < sc and ( s V t i ) c < tf, hence, ( s V t i ) c < sc At f 
ind, analogously, (s V t 2 ) c < sc A t c hold. Using these relations we obtain that 

p(s V t i , s V t2) = [(s V ti) A (s V t 2 ) c ] V [(s V t2) A (s V t i ) c ] 

< [(5 V ti) A sc A t£] V [(5 V t2) A sc A t f ] 

= (5 A s c A t£) V (ti A sC A t^) 

V (5 A s c A t f ) V (t2 A 5C A t f ) 

= (ti A t f A sC) V (t2 A t f A 5C) 

< a i A t c ) V ( t 2 A t f ) = / 9 ( t i , t 2 ) , (12) 

as each Brouwerian lattice is distributive and s A sc = 0 r holds in every semi-
Boolean (i.e., also in every Boolean-like) lattice, so that (2.3) is proved. 

For the empty set 0 and the space fi, which obviously belong to each nonempty 
ample field A C V(fl), we obtain that 

n(0) = (III (0) A t c ) V (n 2 (0) A t0) = ( 0 r A t^) V ( 0 T A t0) = 0 r , (13) 

and 

U(il) = (III(ft) A t c ) V (n2(ft) A t0) = ( l r A t c ) V ( l r A t0) = t c V t0 = l r , (14) 
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as the lattice T is Boolean-like. Given A, B 6 R, we obtain that 

U(AUB) = (ni(AUJ3)Af c)V(n2(Au£)At0) 
= ((III(A) V ni(B)) A tf) v (n2(A U B) A t0) 
= (ni(A)At0

7)V(ni(B)Atc)V(n2(AUB)Af0), (15) 

and 

n ^ ) v n ( B ) = [(ni(A)Afc)v(n2(A)At0)] 
V [(ni(B)AiC)V(n2(B)At0)] 
= [(ni(A)vni(B))At c]v[(n2(A)vn2(B))At0] . (16) 

Hence, applying (3.3) to s = (Ui(A) V nx(B)) A t c = (Ut(A) A i c ) V (Hi(B) A t c) , 
ti = n2(A U B) A t0, and t2 = (n2(A) V n2(B)) A t0, we obtain that 

p(U(AUB),U(A)VU(B)) 
= p[(U{A) A t c) V (IIi(B) A tc) V (II2(.4 U B) A t0), 

(III(A) A t c) V (IIi(B) A i c) V (n2(A) A t0) V (n2(B) A t0)] 
< p(n2 (A u B ) A t0, (n2(A) v n2(B)) A t0) 
= [(n2(A u B) A t0 A ((n3(.4) v n2(B)) A t0)c] 
V [(n2(A)vn2(B))At0A(n2(AUB)Ato)C]<t0Vt0 = t0. (17) 

The assertion is proved. • 

The following lemma will be of use in our further considerations. 

Lemma 3.1 . Let T = (T, <) be a Brouwerian Boolean-like lattice. Then, for every 
t i , t2 € T, the identity 

(ti A t 2 ) c = t f V t f (18) 

holds. 

P r o o f . Under the conditions imposed on T we obtain that 

( t i A t 2 ) c = (ti A t 2 ) c A l r = (ti A t 2 ) c A [(tf V t f ) V (tf V t f ) c ] 

= [(*t A * 2 ) C A (if V t c ) ] V [ ( t x A t 2 ) c A ( t f V t f ) c ] . (19) 

As ti A i2 < ii and ii A i2 < i2 hold, the inverse inequalities (ii A i 2 ) c > if, (ti A 
t2)c^ > t c for the corresponding pseudo-complements are obvious and the inequality 
(h A t 2 ) c > i f V i f follows. Hence, setting 

s = (ii A i 2 ) c A (if V i f ) c , (20) 

(3.11) can be rewritten as 

(ti A i 2 ) c = (tf V if) V s., (21) 
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Suppose, in order to arrive at a contradiction, that the strict inequality (t\ At2)
c > 

tc Vt$ is valid, consequently, that 5 > 0 r holds. From (3.12) it follows easily, that 

s A (tf V t$) = (ti A t2)
c A (tf V t$)c A (if V t?) = 0 T , (22) 

so that s At f = 8 At f = 0 r , hence, 5 < (if ) c = i i , s < (if ) c = i2, and s < ii At2 

follow, so that s A £1 A t2 = s > 0 r - However, (3.13) yields that s < (ti A i 2 ) c , so 
that sA(t\ At2) < (t\ At2)

c A (t\ At2) = 0 r , and we have arrived at a contradiction. 
The lemma is proved. • 

Remark 1. As a matter of fact, Lemma 3.1. is valid in each Brouwerian lattice (cf. 
Remark (2.72) in [1]), however, for our purposes the more specific case introduced 
in Lemma 3.1. seems to be worth being stated and proved explicitly. 

Lemma 3.2. Under the notations and conditions of Lemma 3.1, for every 
si,s2jt G T the inequality 

p(SlAt,s2At) <p(sus2) (23) 

is valid. 

P r o o f . Applying Lemma 3.1 we obtain that 

p(si A i, s2 A i) = [(5i At) A (s2 A t)c] V [(s2 At) A (si A t)c] 

= [(si At) A (sC V tc)] V [(s2 At) A (sC V tC)] 

= (sxAtA s$) V (si A t A tc) V (s2 A t A s f ) V (s2 A t A tc) 

= (sxAtA s$) \/(s2AtA sf) < (si A s$) V (s2 A sf) 

= P(sus2), (24) 

as t A tc = 0 r - The lemma is proved. • 

Let T = (T, <) be a partially ordered set, let *0 € T, let T(t0) = {s A t0 : s G T } , 
tet <t0, be the partial ordering on T(t0) defined by 

«i A t0 <to s2 A t0 <=t> 5i < s2 (25) 

Then T(t0) = (T(t0), <t0) is a p. o. set. If T is a Brouwerian Boolean-like lattice, 
also T(t0) is such lattice. Obviously, 0r( to) = ®T a n d lr(t0) = *o for every t0 G T. 

The next theorem can be taken, in a sense, as an assertion inverse to that of 
Theorem 3.1. 

Theorem 3.2. Let T = (T, <) be a Brouwerian Boolean-like lattice, let A be 
a nonempty ample-field of subsets of a nonempty basic space tQ, let t0 G T, let 
II : A -¥ T be a partial T-^o-quasi-possibilistic measure on A. Then there exist a 
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partial TCto^-possibilistic measure IIi on A and a mapping n 2 : A -» T(to) such 
that n2(0) = 0r(to)?n2(fi) = lr(to) a n d t h e identity 

U(A) = UX(A)VU2(A) (26) 

holds for each A 6 A. 

