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KYBERNET IK A — VOLUME 4 2 ( 2 0 0 6 ) , NU MB ER 5 , P AG E S 5 8 5 – 6 0 4

INFINITE QUEUEING SYSTEM
WITH TREE STRUCTURE

Lucie Fajfrová

We focus on invariant measures of an interacting particle system in the case when the set
of sites, on which the particles move, has a structure different from the usually considered
set Zd. We have chosen the tree structure with the dynamics that leads to one of the
classical particle systems, called the zero range process. The zero range process with the
constant speed function corresponds to an infinite system of queues and the arrangement
of servers in the tree structure is natural in a number of situations.

The main result of this work is a characterisation of invariant measures for some impor-
tant cases of site-disordered zero range processes on a binary tree. We consider the single
particle law to be a random walk on the binary tree. We distinguish four cases according to
the trend of this random walk for which the sets of extremal invariant measures are com-
pletely different. Finally, we shall discuss the model with an external source of customers
and, in this context, the case of totally asymmetric single particle law on a binary tree.

Keywords: invariant measures, zero range process, binary tree, queues

AMS Subject Classification: 60K35, 82B44, 37L40

1. INTRODUCTION OF MODEL

Let us consider infinitely many servers located one by one in the nodes of a full
rooted binary tree T (an infinite countable graph whose each node x ∈ T , except
the root r ∈ T which has no ancestor, has exactly three neighbours: its ancestor
(parent) x−, its left descendant (child) x+ and its right descendant (child) x+).
There is an arbitrary number of customers in this system which form arbitrary large
but finite queues at these servers. If there is more than one customer in the queue at
server x ∈ T we assume that one of them is being served and the others are waiting.
After an exponential service time with rate λx > 0 (it means with the expected
value 1/λx) the customer leaves server x and randomly chooses one of neighbouring
servers to join the queue at it. The choice is made with respect to probabilities
p(x, y), y ∈ T . The service times in different queues are mutually independent and
customers are assumed to be indistinguishable.

We are interested just in the length η(x) ∈ N of queue at each server x ∈ T . Let
us denote by η = (η(x) : x ∈ T ) one particular configuration of the whole queueing
system. Since the evolution of the system is given by individual jumps between
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servers, an actual configuration η can be only changed if one customer leaves server
x for a queue at different server y. We denote this changed configuration by

ηxy(z) =





η(x)− 1 if z = x
η(y) + 1 if z = y
η(z) otherwise.

The transition η 7−→ ηxy for some x 6= y is the only possible transition in one jump.
We suppose that this system evolves in time and its description is given by the

length ηt(x) of queue at each server x at each time t. Since its dynamics is random
and follows from exponentially distributed service times, we can expect the system
to be a time-continuous stochastic process with the Markov property . We denote by
θ(η, ζ) the transition rates for every η 6= ζ. According to the previous description
we put

θ(η, ζ) = θ(η, ηxy) if ζ = ηxy for some x 6= y
= 0 otherwise,

for every η 6= ζ, where
θ(η, ηxy) = I[η(x)>0]λxp(x, y)

for every x 6= y.
This system of queues coincides with a classical particle system, the so-called

zero range process which was introduced in [7]. We shall use the notation typical for
particle systems. Note that the zero range process is usually defined more generally
in the following sense:

θ(η, ηxy) = g(η(x))λxp(x, y)

where g : N→[0,∞), g(0) = 0, g(k) > 0 otherwise, is the so-called speed function.
Our queueing system is anyway the special case of the zero range process with the
constant speed function g(k) = I[k>0]. In the context of particle systems we call
family (p(x, ·) : x ∈ T ) of probabilities on T such that

p(x, x) = 0,
∑

y

p(x, y) = 1 for every x ∈ T and

∀x 6= y ∃x = x0, x1, . . . , xn = y :
n∏

i=1

p(xi−1, xi) +
n∏

i=1

p(xi, xi−1) > 0

the single particle law and we call service rates (λx : x ∈ T ) also leaving rates or an
environment and we assume that

there exists a constant Λ such that 0 < λx ≤ Λ for every x ∈ T. (1.1)

In addition, we shall assume that the only possible movement of customers is
between servers which are neighbours on the tree. Recall that each x ∈ T different
from the root r has exactly three neighbours which we denoted x−, x+ and x+. The
neighbours of the root r are just r+, r+. If we use notation x∼ y for “x and y are
neighbours” then it means

p(x, y) = 0 if x 6∼ y. (1.2)

Notice that ∼ is a symmetric and antireflexive relation on T . We shall denote by |x|
the level of tree in which node x lies and the level of the root is assumed to be zero.
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Definition 1.1. Let T be a countable set of sites and let us denote by

T = NT = {η : T → N}
the state space of configurations. Let us consider a canonical Markov process(
P η : η ∈ T

)
on the set

D = {ϕ : R+ → T right continuous, having left-hand limit at each s > 0}.
If this Markov process is associated with infinitesimal generator

Lf(η) =
∑

x∈T

∑

y∼x

I[η(x)>0] λx p(x, y) [f(ηxy)− f(η)] (1.3)

defined for every η ∈ T and cylinder function f on T then it is called the zero range
(ZR) process on T with the constant speed function, with nearest-neighbour single
particle law p(x, y) in non-homogeneous environment (λx : x∈T ).

