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STATIONARY DISTRIBUTION 
OF ABSOLUTE AUTOREGRESSION 

J I Ř Í ANDĚL AND PAVEL RANOCHA 

A procedure for computation of stationary density of the absolute autoregression (A AR) 
model driven by white noise with symmetrical density is described. This method is used 
for deriving explicit formulas for stationary distribution and further characteristics of AAR 
models with given distribution of white noise. The cases of Gaussian, Cauchy, Laplace and 
discrete rectangular distribution are investigated in detail. 
Keywords: absolute autoregression, stationary distribution, marginal distribution 
AMS Subject Classification: 60G10 

1. INTRODUCTION 

Let {Xt} be an ergodic Markov process with discrete time. Its stationary distribution 
7r is given by integral equation 

<A) = f P(A|x)dтr(a;), AeB (1) 

where B is the cr-algebra of Borel sets and P is the conditional (i.e. transition) 
probability. Even in the simplest linear models such as AR(1) it is not easy to find 
a closed form solution ir of (1). If the model for {Xt} is non-linear, it is even more 
difficult to solve (1). One of the rare exceptions where a solution of (1) was found 
is so called absolute autoregression (AAR) 

Xt = a\Xt-i\+et (2) 

where a £ (—1,1) and et is a strict white noise (i.e., a sequence of i.i.d. random 
variables). Andel et al. [4] proved that for a £ (—1,0) and for et ~ N(0,1) the 
stationary density of (2) is 

h(x) = J 2 ( 1 ~ a 2 ) exp{-( l - a2)x2/2}$(ax) (3) 

where <E» is the distribution function of N(0,1). It was derived that in this case 

___ [2 a __ 7T-2a2
 fA. 

EXt = x — /===> varX t = — (4) 
V 7T y/\ - - a 2 7r(l - a2) 
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and the correlation coefficient between Xt and Xt-\ is 

. . \a\ir + 2a2y/\ - a2 - 1c? - 2|a|arctg yjar2 - 1 / r . 

P(°) = " - 2 ^ • ( 5 ) 

Let C(a, (3) be the Cauchy distribution with the density 

1 n 
f(x) = -nP2 + (x-a)2' 

Consider the model (2) with a £ ( -1,0) and et ~ C(0,1). Define A = \a\/(\ - \a\). 
Andel and Barton [3] proved that Xt in (2) has the stationary density 

2 _ f (1 + A)n _ xln[A~2(l + x2)} + (A2 - 1 + x2)arctgo;1 
[X) IT2 { 2A[(1 + A)2 + x2} 4A2x2 + (1 - A2 + x2)2 J * [ } 

Chan and Tong [5] and Tong [7, p. 141] simplified the methods used for derivation 
of (3) and (6). Their procedure can be summarized as follows. Let et in (2) have a 
symmetric density / . Let g be the stationary density of the AR(1) process & given 
by 

6 = a 6 - i + e t . (7) 

Then the stationary density h of Xt in (2) is 

/•OO 

h(y) = 2 / g(x)f(y-ax)dx. (8) 
Jo 

(The authors overlooked that the factor 2 must be introduced in the last formula.) 
Let us remark that if we have a guess that a function h could be a stationary density 
of Xt then it is easy to verify it from (2). 

Problems in non-linear time series models are usually quite complicated and must 
be solved numerically or by simulations. It is important to have a few explicit 
solutions because they allow to compare accuracy of numerical methods with the 
exact results. One such solution for the first-order threshold autoregression with 
Laplace white noise has been deduced quite recently by Loges [6]. In this paper we 
derive some new stationary distributions of the AAR process {Xt} given by (2). 

2. NORMAL DISTRIBUTION 

We mentioned above that formulas (3), (4), and (5) were derived under the assump­
tions that et ~ N(0,1) and a G ( -1 ,0) . We generalize the results to a G ( -1 ,1) . 