P r o o f . Under the conditions imposed on T, to V t^ = l r , £o A t% = 0 r , s o that, 
for every A £ A, 

U(A) = U(A) A l r = (n(-4) A t£) V (n(A) A t0). (27) 

Setting IIi (.A) = U(A) Atf, n2(-4) = 11(̂ 4) A t0, let us prove that IIi and U2 possess 
the properties declared in the assertion. The constraints for 0 and ft are obvious. 
Indeed, 

IIi(0) = n ( 0 ) A t £ = 0 r A t £ = 0 r = 0r(tf)> 

ni(n) = n(n)Atf = i r A t f = tf = i r ( tc) , 

n20) = n(0) A t0 = 0 r A t0 = 0 r = 0r(to)» 

n2(n) = n(n)Ato = i r A t 0 = to = ir(to)> (28) 

Let A, B G A. As n is a partial T-to-quasi-possibilistic measure on .A, the inequality 

p(II(_4 U B), U(A) V 11(B)) < t0 (29) 

holds. However, 

Ui(AuB) = I I (_4u£)At£ , 

ni(A)vni(B) = (n(i4)Atf)v(n(B)Atf) 
= (U(A)VU(B))At$? (30) 

so that 

p ( П i ( Л u B ) , П i ( Л ) V І I i (£0) 

= p ( П ( A U ß ) Л ť c , ( П ( Л ) V П ( B ) ) Л ť c ) 
< p ( П ( A U Я ) . П ( . 4 ) V П ( ß ) ) < ť 0 (31) 

due to Lemma 3.2 and (3.21). At the same time, however, 

and 

( n i ( A u s ) ^ ( n i ( A ) v n i ( B ) ) c 

= П(Л U В) Л ťc Л (IIi {А) V Щ (В)с < ťc (32) 

(ni(A)vni(£0)A(II i (AUB)) c 

= ( П ( А ^ П ( В ) ) Л # Л ( П 1 ( А и £ ) ) с < # (33) 
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hold, se that the inequality 

p(Пi ( І U B ) , Пi (A) V Пi (B)) < t c (34) 

follows. Combining (3.23) and (3.26) together, we obtain that 

p(Ui(A U B),Uг(A) V Uг(B)) < t0 Л t c = ø r (35) 

is valid, Hence, Lemma 2.1 yields that 

Пi(Л UB) = Uг(A) V Пi(ß) , (36) 

so that Пi is a partial T^oO-possibilistic measure on A and the assertion is proved. 
D 

4. OPERATЮNS OVER LATTICE-VALUED MONOTONE, POSSIBILISTIC 
AND QUASI-POSSIBILISTIC MEASURES 

Given a lattice T = (T, <), a nonempty system 1Z of subsets of a basic space íî and 
mappings П i , П 2 , both of them taking 1Z into T, we may apply the operations of 
supremum and infimum defined w.r.to < in T to the values of these mappings, so 
arriving at the mappings Пi Л П 2 , П V П 2 : 1Z -> T. Hence, for each A ЄІZ, 

(Пi Л U2)(A) = Uг(A) Л U2(A), (Пi V U2)(A) = Uг(A) V U2(A). (37) 

The generalization to the case of complete lattice T and any non-empty set <S of 
mappings, each of them taking 1Z into T, is straightforward. Also the operation of 
(pseudo-) complement can be applied to produce new T-valued mappings, setting, 
for each A Є 1Z and each П : 1Z -» T, UC(A) = (U(A))C. However, a more de-
tailed analysis of mappings resulting when (pseudo-) complements are applied will 
be postponed till the next chapter. 

L e m m a 4.1. Let 1Z = (T, <) be a partially ordered set, let fž ф 0, let 0 ф 1Z C 
V(ӣ), let Пi ,П 2 : 1Z —r T be T-monotone measures on 1Z. If T is an upper semi-
lattice (a lower semi-lattice, resp.), then Пi VП 2(ПiЛП 2, resp.) is also a T-monotone 
measure on 1Z. 

P r o o f . Let П i , П 2 be T-monotone measures on 1Z, let A,B Є 1Z be such that 
A C B, so that UІ(A) < UІ(B) holds for both i = 1,2. If T is a lower semi-lattice, 
the inequality 

(Пi Л U2)(A) = UY(A) Л U2(B) < Пi(Б) Л U2(B) = (Ux Л U2)(B) (38) 

follows immediately. If T is an upper semilattice, the inequality 

П І ( Л ) < П I ( Б ) V П 2 ( Б ) (39) 

is valid for both i = 1,2, so that the relation 

(Пi V U2)(A) = UX(A) V U2(Ä) < Пi(Б) V U2(B) = (Пi V П 2 )(Б) (40) 

follows and the lemma is proved. ---

The following generalization is obvious. 
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Corollary 4.1. Let n and 1Z be as in Lemma 4.1, let T = (T, <) be a p.o. set, 
let S be a nonempty of T-monotone measures, each of them taking 1Z into T. If T 
is a complete upper semi-lattice, then the mapping V S :1Z -> T, defined by 

(\/s)(A) = \f{U(A):UeS} (41) 

for every A G TZ, is a T-monotone measure on 7£. If T is a complete lower semilattice, 
then the mapping f\ S : 1Z -> T, defined by 

( / \ s ) ( A ) = / \ { n ( A ) : n e s } (42) 

for every _4 G TZ, is a T-monotone measure on 1Z. 

For T-possibilistic measures only the operation of supremum conserves the con
ditions imposed on such measures. 

Lemma 4.2. Let n and 1Z be as in Lemma 4.1, let T = (T, <) be an upper semi-
lattice, let II i ,n2 : TZ -> T be partial T-possibilistic measures on 1Z. Then III V II2 

is also a partial T-possibilistic measure on TZ. 

P r o o f . The constraints according to which (IIi V II2)(0) = 0 r and/or (IIi V 
II2)(n) = l r supposing that 0 G 1Z and/or SI G K are obviously satisfied, let 
A,B,Al)B G TZ, then 

(IIi V U2)(A UB)=U1(AUB)V U2(A U B) = (UX(A) V UX(B)) 

v (n2(.A) v u2(B)) = (ni(i4) v u2(A)) v (ni(B) v n2(Fo) 
= ( n i v n 2 ) ( i i ) v ( n i v n 2 ) ( f l ) (43) 

and the assertion is proved. • 

The generalization to the case of the mapping V S defined by (4.5) supposing 
that T is a complete upper semi-lattice, is obvious. 