A function f : NT → R is called the cylinder function if there exists a finite K ⊂ T
such that f(η) = f(ζ) holds for every η, ζ ∈ T such that (η(x) = ζ(x) ∀ x ∈ K).

There is a need to guarantee the existence of the Markov process from the previous
definition. One can follow approaches introduced in [1] or [3]. See [2] for a detailed
proof of the existence of the zero range process with infinitesimal generator (1.3)
under conditions (1.1) and (1.2).

To study a time asymptotic behaviour of particle systems means to investigate
measures on T which are invariant with respect to the given dynamics represented
by infinitesimal generator L. Recall that a measure µ on T is invariant for the zero
range process with generator L if and only if

∫
Lf(η) dµ(η) = 0 for every cylinder function f on T. (1.4)

The following proposition gives sufficient conditions for the existence of an invariant
measure and, moreover, it shows an algorithm how to construct such a measure. The
constructed measures are well known in the theory of particle systems or Jackson
networks and are mentioned already by Spitzer [7].

Proposition 1.2. Consider a zero range process (1.3) on the full rooted binary tree
T and assume that its single particle law satisfies: p(x, y) 6= 0 if and only if x ∼ y.
Let (π(x) : x ∈ T ) be a positive solution of equations:∑

y∈T

(
p(y, x)π(y)− p(x, y)π(x)

)
= 0 ∀x ∈ T. (1.5)

Then product measures νϕπ defined on the space NT by their marginal distributions:

νϕπ(η : η(x) = k) =
( ϕ

λx
π(x)

)k(
1− ϕ

λx
π(x)

)
∀ k ∈ N, (1.6)

∀x ∈ T , are invariant for this zero range process for each nonnegative constant ϕ
satisfying

ϕ <
λx

π(x)
∀x∈T.
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P r o o f . It is a straightforward verification of (1.4) for νϕπ. 2

2. THE TIME ASYMPTOTIC BEHAVIOUR

The main result of this paper is a characterisation of invariant measures for the zero
range process given by a generator (1.3) if the single particle law is a simple random
walk on the binary tree. It means

p(x, x+) = p
2 = p(x, x+) ∀ x ∈ T \ {r} & p(r, r+) = 1

2 = p(r, r+)
p(x, x−) = 1− p =: q ∀ x ∈ T \ {r} (2.1)

where p ∈ (0, 1) is a parameter of this random walk on T . In order to avoid technical
complications following from the different situation in the root let us slightly modify
the service rate at the root and suppose that it is pλr instead of λr.

´
´

´
´́

Q
Q

Q
QQ

r
r

r
root

root+

root+>
p
2 λr

>p
2 λr

<
qλr+

<
qλr+

´
´

´
´́

Q
Q

Q
QQ

r r
r

r
x−

x

x+

x+>
p
2 λx

>p
2 λx

<
qλx+

<
qλx+

qλx

p
2 λx−

Let us realise that in this special case balance equations (1.5) have a simple form:

p π(r) = q (π(r+) + π(r+))

π(x) = p
2π(x−) + q(π(x+) + π(x+)) for every x ∈ T \ {r}

(2.2)

and the function π(x) =
(

p
2q

)|x|
is a solution of them. Therefore the following

consequence holds.

Corollary 2.1. Consider a zero range process (1.3) on the full rooted binary tree
T with single particle law (2.1) for some p ∈ (0, 1). Then product measures νϕ

defined on the space NT by their marginal distributions:

νϕ(η : η(x) = k) =

(
ϕ

λx

(
p

2q

)|x|)k (
1− ϕ

λx

(
p

2q

)|x|)
∀ k ∈ N, (2.3)

∀x ∈ T , are invariant for this zero range process for each ϕ ∈ Φλ, where

Φλ = {ϕ ≥ 0 : ϕ < λx

(
2q

p

)|x|
∀x ∈ T}.
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Corollary 2.1 gives some representative set V := {νϕ : ϕ ∈ Φλ} ⊂ I of invariant
measures and our aim is to find out set I of all invariant measures. Since I is a closed
and convex subset of P (the set of all probability measures on T) we can employ a
non compact version of the Krein–Milman theorem, see [8], which then says that I
is closed convex hull of its extremal elements. We say that µ is extremal invariant
iff µ = αµ1 + (1 − α) µ2 does not hold for any 0 < α < 1 and any other invariant
measures µ1, µ2. So the set Ie of all extremal invariant measures characterises all
invariant measures in the sense I = co Ie, where co means the closed convex hull
in P endowed with the topology of weak convergence. In what follows, we shall
investigate extremal invariant measures for described zero range processes which is
a standard approach how to characterise the set I of all invariant measures.