If et ~ N(0,1) then & in (7) has the distribution N(0, j^?). Prom (8) we get 
that the stationary density h of Xt is 

HУ) ! y ° ° ^ - ^ e x p { - ( l - a V / 2 > ^ = exp{-(y - ax)2/2} dx. 

Direct integration leads to formula (3) and we can see that (3) and (4) are valid for 

a G (-1,1). 
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Using the same procedures as in Theorem 4.3 in Atidel et al. [4], we can derive 
for a G (0,1) that the correlation coefficient p(a) between Xt and Xt-i is also given 
by formula (5). This means that p(—a) = p(a), a G (—1,1). 

The density h is plotted in Figure 1 (for a = -0.8) and in Figure 2 (for a = 0.8). 
Expectation EXt and variance var Xt as functions of a given by (4) are introduced 
in Figure 3 and Figure 4, respectively. In Figure 5 we can see p(a), which is defined 
by (5). 
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Fig. 1. Function h for a 
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Fig. 2. Function h for a = 0.8. 
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Fig. 3. Expectation EKt-
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Fig. 4. Variance varKt-

The joint stationary density of (Xs, Xs-\) is 

V2(xs,xs-i) = • 
Г Æ ü exp {--- -.EŽ-1} Ф(os,-i) exp {- ( » - + ^ - 0 a | for.T._1 < 0 , 

^ . Æ i ! e x p { - Ь ÿ 2 . x 2 _ 1 } ф ( a x . - 1 ) e X p { - ^ - a

2

Д ' - 1 ^ } for ! , _ ! > 0 . 
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The joint stationary density of (Xs, .Xs_2) is 

Рз(х3,х3-2) =-\/-——-Ф(аж я_ 2) 7Г V 1 + а-
v ( Í ж* ~ 2а2х*х3-2 + x2_2 ) ж Га(Жа + s_-2) 
4 P l 2(1 +а 2 ) Г 1 v/1 + а2 

Г а:2 + 2а2хажд_2 + ж2_2 ) ,_ [а(жд-жа_2)1 \ 
е Х Р \ 2(1 +а») Г [ х/1 + а2 Л 

-1 - 0 . 5 0 .5 1 

Fig. 5. Corrélation coefficient p(à). 

The functions p2 and P3 for a = 0.8 are introduced in Figure 6 and Figure 7, 
respectively. 

Fig. 6. Function p2(^a,-~s-i)• Fig. 7. Function _93(-c_,x_-2). 
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3. CAUCHY DISTRIBUTION 

If et ~ C(0,1) then the stationary distribution of the process £t = o£t-i + e* with 
\a\ < 1 is C(0,Q) where Q = 1/(1 - |a|). The corresponding density is 

i \ 1 Q 
g{x) = ^ Q M ~ - -

The stationary density of Xt can be calculated from (8). We obtain 

. , s _ 2 Q f°° 1 1 
W ~ W o Q2 + x - l + ( y - a x ) - d X -

Again define A = |a|/(l — |o|). Let a G (0,1). After some computations, which can 
be simplified using program package Mathematica, we get 

2A f (1 + A)ir yln[A-*(l + y2)] + Q42 - 1 + y2) arctgy 1 
W ; 7T2 \ 2il[(l + ^l)2 + y2] + 4>l2y2 + (1 - A2 + y2)2 J ' [ } 

The density ft for a = —0.8 defined by (6) is plotted in Figure 8. If a = 0.8 then h 
is defined by (9) and its graph can be found in Figure 9. 

-15 - 1 0 -5 5 -5 5 10 15 

Fig. 8. Function h for a = -0 .8 . Fig. 9. Function h for a = 0.8. 