On the other side, if n , TZ, U\, II2 are as in Lemma 4.2 and if T is a complete lower 
semi-lattice, the mapping IIi AII2 need not be, in general, a T-possibilistic measure 
on TZ, as the following simple example demonstrates. Let 1Z= {0,_4,n—.A,n}, where 
0 ^ A ^ n, let T = (T, <) = ( { 0 r , l r } , <) be the most trivial two-element lattice 
with 0 r < l r , 0 r # l r . Let IIi,II2 : TZ -> T be such that IIi(0) = II2(0) = 0 r , 
nx(n) = n2(n) = i r , i i i ( ,4) = n2(n -A) = ®r, ni(n -A) = U2(A) = i r . Both 
IIi and II2 are obviously T-possibilistic measures on 1Z, as for both i = 1,2, 

Ui(A u (n - A)) = Ui(n) = i r = i r v 0 r = u(A) v n{(n - A\ (44) 

for the trivial unions containing 0 and/or n as their components the condition (4.8) 
is also trivially satisfied. But 

(IIi A n2)(A) = III(J4) A U2(A) = 0TK1T = 0 r , 
(nx A n2)(n -A) = nx(n - A) A n2(n - A) = 1 A 0 r = o r , (45) 
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so that 

(iii A u2)(A u (n - A)) = (iii A n2)(n) = iii(n) A n2(n) 
= i r A i r = i r ? (ni A n2)(;4) v (ni A n2)(n - A) 

= 0TV®T = 0 T I (46) 

so that Iii A II2 is not a T-possibilistic measure on 1Z. 
Using the lattice-valued metric function p, the relation (4.10) can be written as 

p((IIi A U2)(A U (n - A)), (Iii A U2)(A) V (Iii A n 2 ) (n - A)) = l r (47) 

supposing that T fulfills the conditions under which p was defined. This fact will be 
of use when considering the case of quasi-possibilistic measures (below). 

The following lemma will be of use when generalizing the assertion of Lemma 4.2 
to quasi-possibilistic measures. 

Lemma 4.3. Let T = (T, <) be a Brouwerian Boolean-like complete lattice. Then, 
for every 8i,s2,t0,ti,t2 G T, if p(8 i , t i) < t0 and p(s2,t2) < to hold, the inequality 
p(si V 82, ti V t2) < t0 holds as well. 

P r o o f . Due to the conditions imposed on T, following inequalities are valid. 

p(8i V 82, ti V t2) = [(5i V 82) A (f i V t2f] V [(ti V t2) A (8i V 82)
c] 

< [(81 V 82) A (tf A tf)] V [(ti V t2) A (sf A 8%)] 

= (8i A t f A t f ) V (82 A t f A t f ) V (ti A sf A 8f) V (t2 A 8f A s$) 

< (81 A t f ) V (82 A t f ) V (ti A 8f) V (t2 A 8f) 

= p ( 8 i ^ 2 ) V p ( 8 2 , t 2 ) < t 0 V t 0 = t0. (48) 

The lemma is proved. • 

Theorem 4 .1 . Let T = (T, <) be a Brouwerian Boolean-like lattice, let Q, ^ 0, let 
{0, n] C TI C V(ft) be a system of subsets of fi, let t0 e T, let Ii i , II2 :1l-> T beT-
to-quasi-possibilistic measures on 11. Then Iii V II2 is also a T-t0-quasi-pbssibilistic 
measure on 1Z. 

P r o o f . The constraints for 0 and fi obviously hold. Let A,J3, A U B G 7£, so 
that the inequality 

p(IIi(il U J5), Ui(A) V ni(B)) < t0 (49) 

is valid for both i = 1,2. Setting Si = U{(A U B) and U = Ut(A) V II^B) for both 
i = 1,2, and applying Lemma 4.3, we obtain that 

p((iii v n2)(A u B), (iii u n2)(A) v (ux v n2)(JB)) 
= p(iii (A u B) v n2 (_4 u J5), (ni (A) v n2 (A)) v (nx ( B ) V n2 (B))) 
< p(U1(AuB),UM)vni(B))Vp(U2(AuB),U2(A)VU2(B)) 

< ^oVt0 = t0. (50) 
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The assertion is proved. • 

As in the case of partial T-possibilistic measures, the conjunction (infimum) of 
T-£n-quasi-possibilistic measures need not be, in general, a T-*o-qua,si-possibilistic 
measure over the same domain. Indeed, re-considering the same counter-example as 
above, we obtain that the relation p(Ui(A U B, Ui(A) V Ui(B)) = <2>r < *o holds for 
each A, B, A U B G 11, each t0 G T, and both i = 1,2, but (4.11) yields that 

p((Ux A U2)(A U (ft - A)), (Ux A U2)(A) V (nx A II2)(ft - A)) < t0 (51) 

does not hold, if t0 < IF-

5. FROM REAL-VALUED TO LATTICE-VALUED NECESSITY MEASURES 

In the case of a real-valued possibilistic measure II : V(Q) -> [0,1], the necessity 
measure £ (or £n , to make explicit the original possibilistic measure IT) is the 
mapping, defined for every A C ft, by 

£(.A) = l - n ( f t - , 4 ) . (52) 

Its properties are, in a sense, dual to those of II. Obviously, £(0) = 0 and £(ft) = 1, 
moreover, for every A, B C ft we obtain that 

s(.4nB) = i - n(ft - ( i n B ) ) = i - n((ft - A) u (ft - B)) 
= I - [n(ft - A) v n(ft - B)] = (i - n(ft - A)) A (i - n(ft - B)) 

= E(.4)AE(B), (53) 

denoting, for a while, by V and A the supremum and infimum in ([0,1], <) . Moreover, 
as can be easily checked, for each A C ft the inequality £(-4) < II(A) is valid. 

As a matter of fact, necessity measure can be defined also axiomatically as a 
primitive notion. In the most simple case just investigated, real-valued necessity 
measure, defined on the power-set of all subsets of a fixed space ft, is a mapping 
£ : V(Q) -r [0,1] such that £(0) = 0,£(ft) = 1, and Z(A n B) = £(,4) A £ ( 5 ) 
holds for every A,B C ft. If the relation £(H*4o) = f\{^(A) : A G A0} is valid for 
every nonempty system A0 C V(il), where f|-4o = flAG^o ^ ' t^ ie n 6 0 6 8 1 3 ^ measure 
£ is called complete. The duality between possibilistic and necessity measures goes 
so far that, setting for a necessity measure £ , I I E ( - 4 ) = 1 — £(ft — A) for every 
A C ft, the mapping I IE can be easily proved to define a possibilistic measure on 
V(tt). Moreover, if £ = £n for a possibilistic measure II on P(ft), the identity 
U(A) = U{En)(A) holds for every A C ft. 