Remark on existence of an invariant measure

Since νϕ should be a probability measure we are led to the assumption

0 ≤ ϕ < λx

(
2q

p

)|x|
∀x∈T .

Surely ϕ = 0 gives always one invariant measure ν0 but it is degenerate (it is
the Dirac measure on the zero configuration). Corollary 2.1 gives a nondegenerate
invariant measure if

c := inf
x

λx

(
2q

p

)|x|
> 0. (2.4)

Then one of the following situations arises:

• c is attained at some x ∈ T and therefore Φλ = [0, c)

• c is not attained and Φλ = [0, c].

We can see immediately that if the parameter p of the random walk is greater
than 2/3 then Φλ = {0} without an influence of rates λx. Indeed, in this case
2q/p < 1 and since we always assume 0 < λx ≤ Λ then c is forced to be zero. It
means Corollary 2.1 gives no nondegenerate measure in this case, V is a singleton
containing only measure ν0. Intuitively one can say the random walk with p > 2/3
goes very quickly from the root to branches.

We can distinguish four cases for this random walk, with respect to the parameter
p ∈ (0, 1). In each case the situation concerning invariant measures of the associated
zero range process is very different. In order to get an idea let us first assume,
in addition, λx ≡ 1 for every x. Then these four cases can be expressed by the
following:
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1. the positive recurrent case p < q

2. the null recurrent case p = q = 1/2

3. the transient case p > q & p/2 ≤ q

4. the transient case p/2 > q.

This classification follows some known result for general zero range processes (i. e.
general countable set of sites with an irreducible single particle law p(x, y) such that
lim|x|→∞ p(x, y) < ∞ for all y, homogeneous environment λx ≡ 1 and partially also
more general speed function) which we shortly mention here and in more details
below, in a proof of Theorem 2.3.

Zero range processes with a positive recurrent single particle law were studied
from the equilibrium point of view by Waymire [9] and the set of invariant measures
was specified there. Two years later, Andjel [1] was studying zero range processes
with rather general single particle laws (also with a more general speed function)
and an exact expression of the set of extremal invariant measures was given for zero
range processes with a null recurrent single particle law. Note that a completely
different approach was used to obtain the result in the latter case than it was in the
former one.

Case 1. is thus covered by the first reference and case 2. comes under the second
one. On the other hand there is no similar general result for transient single particle
law which we can apply for the remaining cases. There exist only results which
declare that the product invariant measures defined by (1.6) are extremal invariant.
This result was proved by Saada [5] for a transient doubly stochastic single particle
law p(x, y) and recently also by Sethuraman [6] for an arbitrary single particle law
satisfying only that p(x, y) + p(y, x) is irreducible and lim|x|→∞ p(x, y) < ∞ for all
y, moreover a more general speed function is considered here.

For arbitrary service rates 0 < λx ≤ Λ we obtain analogous classification as
above by employing the mean value of marginal distributions of measure νϕ. Let us

denote by Rϕ,λ(x) = ϕ
λx

(
p
2q

)|x|(
1− ϕ

λx

(
p
2q

)|x|)−1

the mean value of xth marginal

distribution of νϕ. Hence the expected number of particles at level n of the binary
tree and the expected total number of particles on the binary tree are

RLϕ,λ(n) =
(

p

2q

)n∑

|x|=n

ϕ
λx

1− ϕ
λx

(
p
2q

)|x| & RTϕ,λ =
∞∑

n=0

(
p

2q

)n∑

|x|=n

ϕ
λx

1− ϕ
λx

(
p
2q

)|x|

A classification which generalises the mentioned cases 1. – 4. is then:

(i) p ≤ q & RTϕ,λ < ∞ for every ϕ ∈ (0, c) & c 6= 0

(ii) p ≤ q & RTϕ,λ = ∞ for some ϕ ∈ (0, c)

(iii) p > q & p/2 ≤ q

(iv) p/2 > q or (p ≤ q & c = 0).
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This formulation allows to see that individual classes are disjoint and also describes
all possibilities. But some of the conditions are redundant. Let us realise relation-
ships among them and then simplify the matter.