4. A DISCRETE WHITE NOISE 

Assume that a = ^ and 
2i — 1 1 

et = 6 with probability — 
2n 2n 

for i = - n + 1 , . . . , n where 6 > 0 and n = 1,2, Then the rectangular distribution 
R(-6,6) is the stationary distribution of the process & in (7) (see Andel [1,2]). Let 
XB be the characteristic function of the set B and let Sc(x) be the Dirac 5-function, 
l-e- J^oo Sc(x)dx = 1 where 

H" Sc(x) = 
for x = c, 
otherwise. 
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The distribution of et can be described by the generalized density 

1 n 

I» = 2n" -C '-fe-6(*)-
t=-n+l 

A random variable with the density / is discrete and it reaches values ^_^b, 
i = — n + 1 , . . . , n, each with probability ^- . A straightforward calculation gives 

1 f°° ( 1 \ 1 n 

Mv) = W X[-6,6i(x)/(y--rcjdx-- _T x ^ - ^ . ^ y ) . 
, , u v ' i=-n+l 

It is easy to verify that h is really the stationary density of the AAR process (2). 
Further we obtain 

E X _ &
 E v 2 _ & 2

 V 3 r y „ .& 2 (16n 2 -3) 

Since 

Xt = —\Xt-i\+et, Eet = 0, 

we have 

1 1 f° 1 f°° b2 

C W C , = j ; " ] * - . ! * - . = — / _ _ A ( * ) _ + j - _ _ A ( * )dx = j -

and thus 
lv v ^ EX tX t_i - (EXt)

2 3 
/o = corr(-Kt,_Kt_i) = = — 2 — - . 

var Xt 16n2 — 3 
A simple case arises for n -= 1 when we have the process Xt = \\Xt-\\ +£t where 

{—| with probability | , 

| with probability \. 

The stationary density of Xt is 

Kv) = - [x[-io\(y) + X[j,6](i/)} 

and p = 3/13 = 0.231. 
Now, we consider the case a = 2^+r anc^ 

2i 1 
et = b with probability 2n + l 2n + l 

for i = —n,. . . , n where 6 > 0 and n = 1,2, The stationary distribution of the 
process £t in (7) is again the rectangular distribution R(—&, b) (see Andel [1,2]). The 
generalized density of St is 

1 n 

f(x) = ~ 7 У^ 5_2i_h(x) 
K ' 2 П + 1 .-"-' 2n+l6V J 
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and we obtain 

1 f°° ( 1 \ 1 n 

h(y) = - J X[-M,0)/(y - - ^ z ) dx = - £ x[^Tb,mkb](y). 
' i——n 

It can be verified that h is the stationary density of the process {Xt} in (2). Further 
we obtain 

EX - b
 F y 2 _ 6 2

 216n2 + 1 6 n + l 
E X * - 2 ( 2 ^ + 1 ) ' E*< " 7 ' V a r X t = 6 12(2n + l ) ' 

and 
L26n2 + 6n + l 12n2 + 12n + l 

E A t A t _ i = b -------—, , w , p •• 3 ( 2 n + l ) 4 ' ľ (2n + l) 2 (16n 2 + 16n + l )" 

5. LAPLACE DISTRIBUTION 

Laplace distribution La (6) has the density 

p{x) = Tbexp{-l4) 
where b > 0 is a parameter. Assume that a G (—1,1) and that {Zt} are i.i.d. La(6) 
random variables. Let the strict white noise be defined by 

0 with probability a2, 
Zt with probability 1 — a 2 

Then & = a£t-i + et has the stationary density p(x) (see Andel [1,2]) and 

poo 
h(y) = 2 p(x)[a250(y - ax) + (1 - a2)p(y - ax)] dx. 

Jo 

Prom here we obtain that for a £ (—1,1) the stationary density of the process {Xt} 
is given by 

e x p | - - j f o r y > 0 , 

h(y) = { 

Further we get 

26 
1 - q 

26 
exp { | | f o r y < 0 . 

EXt = ab, EX2 = 262, var Xt = 62(2 - a2) 

and 2 

EXtXt-i = 2 a 2 & 2 ' l> = ^ 2 • 

If a = 0 then ,9 = 0 and p —> 1 as a —• ± 1 . 
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