Let us consider an alternative way of definition of necessity measure induced by a 
given real-valued possibilistic measure on P(ft). Namely, instead of the operation of 
substraction 1 - . we apply the operation of pseudo-complement defined in ([0,1], <) , 
setting for every A C ft 

t(A) = (n(ft - A))c = \/{x G [0,1] : x A II(ft - A) = 0}. (54) 
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As a matter of fact, £ takes V(Q) into the binary set {0,1}. Indeed, if II(n- .A) >0 , 
then t(A) = 0, if II(n - A) = 0, then t(A) = 1 = £(A), so that the inequality 
£(.A) < £(A) obviously holds for every A C n (In what follows, when using £ and 
II together, they are supposed to be related to each other by (5.1)). Consequently, 
if II takes only the values 0 or 1, £ and £ are identical set functions. However, this 
is not the case if there exists B c f i such that 0 < n(.<4) < 1 (e.g., II is defined by 
a possibilistic distribution IT : Q -> [0,1] such that 0 < TT(UJO) < 1 holds for some 
uo e n , then 0 < U(B) < 1 holds for B = {u0}). Setting A = n - B we obtain that 

£(4) = i - n(n - A) = i - n(n - (n - B)) = i - U(B) > o, (55) 

but 

t(A) = \f{x e [0,1]: x A n(n - A) = 0} 

= \J{x e [0,1] :x A U(B) = 0} = 0 (56) 

Nevertheless, (5.2) holds even when replacing £ by £, i.e., the relation 

t(AHB) = t(A)At(B) (57) 

is valid for every i 4 , B C f l . Indeed, 

t(A HB) = (n(n -(An B))f = [(n(n - A)) v (n(n - B))f 
= \J{x e [o, l]: x A (n(n - A) v n(n - B)) = o 

< (Vt* e -0' Xl : x A n ( n -A) = °}) 
A (\J{x G [0,1] : x A n(n - -B) = 0}) 

= (n(n - A)f A (n(n - ,B))C = t(A) A £(S) , (58) 
hence, if t(A) = 0 or £(B) = 0, also t(A n B) = 0 and (5.6) holds. If £(A) = 
£(£) = 1, then n(n - A) = n(n - B) = 0 = n(n - A) V n(n - B), hence, for every 
x G [0,1] the relation x A [n(n - A) V n(n - B ) ] = 3 i A n(n - (A n B)) = 0 holds, 
so that £(_4n J5) = 1 and (5.6) is valid also in this case. Combining the inequalities 
£(A) < U(A) and t(A) < £(-4), proved above to be valid for every A C n , we 
obtain that £(.A) < U(A) also holds for every i c f i . 

Given a necessity measure £ on 'P(n), let us define the mapping ft (or fts) : 
7>(n) - • [0,1] such that, for every A C ft, 

U(A) = (X(Q - A)f. (59) 

Applying the way of reasoning dual to that used when proving (5.6) above we obtain 
that ft takes only the values 0 or 1 and that it is a possibilistic measure on V(£l). 
However, if n is a possibilistic measure on V(fl) such that 0 < n(^4) < 1 holds for 
at least one A C n , if £ ( = £n) is defined by (5.3) and ft = ft^ = U^n\ is defined 

by (5.8) then, contrary to the case when the substraction 1 — . is applied, ft is not 
identical with the original possibilistic measure n , as U(A) can be only 0 or 1. 

Relation (5.3) can be easily modified to the case of lattice-valued possibilistic 
measures. 
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Definition 5.1. Let T = (T, <) be a Brouwerian Boolean-like lattice, let ft 7- 0, 
let A C V(ft) be a nonempty ample field, let II : A -r T be a T-possibilistic measure 
on A. Then the mapping E (or En) : A -+ T, defined by 

En(-4) = (n(ft - A)f (60) 

for every A G A is called the T-(valued) necessity measure induced by II on A. 

Theorem 5.1. Let the notations and conditions of Definition 5.1 hold. Then 

(i) En(0) = 0 r , E n ( n ) = l r , 

(ii) En(A) < U(A) for every A € A, 

(iii) E n (A n B) = En(-4) A E n ( £ ) for every A,B eA. 

P r o o f . 

En(0) = ( n ( f t - 0 ) ) c = l c = 0 T , 

En(ft) = (n(ft - ft))c = 0 £ = l r , (61) 

so that (i) is proved. Given A, B G A, 

s n (-4 n B) = (n(ft - ( A n J5)))c = n((ft - A) u (ft - #)))c 

= (n(n - A) v n(ft - 5) ) c = (n(ft - A)f A (n(ft - B)f 
= En(-4)AEn(B) (62} 

due to the assumptions imposed on the complete lattice T = (T, <), so that (iii) is 
also proved. Finally, for each A £ A and each i G T , 

t = tMr = tA (11(A) V n(ft - A)) = (t A n(A)) V (t A II(ft - A)). (63) 

Hence, for each t eT such that t A II(ft - A) = 0 r the identity t = tA U(A) and, 
consequently, also the inequality £ < 11(A) follow. So, also the inequality 

E(A) = (n(ft - A))c = \J{t eT:tAU(n-A) = 0T}< 11(A) (64) 

is valid and the proof of Theorem 5.1 is completed. • 

6. QUASI-NECESSITY MEASURES 

The operation replacing II(A) by E(A) = (II(ft-.A))c can be applied to any mapping 
II : A -> T such that T = (T, <) is a complete lattice, so that the (pseudo-) 
complement tc is defined for every t G T, and supposing that A is closed with 
respect to complements. When II is a T-tn-quasi-possibilistic measure on A, the 
following assertion can be proved. 
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Lemma 6.1 . Let ft ̂  0, let 0 ̂  A C V(fl) be an ample field of subsets of ft, let 
T = (T, <) be a Brouwerian Boolean-like complete lattice, let II : A -> T be a T-
*o-quasi-possibilistic measure on ^4, where £0 € T is fixed. Then for every A, B e A 
the inequality 

p(X(A fl £ ) , E(A) A E(B)) < f0 (65) 

is valid, where S is induced by II due to (5.1). 

P r o o f . Under the conditions imposed on T the identities s = (scf and t = 
(tcf hold for every s,teT, so that 

p(s, t) = (sA tc) V (t A sc) = ((scf A * c) V ((tcf A sc) = p(sc,tc). (66) 

Hence, for every A,B e A also ft — A,Q - B e A and 

/ ) ( E ( 4 n B ) , S ( i ) A E ( B ) ) 

= P((n(ft -(An B))f, (n(ft - A)f A (n(ft - £))c) 
= p((n((ft - A) u (ft - £)))c, (n(ft - ,4) v n(ft - B)f) 
= p(u((n-A)u(n-B)),u(n-A)yu(n-B))<to, (67) 

as II is a fo-quasi-possibilistic measure on A. The assertion is proved. • 

Evidently, the mapping S defined in Lemma 6.1 could be called the T-£o-quasi-
necessity measure on A, induced by the T-to-quasi-possibilistic measure II, as it 
weakens the condition E(_4 fl B) = £(-4) A £(Z?) in the same way and degree in 
which the definition of T-£o-qu&si-possibilistic measure II weakens the condition 
U(A\JB) = U(A) Vll(B) . Hence, the notion of T-^o-quasi-necessity measure can be 
introduced also axiomatically, with (6.1) in the role of the key axiom. The following 
definition is purposely conceived at a rather general level. 