Lemma 2.2.

a) If RTϕ,λ < ∞ for some ϕ ∈ (0, c), then c > 0 must be attained at some x,

b) if RTϕ,λ < ∞ for some ϕ ∈ (0, c), then RTϕ,λ < ∞ for every ϕ ∈ (0, c),

c) if p ≥ q, then RTϕ,λ = +∞,

d) if p/2 > q, then c = 0.

P r o o f .

a) Let us assume for a contradiction that λx( 2q
p )|x| > c for every x. There must

exist a sequence (xn) such that |xn|→∞ and λxn( 2q
p )|xn| ↘c. Then

RLϕ,λ(|xn|) ≥ ϕ
λxn

( p
2q )|xn| −→ ϕ

c > 0 for each n. Hence RLϕ,λ(|xn|) 9 0 and
so RTϕ,λ =

∑
n RLϕ,λ(n) < ∞ does not hold.

b) Fix ϕ ∈ (0, c). We can express RTϕ,λ = ϕ
∞∑

n=0

∑
|x|=n

1
λx( 2q

p )|x|−ϕ
and find out

that

ϕ
∞∑

n=0

∑

|x|=n

1

λx

(
2q
p

)|x| ≤ RTϕ,λ ≤ ϕ
ϕ + ε

ε

∞∑

n=0

∑

|x|=n

1

λx

(
2q
p

)|x|

for every 0 < ε < c−ϕ because function 1
x−ϕ is bounded from above by ϕ+ε

ε
1
x

for every x ≥ ϕ + ε, ε > 0. If RTψ,λ < ∞ for some ψ ∈ (0, c) then also sum∑∞
n=0

∑
|x|=n

1
λx( 2q

p )|x|
converges. Since for every ϕ ∈ (0, c), there exists some

0< ε < c− ϕ, then RTϕ,λ has to converge because of a convergent majorant.

c) Since supx λx ≤ Λ then ϕ
Λ

∑
n(p

q )n bounds RTϕ,λ from below.

d) It is a direct consequence of (2.4) and the assumption supx λx ≤ Λ. 2

We can therefore simplify the classes in this way:

(i) RTϕ,λ < ∞ for some ϕ ∈ (0, c)

(ii) p ≤ q & RTϕ,λ = ∞ for some ϕ ∈ (0, c)
(iii) p > q & p/2 ≤ q

(iv) c = 0 & (p ≤ q or p > 2q)

and investigate invariant measures for these cases in the following theorem.
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Theorem 2.3. Consider a zero range process (1.3) on the full rooted binary tree
T with simple random walk (2.1) for some p ∈ (0, 1) as the single particle law.
According to parameter p and environment (λx : x ∈ T ) we distinguish four cases
(i) – (iv) described above. For each of them we obtain the following result with
corresponding numbering:

(iv) I = {ν0}, i. e. measure ν0 sitting on the null configuration is the only invariant
measure,

(i) Ie = {νK : K = 0, 1, 2, . . .}, where each νK defined on NT by

νK = νϕ(· |∑x∈T η(x) = K) for some ϕ > 0

concentrates on configurations with finite number K of particles and inde-
pendent of ϕ,

(ii) Ie = {νϕ : ϕ ∈ Φλ},
(iii) Ie ) {νϕ : ϕ ∈ Φλ} if c > 0, furthermore, there exists an infinitely dimen-

sional set of product measures which are extremal invariant.

3. PROOF OF THE MAIN THEOREM 2.3

Case (iv)

Within item (iv), we are interested in two cases: the recurrent random walk p ≤ q
when c = 0 and the transient random walk when p > 2q (here c = 0 holds always).
Anyway, we have c = 0 and therefore Corollary 2.1 gives one invariant measure ν0,
degenerated to the null configuration. We are going to prove that for both cases it is
the only invariant measure. Notice that we no longer obtain the same result for the
case q < p ≤ 2q and for this reason we shall describe the case c = 0 & q < p ≤ 2q as
a part of (iii).

P r o o f o f T h e o r em 2.3 (iv). Let µ be an arbitrary invariant measure. If we
denote a(x) = λxµ(η(x) > 0) for every x ∈ T then a satisfies the set of balance
equations (2.2). This fact follows from equality

∫
Lfxdµ = 0 used for cylinder

functions fx defined by fx(η) = η(x).
If (a(x) : x ∈ T ) satisfy (2.2) then an :=

∑
|x|=n a(x) for every n ≥ 0 must satisfy

pa0 = qa1

an = pan−1 + qan+1 for n ≥ 1.
(3.1)

Nevertheless (3.1) has a solution:

an = ψ

(
p

q

)n

for every n ≥ 0

unique up to a multiplicative constant ψ ≥ 0. It means

1
2n

∑

|x|=n

λxµ(η(x) > 0) = ψ

(
p

2q

)n

for every n ≥ 0. (3.2)
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If p > 2q then the right hand side of the last formula is approaching infinity as
n → ∞ and ψ > 0 but the left hand side is bounded by Λ. Thus necessarily ψ = 0
and hence also µ(η(x) > 0) = 0 for every x. It implies µ = ν0 and the result for case
p > 2q is proved.