Definition 6.1. Let ft be a nonempty set, let 1Z be a non-empty system of subsets 
of ft, let T = (T, <) be a lower semi-lattice (i. e., for every s, t e T, 5 A t is defined 
in T), let to e T. A mapping E : TZ -» T is called a T-(valued)-to-quasi-necessity 
measure on 71, if 0 x = f\T is defined and S(0) = 0 r supposing that 0 G 72-, if 
1 r = \JT is defined and S(ft) = l r supposing that ft e 1Z, and if the relation 

p(X(A fl .B), E(A) A E(£)) < *0 (68) 

is valid for every A,B, A fl B e 1Z. If T is a complete lower semi-lattice (i.e., 
/\ A = AteA * *s defined for every 0 7-- A C T) and if the relation 

p ( S ( f | A) , / \ {£(.4) : .4 G .4}) < *o (69) 

is valid for every $ j^ A C 1Z such that f| ,4(= f\AeA A) is in 71, the T-^o-quasi-
necessity measure S is called complete. 

The following assertion is analogous to Theorem 3.1. 
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Theorem 6.1 . Let T = (T, <) be a Brouwerian Boolean-like lattice, let A be a 
nonempty ample field of subsets of a non-empty space ft, let Ei be a T-necessity 
measure on A, let E2 : A -> T be any mapping such that E2(0) = 0 r and E2(fl) = 
l r , let t0 e T be fixed, let 

E(A) = (Ex(A) A t°) V (E2(A) A t0) (70) 

for every A 6 A Then E is a T-t0-quasi-necessity measure on A 

P r o o f . The relations E(0) = 0 r and E(fi) = l r are obvious. Let A,B G -4, 
then 

p(E( .AnB),E(A)AE(B)) 

= p ( ( E i ( A n f l ) A * f ) V ( E 2 ( i 4 n B ) A t 0 ) , 

[(Ex (A) A t<f) V (E2(A) A t0)] A [(Ei(B) A # ) V (E2(fl) A to)]) 

= p((Ei(A) A Ei(B) A t£) V (E 2 (Anf l ) A t0), 

(Ei (.A) A Ei (5) A i£) V (E2(A) A t0 A Ei (£) A t£) V 

(Ei(A) A t£ A E2(B) A t0) V (E2(A) A E2(B) A t0)) 

= p((Ei (A) A Ei (fl) A t£) V (E2(i4 f lB)A t0), 

(Ei(i4) A Ei(.B) A t£) V (E2(A) A E2(B) A t0)), (71) 

as to A tg7 = 0 r due to the conditions imposed on T. Applying (3.3) with s = 
Ei (A) A Ei(B) A iff, ti = E2(A n B) A t0 and t2 = E2(A) A E 2 (£) A t0, we obtain 
the inequality 

p(E(A fl B), E(A) A E(B)) < p(E2(A H B) A t0, E2(A) A E 2 (£) A t0) 

= [E2(.A fl B) A t0 A (E2(A) A E2(J5) A t0)
c] 

V [E2(A) A E2(fl) A t0 A (E2(A HB)A t 0 ) c ] < t0 V t0 = t0. (72) 

Hence, E is a T-to-quasi-necessity measure on A. n 

Also an assertion for to-quasi-necessity measures analogous to that of Theorem 
3.2 for to-quasi-possibilistic measures can be stated and proved. 

Theorem 6.2. Let T = (T, <) , to ,T(t 0 ) ,T(t£) , f i and A be as in Theorem 3.2, 
let E : A -» T be a partial T-to-quasi-necessity measure on A. Then there exist a 
partial T(tQ7)-valued necessity measure Ei on A and a mapping E2 : A -» T(to) such 
that E2(0) = 0r(*o)>s2(ft) = lr(t0)> a n d t h a t t h e i d e n t i t y ^(A) = E I ( J 4 ) V E2(A) 
holds for each A £ A. 

P r o o f . The proof more or less copies that of Theorem 3.2 above. Under the 
conditions imposed on T, the relation 

E(A) = (E(A) A t£) V (E(A) A t0) (73) 
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holds for every A G A. Setting Ei(A) = E(.A) A t$ and E2(A) = E(,4) A to, the 
equalities Ex(0) = E2(0) = 0 r ( t f ) = <2>T(*0) = 0 r > Ei(ft) = lr(tf)> and E2(ft) = 
lr(t0)

 a r e obviously valid, cf. (3.20) for more detail. 
Let A, B G A. As E is a partial T-to-quasi-necessity measure on A, the inequality 

p(E(A n £ ) , E(A) A E(£)) < f0 (74) 

is valid. Due to the definition of Ei , 

p ( E i ( A n B ) , E i ( ^ ) A E i ( B ) ) 

= p ( E ( A n £ ) A i c , E ( A ) A E ( B ) A i c ) 

< p ( E ( . 4 n B ) , E ( . 4 ) A E ( B ) ) < t 0 > (75) 

applying Lemma 3.2 and (6.10). On the other side, however, 

(Ei(A n B)) A (Ei (A) A E i ( £ ) ) c < E(A n B) A * c < t£, (76) 

and 
(Ei(yl) A Ei(B)) A (Ei (.4 n B)f < E(A) A E(B) A * c < * c , (77) 

so that the inequality 

p(Ei(_4 n B), Si (A) A Ei(B) < tf (78) 

follows. Combining (6.11) and (6.14) together, we obtain that 

p(Ei(,4 n B), Ei (A) A Ei(fl)) < *0 A # = 0 r (79) 

holds. Lemma 2.1 then yields that 

S i ( i n B ) = Ei (.A) A Ei (A), (80) 

so that 5 i is a partial T(^u
7)-necessity measure on A and the assertion is proved. • 

7. QUASI-MONOTONE MEASURES 

The same idea on which the weakening of possibilistic and necessity measures to 
guasi-possibilistic and quasi-necessity measures is based can be applied to perhaps 
the most general and still nontrivial set functions reflecting only the most general 
common property of all set functions measuring the sizes of sets from their domain 
- the property of monotonicity with respect to set inclusion. Very often such set 
functions are called fuzzy measures, but this term seems to be rather misleading, as 
these mappings have nothing in common neither with the phenomenon of fuzziness 
itself, nor with its mathematical processing within the framework of the theory of 
fuzzy sets. Hence, in what follows, we use the perhaps more adequate term monotone 
measures. Let us introduce the appropriate notation and recall the basic definition. 
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Definition 7 .1 . Let T = (T, <) be a partially ordered set, let 1Z be a nonempty 
system of subsets of a nonempty set ft. A mapping II : A -» T is called a T-
(valued) monotone measure on 7£, if for each A, B e 1Z such that Ac B holds the 
relation 11(A) < 11(5) is valid. If T = (T, <) is such that the minimum element 
0 r = /\T = f\teTt and the maximum element 1T = \/teTt = \JT are defined, if 
0 and ft are in 1Z, and if the relations 11(0) = 0 r and II(ft) = l r hold, then the 
T-monotone measure II is normalized. Here /\ and V denote the (in general, partial) 
operations of infimum and supremum induced by the partial ordering relation < . 
Obviously, the inequalities n(0) < U(A) < n(ft) hold for each monotone measure n 
and each AelZ supposing that 0 6 1Z and/or ft e 1Z. 

The inspiration for our further reasoning will be taken from the particular case 
T = (T, <) = (V(X), C), when the values of the monotone measure n in question are 
subsets of a fixed nonempty set X partially ordered by the relation of set inclusion. 
The condition of monotonicity obviously reads, in this case, that U(A) C H(B) or, 
what turns to be the same, that U(A) - U(B) = 0 holds for each A,B e TZ such 
that A C B. As in (V(X), c) the minimum element 0 and the maximum element X 
are obviously defined, a (V(X), c)-valued monotone measure n on 1Z is normalized, 
iff 0 and ft are in 7£,n(0) = 0, and n(ft) = X. The weakened modification is almost 
evident. Let T = (V(X), c ) , let X0 be a fixed subset of X A mapping 1 1 : ^ 4 1 
is a (V(X), C)-valued-Xo-quasi-monotone measure on 1Z, if for each A,B e 1Z such 
that A C B the inclusion U(A) — U(B) C Xo is valid. If X0 = 0, we are back at the 
(V(X), c)-monotone measure on 1Z. 

When trying to generalize and re-phrase this idea to the case of lattice-valued 
monotone measures, let us limit ourselves, for the sake of simplicity, to the case when 
the set-theoretic equivalence Yi C Y2 iff Yi - Y2(= Y\ H (X - Y2)) = 0, trivially valid 
for each subsets Y\ ,Y2 of a nonempty set X, can be replaced by the equivalence 

t\ < t2 iff tx A t$ (= tx A \]{s eT:sAt2 = 0 r } ) = 0 r , (81) 

valid for every t\,t2 from the lattice T = (T, <) under consideration. So, we arrive 
at the following definition. 

Definition 7.2. Let T = (T, <) be a Brouwerian Boolean-like lattice, let A be 
a nonempty ample field of subsets of a nonempty set Q, let to e T be fixed. A 
mapping n : 1Z -» T is called a T-(v&l\ied)-to-quasi-monotone measure on A, if for 
each A,BeA such that Ac B holds, the inequality 

U(A) A (U(B))C < to (82) 

is valid. 

As can be easily seen, under the conditions imposed on T, if £o = 0T> then 
11(A) A (U(B))C = 0 r implies that 11(A) < U(B) holds. Hence, as in the case 
with T = (V(X), C) and X0 = 0, we obtain the original definition of T-monotone 
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measures on A. The notations and conditions of Definition 7.2 being valid, we obtain 
easily that for each A, B G A such that Ac B, the inequality 

ЩA) < ЩB) V ío (83) 

is valid. Indeed, 

11(A) = 11(A) A l r = 11(A) A (11(B) V (U(B))C) = 11(A) A II(JB)) 

V (11(A) A (U(B))C) < U(B) V t0. (84) 

T-monotone measures can be induced by no matter which T-valued set functions 
using the standard idea of inner and outer measures. 

Definition 7.3. Let ft ^ 0, let 0 ^ n C ft(ft), let T = (T, <) be a complete 
lattice, let II : n -> T be any mapping. The inner (or lower) measure II*, and the 
outer (or upper) measure II* induced by II are mappings both taking V(tt) into T 
and defined, for each A C ft, by 

n*(-4) = V i n ^ C ' e T ^ c c A } , (85) 

n*(A) = / \ { I I ( C ) : C G f t , C D . 4 } , (86) 

applying the conventions V 0 = 07- and /\ 0 = I7- for the empty subset of T, if 
necessary. 

Definition 7.4. Let n and T be as in Definition 7.3. A mapping II : n -> T is 
called normalized, if 11(0) = 0 r and/or II(ft) = l r supposing that 0 G ft and/or 
ft eft. 

Lemma 7.1. Let ft and T be as in Definition 7.3, let II : ft -» T be a normalized 
mapping. Then both II* and II* are normalized monotone measures on P(ft). If, 
moreover, II is a monotone measure on ft, then both II* and II* conservatively 
extend II from ft to P(ft) (i.e., n*(A) = U*(A) = 11(A) for every A G ft), and the 
inequality II* (A) < II* (A) holds for every A C ft. 

P r o o f . If 0 G ft and/or ft G ft, the identities II* (0) = II* (0) = 11(0) = 0 r and 
II*(ft) = II*(ft) = II(ft) = l r are evident. For every A C B C ft, if C G ft is such 
that C C A holds, then C C B holds as well, hence, the set inclusion 

{11(C) : C G ft,C C -4} C {11(C) : C G ft,C C £ } (87) 

follows and the inequality II* (A) < II* (B) results. The proof of the same inequality 
for II* is completely dual. Hence, both II* and II* are T-monotone measures on 

If II is a T-monotone measure on ft, then for each C,D G ft such that C C A C D 
holds the inequality 11(C) < U(D) follows, hence, 

n*(-4) = \J{U(C) : C G ft,C C A} < f\{U(D) : D G ft,£> D A} = II*(A) (88) 
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is valid for every A C ft. If A G K, the identities II* (A) = II(.A) = U*(A) immedi
ately follow from (3.8). The assertion is proved. • 

As can be easily seen, if II is not a T-monotone measure on A, neither II* nor 
II* are identical with II on A. Indeed, let A,B G A be such that A C B and 
U(A) > U(B) hold, then the inequalities 

n*(-5) = \J{U(C) :CeA,CcB}> U(A) > U(B) (89) 

a n d IT (.A) = f\{U(D) :DeA,DDA}< U(B) < U(A) (90) 

easily follow. 
Let us note that under the notations and conditions of Lemma 7.1 and if T is 

Brouwerian the implication inverse to (7.3) is valid, i.e., if II : A -* T is such that 
11(0) = 0 r , I I ( f t ) = l r and the inequality U(A) < U(B) V *0 is valid for a fixed 
t0 e T and for each A,B G A such that A C B holds, then II is a T-Jo-quasi-
monotone measure on A. Indeed, U(A) < U(B) V t0 implies that the inequality 

U(A)A(U(B)f < (U(B)Wt0)A(U(B)f 

= (U(B)A(U(B)f) V (toA(U(B)f)<0TVto = to (91) 

is valid. 
Under the same notations and conditions we can prove that if II : A -» T is 

a T-Jfj-quasi-monotone measure on A, then the mapping U0 : A -» T, defined by 
IIo(0) = 0r> IIo(-4) = U(A)\/t0 for each 0 ̂  A G A, is a T-monotone measure on A. 
The constraints for IIo(0) and Iln (ft) are obvious and for every 0 ̂  A C J5, .A, B G A, 
we obtain that the inequality 

U0(A) = U(A) Vt0< (U(B) V t0) V to = n(B) V t0 = n 0 (B) (92) 

holds, applying (7.3). 

The class of quasi-monotone measures is closed with respect to the operation of 
supremum in the following sense. 