What remains to show is the case when p ≤ q. We are going to prove that under
the assumption p ≤ q the set of equations (2.2) has only one nonnegative bounded
solution and it is a(x) = ψ( p

2q )|x| for every x ∈ T .
Let us assume for a contradiction that there exists a smallest n ≥ 1 and x : |x| = n

which does not satisfy a(x) = ψ( p
2q )n. It means there exist δ > 0 and y : |y| = n

such that a(y) = ψ(p
q )n( 1

2n − δ).

Using an induction along k we obtain from (2.2) for every k ≥ 1

∑

x∈S(y), |x|=n+k

a(x) = ψ

(
p

q

)n+k ( 1
2n
− δAk

)
,

where S(y) stands for the set of successors of node y and where for every k ≥ 1

Ak = − p

q − p
+

q

q − p

(q

p

)k

if p 6= q

Ak = k + 1 if p = q.

For p ≤ q it means Ak
k→∞−→ +∞. Thus there exists k such that

∑
x∈S(y)
|x|=n+k

a(x) < 0

which leads to a contradiction because a(x) are assumed to be nonnegative.
We obtained that whenever µ is invariant then under assumption p ≤ q

µ(η(x) > 0) =
ψ

λx

(
p

2q

)|x|
∀x ∈ T (3.3)

for some nonnegative parameter ψ. Since infx λx(2q/p)|x| = 0 is assumed and µ is
probabilistic, then ψ = 0 must hold and therefore µ = ν0. 2

Case (i)

Let us analyse the product measures νϕ from Corollary 2.1 for this case. Recall
from Lemma 2.2 that Φλ = [0, c). The assumption that the expected total number
of particles RTϕ,λ is finite implies

νϕ(
∑

x∈T

η(x) = +∞) = 0, (3.4)

for every ϕ ∈ Φλ. Indeed, νϕ(
∑

x∈T η(x) = +∞) is for arbitrary K > 0 bounded
from above by

lim
n→∞

∫

{P|x|≤n η(x)≥K}

νϕ(dη) ≤ lim
n→∞

Eνϕ

1
K

∑

|x|≤n

η(x) =
1
K

Eνϕ

∑

x∈T

η(x) =
1
K

RTϕ.
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From (3.4) we immediately obtain

1 = νϕ
(∪

K

{∑

x∈T

η(x) = K
})

=
∑

K

νϕ
(∑

x∈T

η(x) = K
)

and for each measurable A ⊆ NT

νϕA =
∑

K

νϕ
(
A

∣∣∣
∑

x∈T

η(x) = K
)
νϕ

(∑

x∈T

η(x) = K
)

=
∑

K

αϕ
KνK(A)

where we denote by αϕ
K = νϕ

(∑
x∈T η(x) = K

)
. It means

νϕ ∈ co{νK : K ∈ N}.
Zero range processes in homogeneous environment whose single particle law is

a positive recurrent chain were solved in [9] under assumptions: speed function
g(k) = I[k>0], an arbitrary countable set of sites with an irreducible positive recurrent
transition probability matrix

(
p(x, y) : x, y ∈ T

)
satisfying supy

∑
x p(x, y) < ∞. In

our context, if we assume a homogeneous environment and case (i) then the result
of [9] gives, first, that the clustering of particles will occur at the root if we start
from a configuration η such that

∑
x η(x) = ∞, and secondly, that the measures νK

carried on configurations with exactly a finite number K of particles are extremal
invariant measures.

The key to prove analogous results also for a non-homogeneous environment is to
fulfil condition RTϕ,λ < ∞. Note that the clustering now will occurs in each z such
that λz( 2q

p )|z| = c if we start from a configuration with infinitely many particles.

P r o o f o f T h e o r em 2.3 (i). It is then the same as in [9, Th.2.15]. 2

3.1. Case (ii)

Recall that we obtained set V ⊂ I of special product measures from Corollary 2.1.
In this paragraph we prove that V = Ie under assumptions: p ≤ q, environment
(λx : x ∈ T ) is such that RTϕ,λ = ∞ for some ϕ ∈ (0, c) and therefore c > 0.

This statement in the special case when λx ≡ 1 is covered by [1, Theorem 1.10]
which sets all extremal invariant measures for a zero range processes with a null-
recurrent irreducible single particle law in homogeneous environment. It means just
case p = 1

2 in our context. To prove Theorem 2.3 (ii), we use the same approach as
[1, Th.1.10] but simplified by the recent result of [6, Th.1.4], from which the validity
of one inclusion V ⊂ Ie immediately follows.