Theorem 7.1 . Let T = (T, <) be a complete lattice, let A be a nonempty ample 
field of subsets of a nonempty set fi, let S be a nonempty subset of T. let P b e a 
nonempty set of mappings such that each II G V takes A into T and, for some s G 5, 
II is a T-8-quasi-monotone measure on A. Let \]V : A -> T and /\ 7̂  : *4 —r T be 
the mappings defined, for any A G *4, by 

(V^)(^) = V < n ^ ) : I l G n (93) 

(A^)(^) = f\WA):UeV}. (94) 

Then V V is a T-V 5-quasi-monotone measure on .4, let us recall that V S = V seS 5-
If T is, moreover, completely distributive, then f\ V is also a TAJ 5-quasi-monotone 
measure on A. 
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In particular, if V is a nonempty set of T-£n-quasi-monotone measures on A and 
T is a complete lattice, then \jV\s also a T-£n-quasi-monotone measure on A. If T 
is, moreover, completely distributive, the same holds true for /\V. 

P r o o f . Due to the conditions imposed on T and on the mappings from V, for 
each U e V the inequality (7.3) holds, hence, there exists s(= su) e S such that, 
for each A C B, A, B e A, the inequality 

U(A) < U(B) V su < U(B) V (\J S) (95) 

is valid. Hence, the relation 

(\JV)(A) =. \J{Tl(A) : IKE V} <\/{11(B) V (\J s) : l i e V} 

= (\J{Il(B):UeV})v(\Js) 

= (\JV)(B)V(\/S) (96) 

easily follows. If T is completely distributive, a similar relation holds also for f\V, 
i.e., 

(/\V)(A) = /\{U(A):UeV}</\{U(B)v(\/s):UeV} 

= (/\{U(B) :UeV})v(\Js) = (/\ V) (B) V (\J s) . (97) 

The relations (\JV)(<b) = 0 r = ( A W ) a n d ( V ^ ) ( n ) = l r = (AV)(il) are 
obviously valid. Hence, under the conditions imposed on T in both the particular 
cases, V V and f\ V are T-V 5-quasi-monotone measures on A. • 

As a matter of fact, in the case of real-valued monotone measures which take 
their values in the unit interval of real numbers equipped by the standard linear 
ordering, i. e., in the case when T = ([0,1], <), the idea of quasi-monotone measure 
leads to trivial results beyond any interest, as the following assertion demonstrates. 

Lemma 7.2. Let T = ([0,1], <) , let 1Z be a nonempty system of subsets of a 
nonempty set 0 , let n : 1Z -» [0,1] be any mapping such that n(0) = 0 and/or 
n(fi) = 1 supposing that 0 G 1Z. and/or Q e TZ, and such that n is monotone on 
zero sets, i.e., if A,B e ft, A C B and U(B) = 0, then II(J4) = 0. Then II is a 
T-£-quasi-monotone measure on 1Z for every e > 0. 

Remark 2. E.g., any mapping n : 1Z -> [0,1] such that n(^4) = 0 iff A = 0 and 
0 e 1Z and U(ft) = 1 supposing that ft G 1Z meets the conditions of Lemma 7.2. 

P r o o f . The definition of pseudo-complement in T = ([0,1], <) yields that, for 
each x G [0,1], xc = \J{y G [0,1] : x Ay = 0}, hence, xc = 0 for any x > 0 and 0 C = 
1. So, for any A, B G 1Z such that A C B holds we obtain that U(A) A (U(B))c = 0. 
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Indeed, if U(B) > 0, then (U(B))C = 0, if U(B) = 0, then U(A) = 0 due to the 
conditions imposed on n . Hence, for any A,Bell,AcB, and for any e > 0 the 
inequality U(A) A (U(B))C < e holds, so that n is a ([0,1], <)-£-monotone measure 
on Tl. • 

On the other side, for non-numerical, in particular, lattice, Boolean or set-valued 
monotone measures the operation of pseudo-complement is far not so trivial as in 
the case with K = ([0,1], <) in Lemma 7.2 above. An intuition behind lattice-valued 
metrics and monotone measures will be developed and analyzed in the next chapter. 

8. AN INTUITION BEHIND LATTICE-VALUED METRICS AND 
RELATED QUASI-MEASURES 

Let us introduce and analyze the following model of multicriterial evaluation and 
decision making. Consider a problem of no matter which nature; a more detailed 
specification will not play any role below. Let ft be a nonempty set of possible or po
tential solutions to this problem (or candidates which can be taken into consideration 
when looking for the best, in a sense, solution). Each solution u G ft can be evalu
ated with respect to a number of various criteria, in other words, various aspects of 
each solution are evaluated. Let us consider just the most simple case when all these 
criteria are qualitative and binary-valued. Hence, given wGfl and a criterion x, the 
solution u may be either good (adequate, appropriate, acceptable,...) with respect 
to the criterion x(x(u) = 1, is symbols), or u may be wrong (bad, inadequate, in-
acceptable, inappropriate,...) w.r.to x(x(u) = 0, in symbols). Denoting by X the 
set of all criteria under consideration, we define the mapping n (or nx) : ft —> V(X) 
which ascribes to each u G ft the subset n(u) = {x G X : x(u) = 1} of those criteria 
with respect to which u is good (adequate,...). This subset of X can be taken as the 
value ascribed to the solution u G ft by the multidimensional set-valued evaluation 
(function) n. 

The mapping n : ft —> V(X) defines the partial ordering < on ft, setting simply 
CJI < u2 iff n(ui) C 7r(u2) holds. It is quite intuitive to say that u2 is at least as good 
solution (better, resp.) solution to the problem under consideration as u\ (than cOi, 
resp.), if the relation u\ < u2(u\ < u2, i.e., cOr < u2 but not u2 < u\, resp.) is 
valid, as this relation means that u2 is good (adequate,...) w.r.to the same criteria 
as u\ (and perhaps w.r.to some more criteria). Still another construction, this 
time leading to a set-valued monotone measure, is possible. Define the equivalence 
relation « on ft in this way: u\ « u2 iff u\ < u2 and u2 < U\ hold together, i. e., iff 
n(ui) = n(u2). Consider the factor-space f}0 = ft/ « and identify each equivalence 
class [u] G fi0 with the value n(u) C X, this mapping is obviously one-to-one. 
The identity mapping Uid : f)0 —> V(X) is obviously a (V(X)y c)-valued monotone 
measure on A = J70 C V(ft). Instead of the p.o. set (V(X),C) we can construct 
the p.o. set (ft0, <) such that [ui] < [u2] holds iff [ui] C [u2] holds, i.e., iff U\ < u2 

holds in (ft, <) . The identity,mapping n ^ is then an (fl0, <)-monotone measure on 

fto-
The difficulties arise when searching, given a set A C il0 of solutions, for the best 

solution with respect to the monotone set function n ^ on A = £V If the supremum 
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of A w.r.to < is in A, i.e., if there is UA G A such that U>A > u holds for each 
u> G .4, the decision is obvious; this u;^ is the best solution to the problem under 
consideration within the framework of A and this decision completely meets the 
intuition behind the partial ordering < on f]0- If this is not the case, one of the 
following partial remedies can be taken into consideration. 

(i) The solution UJA = U M= L L e A u ) l s )omed with A, so that the best solution in 
-4U{CLM} will be just UA- However, at the level of applications this assumption 
implies that we are able to combine sophistically the solutions from A so that 
the positive features of each solution are conserved, i.e., for every criterion 
x G X and every u> G -A, if u is good w.r.to x, also the combined solution 
is good w.r.to x. It is a matter of the real situation, problems and solutions 
under consideration whether such an assumption is realistic or not. 

(ii) We can pick up and restrict our considerations to the non-dominated solutions 
in A; a solution UJ G A is dominated, if there exists CJI G A such that u < u\ 
holds. However, if (i) is not the case, the subset A0 C A of non-dominated 
solutions contains at least two elements, so that some further and ontologi-
cally independent principle must be introduced, if we have to choose just one 
solution. Hence, every such decision rule involves some more conditions under 
which this rule is applicable and reasonable when applied within our model. 
Nevertheless, to limit ourselves to non-dominated solutions from A0 C A can 
be taken as a reasonable intermediate step before applying further measures. 

(iii) Another remedy is to introduce a linear ordering <* on A conservatively ex
tending the partial ordering < on A defined by the set inclusion on V(X). 
Hence, for every wi,U2 G A either u\ <* u>2 or L1J2 <* u)\ holds, and if u\ < U2 
holds, u\ <* u)2 holds as well, (this can be done for each partial ordering; in 
finite cases a constructive proof exists, in infinite cases Zorn lemma applies). 
In particular, any real-valued monotone measure A on fin C 'P(fi) defines such 
a linear ordering, setting u)\ <* u>2 iff A(tc>i) < A(dJ2), holds. Again, the choice 
of such a monotone measure A is a new and ontologically independent step in 
our reasoning, i. e., up to the most trivial cases no such choice can be uniquely 
deduced from and completely justified by the model described above. 

(iv) The same idea as in (i) can be applied, but only with respect to the criteria 
from a proper subset Y0 C X, in other words, the criteria from the set X0 = 
X — Y0 are neglected when defining a partial ordering <Xo in fin. In symbols, 
ui <x0 U2 holds for u\)U)2 G fin, iff the set inclusion CJI fl (X — X0) C U2 H 
(X — X0) is valid. The particular choice of the subset X0 of neglected criteria 
is, again, an ontologically independent input in our decision procedure and can 
be motivated by various reasons. E.g., if the set X is infinite, and the value 
x(u), given u> G fin, can be evaluated only individually, taking one x e X after 
another, then each demand of computational effectiveness requests to limit 
ourselves to a finite number of particular criteria, i. e., to a finite, hence, proper 
subset Y0 of X. Other motivation for omitting some criteria may read that, for 
some reasons, they are not taken as much important, in the given context, or 



Approximations of Lattice-Valued Possibilistic Measures 203 

tha t the cost to be paid or the obstacles to be overcome when evaluating the 
solutions with respect to these criteria, are too high when relating them to their 
importance when searching for the optimal solution. The elimination of some 
criteria from consideration can proceed also gradually and sequentially, s tep 
by step, hoping tha t an acceptable compromise between the gradually "less 
and less part ial" ordering <Xo on fi0 (with X0 increasing), and the demands 
imposed on the chosen solution taken for the best one, will be reached sooner 
or later. 

Throughout this paper, the s tandard demands imposed on lattice-valued pos
sibilistic measures have been weakened uniformly in the sense tha t the threshold 
values t G T, up to which the value U(A U B) and U(A) V U(B) may differ, was 
taken the same for each A, B, A U B G 11 (the definition domain of n ) . A further 
generalization could read as follows: the still accepted difference between U(A U B) 
and I I ( J 4 ) V 11(B) could differ for different A, B, A U B G 11. E.g. , for " important" 
or often occurring cases only a very small or even none (i.e. t = Q>T) difference 
is acceptable, on the other side, for some rarely occurring or "not too impor tant" 
sets A, B, A U B also a large value of t, or even t = IT*, are acceptable. Supposing 
we were able to define, in an appropriate way, the expected value of the difference 
between U(A U B) and U(A) V U(B), and demanding only this expected value to be 
beyond a threshold value, we would arrive at a lattice-valued analogy of the Bayesian 
risk and Bayesian decision function well-known in statistical decision theory. How
ever, let us postpone a more detailed analysis and formalization of this approach to 
another occasion. 

A C K N O W L E D G E M E N T 

This work has been sponsored by the Cost Action 274 (TARSKI). 

(Received February 27, 2004.) 

R E F E R E N C E S 

[1] R. Belohlavek: Fuzzy Relational Systems: Foundations and Principles. Kluwer Aca
demic/Plenum Publishers, New York 2002. 

[2] G. Birkhoff: Lattice Theory. Third edition. Amer. Math. Society, Providence, RI 1967. 
[3] G. De Cooman: Possibility theory I, II, III. Internat. J. Gen. Systems 25 (1997), 4, 

291-323, 325-351, 353-371. 
[4] D. Dubois and H. Prade: Theorie des Possibility - Applications a la Representation 

des Connoissances en Informatique. Mason, Paris 1985. 
[5] D. Dubois, H. Nguyen, and H. Prade: Possibility theory, probability theory and fuzzy 

sets: misunderstandings, bridges and gaps. In: The Handbook of Fuzzy Sets Series (D. 
Dubois and H. Prade, eds.), Kluwer Academic Publishers, Boston 2000, pp. 343-438. 

[6] R. Faure and E. Heurgon: Structures Ordonnees et Algebres de Boole. Gauthier-
Villars, Paris 1971. 

[7] J. A. Goguen: L-fuzzy sets. J. Math. Anal. Appl. 18 (1967), 145-174. 
[8] I. Kramosil: Extensions of partial lattice-valued possibility measures. Neural Network 

World 13 (2003), 4, 361-384. 



204 I. KRAMOSIL 

[9] I. Kramosil: Almost-measurability relation induced by lattice-valued partial possibilis-
tic measures. Internat. J. Gen. Systems 33 (2004), 6, 679-704. 

[10] R. Sikorski: Boolean Algebras. Second edition. Springer-Verlag, Berl in-Gott ingen-
Heidelberg-New York 1964. 

[11] L. A. Zadeh: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 
1 (1978), 1, 3-28. 

Ivan Kramosil, Institute of Computer Science - Academy of Sciences of the Czech Re-
public, Pod Vodárenskou věží 2, 182 07 Praha 8. Czech Republic. 
e~mail: kramosilucs.cas.cz 


		webmaster@dml.cz
	2015-03-23T08:44:34+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document