It means it is enough to prove the inclusion Ie ⊂ V. Let us outline the main
idea of the proof. Firstly, we introduce a suitable partial ordering ≤ on the set of
all probability measures on T:

µ1 ≤ µ2 iff
∫

f dµ1 ≤
∫

f dµ2 for every f ∈M (3.5)

where M := {f bounded cylinder function on T s.t. : η ≤ ζ ⇒ f(η) ≤ f(ζ)}, with
an aim to prove that each µ ∈ Ie is comparable in this ordering with each ν ∈ V.
As a tool to prove it we employ the so called coupling process.
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Definition 3.1. Let us consider a zero range process given by the infinitesimal
generator (1.3). Then the coupling process with respect to this zero range process is
a Markov process with the state space T× T defined by the infinitesimal generator

L̃f̃(η, ζ) =
∑

x,y

[
λxp(x, y) 1[η(x)>0,ζ(x)>0]

(
f̃(ηxy, ζxy)− f̃(η, ζ)

)
(3.6)

+ λxp(x, y) 1[η(x)>0,ζ(x)=0]

(
f̃(ηxy, ζ)− f̃(η, ζ)

)

+ λxp(x, y) 1[η(x)=0,ζ(x)>0]

(
f̃(η, ζxy)− f̃(η, ζ)

) ]

for every cylinder function f̃ on T× T.

It is a well known fact (cf. the Strassen theorem [4]) that the existence of a
probability measure ν̃ on T × T such that µ1 is its first marginal, µ2 is its second
marginal and ν̃((η, ζ) : η ≤ ζ) = 1, implies µ1 ≤ µ2, where µ1, µ2 are arbitrary
probability measures on T. We also employ a property of zero range processes with
a nondecreasing speed function which is called attractiveness and means:

η ≤ ζ ⇒ P (η,ζ)(ηt ≤ ζt) = 1,∀ t ≥ 0.

Here P (η,ζ) stands for the distribution of coupling process (ηt, ζt) started at (η, ζ) ∈
T × T. This result is a direct consequence of the zero range dynamics and the
construction of a coupling process; by (3.6) both coordinates of coupling process
(ηt, ζt) follow the same (random) schema of jumping, i. e. an opportunity to jump
from a site x to another site y at a time t arises always in both coordinates. It
means that the jump does not occur simultaneously in both coordinates only if site
x is empty for one of the coordinates. Hence if coordinates are ordered at the start
such that η ≤ ζ then this relation remains true in every time t > 0.

Finally, since the set V is fully ordered by ≤ (i. e. ϕ1 ≤ ϕ2 ⇒ νϕ1 ≤ νϕ2) then it
is not difficult to prove that arbitrary µ ∈ Ie must be exactly equal to some measure
from V.

P r o o f o f T h e o r em 2.3 (ii). Let us fix an arbitrary µ ∈ Ie and an arbitrary
νϕ ∈ V. We are looking for a measure ν̃ϕ on T × T with µ as its first marginal, ν
as its second marginal. In [1, Lemma 4.2] such a measure ν̃ϕ is constructed; which
is, in addition, invariant for the coupling process (3.6).

The second step is nontrivial and can be found again in [1, Propositions 6.2, 6.3].
Note that the rates λx played no role yet. Employing basic assumption that simple
random walk p(x, y) is recurrent (i. e. p ≤ q) we can prove that the above defined
measure ν̃ϕ satisfies:

ν̃ϕ((η, ζ) : η ≤ ζ or η ≥ ζ) = 1. (3.7)

In the third step, we already need assumption RTϕ,λ = ∞. Under this assumption
[6, Theorem 1.4] affirms that each measure νϕ ∈ V is extremal invariant. Neverthe-
less for µ and νϕ both extremal invariant, one can find a coupling measure ν̃ϕ as in
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the first step which is, moreover, extremal invariant for the coupling process. Then
from the extremity of ν̃ϕ and due to attractiveness result (3.7) implies

ν̃ϕ((η, ζ) : η ≤ ζ) = 1 or ν̃ϕ((η, ζ) : η ≥ ζ) = 1. (3.8)

See [1, Lemmas 4.3, 4.5] for details. Let us summarise the result of the first three
steps in the following lemma.

Lemma 3.2. Under assumptions p ≤ q & RTϕ,λ = ∞ for every 0 < ϕ ∈ Φλ either
µ ≤ νϕ or µ ≥ νϕ.

Proposition 3.3. Under the assumption of the previous lemma the following
holds: if µ ∈ Ie then there exists ϕ ∈ Φλ such that µ = νϕ.

Recall Φλ = [0, c), if infimum c is attained, or Φλ = [0, c], if it is not. The
following proof will show exactly the differences between these cases. Note that this
step is not needed in case of homogeneous environment and in it our proof differs
from Andjel’s proof of Theorem [1, Th.1.10].

P r o o f o f P r o p o s i t i o n 3.3. Let us show that the statement of Lemma 3.2
implies that one of the following situations must arise: either

there exists 0 ≤ ϕ < c such that µ = νϕ (3.9)
or νϕ ≤ µ for all 0 ≤ ϕ < c. (3.10)

Towards a contradiction, assume that neither (3.9) nor (3.10) is satisfied. It means

∃ψ < c : µ ≤ νψ & ∀ 0 ≤ ϕ < c : νϕ 6= µ.

Nevertheless we know that µ is comparable with each νϕ, for 0 < ϕ < c. Denote
ψ? := inf{ψ ∈ [0, c) : µ ≤ νψ}. If ψ? is positive then νϕn ≤ µ must hold for any
sequence ϕn ↗ ψ?, ϕn < ψ?. Since νϕn

w−→ νψ?

, then νψ? ≤ µ. On the other hand,
there is a sequence φn ≥ ψ? converging to ψ? from the right such that νφn ≥ µ. So
νψ? ≥ µ. Finally νψ?

= µ (because set M separates measures on T). Since it was
forbidden, ψ? must be equal to 0. So µ ≤ ν0 which implies µ = ν0, a contradiction.

Now we know that either (3.9) or (3.10) arises. The proof is finished if we are
in the situation described by (3.9). If situation (3.10) arises then Φλ must be just
[0, c]. Why: let us assume that xc is such that c = λxc(2q/p)|xc|. If we use (3.5) for
cylinder functions f(η) = I[η(xc)>k] then we obtain for every k ≥ 0:

µ(η : η(xc) > k) ≥ νϕ(η : η(xc) > k) = (ϕ/c)k+1 ϕ→ c−→ 1 .

It means µ(η : η(xc) = k) = 0 holds for every k ∈ N. It is a contradiction, since we
assume µ to be a probability measure on T.

It remains to show µ = νc assuming (3.10). It is clear that νc ≤ µ holds. It
implies (due to the same argument as in the first step plus Lemma 3.2) the existence
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of a measure ν̃c on T×T which is invariant for the coupling process, its first marginal
is equal to µ, its second marginal is equal to νc and

ν̃c
(
(η, ζ) : η ≥ ζ

)
= 1.

Towards a contradiction, assume that µ = νc does not hold, so there must exist
x ∈ T such that ν̃

(
(η, ζ) : η(x) > ζ(x)

)
> 0. Since {(η, ζ) : η(x) > ζ(x)} is a

disjoint union of the sets {(η, ζ) : η(x) > ζ(x) = k} over k = 0, 1, . . ., there exists
k ∈ N such that ν̃

(
(η, ζ) : η(x) > ζ(x) = k

)
> 0. We obtain by an induction

ν̃
(
(η, ζ) : η(x) > ζ(x) = 0

)
> 0 and therefore also

µ(η : η(x) > 0) > νc(ζ : ζ(x) > 0) =
c

λx

( p

2q

)|x|
. (3.11)

Since µ is invariant and we assume p ≤ q, then we can employ (3.3) which states
λxµ(η : η(x) > 0) = ψ(p/2q)|x| for every x, for some 0 ≤ ψ ≤ c. It is a contradiction
with (3.11). Thus Proposition 3.3 is proved and Theorem 2.3 case (ii) as well. 2

Case (iii)

We obtained by Corollary 2.1 that the product measures νϕ ∈ V are invariant. It
is typical for this particular case of simple random walk (1/2 < p ≤ 2/3) that the
expected number of particles RLϕ,λ(n) at nth level of binary tree, with respect to
νϕ, goes to infinity if n →∞.

Now unlike the previous cases set V is too small to describe all extremal invariant
measures and therefore it is not possible in general to characterise I as a closed
convex hull of V. First of all notice that equations (2.2) has not the only solution
πϕ(x) = ϕ(p/2q)|x| as it was in recurrent case (p ≤ q). Let us show an example of
another solution.

Example 3.4. Assume p ∈ ( 1
2 , 2

3 ]. Let us define a sequence

Ak =
p

2p− 1
− q

2p− 1

(q

p

)k

=
k∑

i=0

(q

p

)i

(3.12)

for every k ≥ 0. Note that (3.12) is the unique solution of Ak = qAk−1 + pAk+1 for
every k ≥ 1 with initial conditions A0 = 1, A1 = 1/p.

Let us consider some 0 < ε ≤ (2p− 1)/(2p) and 0 < ϕ ≤ 1/2.

πϕ,ε(r) = ϕ

πϕ,ε(r+) = ϕ p
2q (1 + 2ε) and πϕ,ε(r+) = ϕ p

2q (1− 2ε)

πϕ,ε(x) = ϕ
(

p
2q

)|x|
(1 + 2εA|x|−1) for every x which is a successor of r+

πϕ,ε(x) = ϕ
(

p
2q

)|x|
(1− 2εA|x|−1) for every x which is a successor of r+,

is a positive solution of equations (2.2), satisfying πϕ,ε(x) < 1.
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Note that one can modify solution πϕ as well at the successors of an arbitrary
node x ∈ T using a parameter εx > 0, in the same way as it has been done in
Example 3.4 at the successors of the root with parameter ε (= εr). Let πϕ,εx denote
solution of (2.2) obtained in this way. Since the set of all solutions of (2.2) is closed
under addition and multiplication by constant then for a fixed choice of parameters
0 < εx ≤ (2p− 1)/(2p) for each x ∈ T the infinite countable set

B(εx) = {π1} ∪ {π1,εx : x ∈ T}

of positive bounded solutions is a (Schauder) basis in the vector space of all solutions.
From Proposition 1.2 we know that the product measure νπ defined by (1.6) is

invariant for the zero range process (1.3) with an environment (λx : x ∈ T ) if

0 < π(x) < λx ∀x ∈ T. (3.13)

Let us investigate this condition for πϕ,ε from Example 3.4 (one can consider πϕ,εx

for arbitrary x ∈ T as well). Since

ε ≤ (2p− 1)/(2p) and Ak ≤ p/(2p− 1) for every k

then condition c = infx λx( 2q
p )|x| > 0 is sufficient for (3.13) to hold for each 0 <

ϕ ≤ c/2. The next example illustrates that in case (iii), contrary of the remaining
cases, the condition c > 0 is not necessary for the existence of nontrivial invariant
measure. Nor for the existence of infinitely dimensional set of them.

Example 3.5. Let us consider specially p = 2/3 in the previous example, i. e. the
symmetric random walk on the tree, and ε = 1/4. Then we get πϕ,ε(x) as in the
picture:
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The expected number of particles with respect to νπϕ is Eνπϕ (η(x)) = πϕ(x)/λx

1−πϕ(x)/λx
.

So we can see that the density of particles with respect to νπϕ is no more constant at
sites from the same level, even if λx ≡ 1. If we especially assume ϕ = 1

2 , we can find

a sequence xk, |xk| = k, in the left branch of tree, such that Eν
π1/2 (η(xk)) k→∞−→ ∞

and a sequence zk, |zk| = k, in the right branch, such that Eν
π1/2 (η(zk)) k→∞−→ 0.
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Considering a non-homogeneous environment, the condition (3.13) means

ϕ < λx

2− 1
2|x|

for every left successor x of the root,

ϕ < 2|x|λx for every right successor x of the root.
(3.14)

It explains why we exclude case (iii) under assumption infx λx( 2q
p )|x| = 0 from case

(iv). Indeed, the choice:

λx = |x|−1 for every x : |x| ≥ 1 from the branch emphasised at the picture,

λx = 1 otherwise,

leads to the fact that infx λx(2q/p)|x| = infx |x|−1 = 0 but there are invariant
measures νπϕ for every ϕ ∈ [0, 1/2] because (3.14) is satisfied.

The example showed that λx(2q/p)|x| may approach zero for some branch of the
tree. It is possible to find out a much weaker sufficient condition on rates λx than
the condition c > 0 under which

W := {νπ : 0 < π(x) < λx solve equations (2.2)}
is an infinitely dimensional set of product measures.

Employing [6, Theorem 1.4] we can claim that

W ⊆ Ie.

Nevertheless, it is still an open problem whether the equality W = Ie holds.

4. DISCUSSION ON OPEN MODEL

Let us consider in this paragraph the same queueing system on the tree as in the pre-
vious but open. We mean that there is an external (bottomless) source of customers
and we shall assume that customers from outside of the system can only enter the
root and no other node of the tree. We consider no departure of customers from the
system either.

In the open model the external source is considered as a false node o and customers
come from it to the root with a fixed rate λo > 0. It means the arrival of customers
is a Poisson process with rate λo. So we investigate the same model as was described
in Section 1 to whom false node o is added. The single particle law is changed just
in the root so that p(o, r) = 1, in other nodes the situation remains without changes.

The open zero range process is defined by infinitesimal generator

Lof(η) =
∑

x∈T

∑

y∈T,y∼x

I[η(x)>0]λxp(x, y)[f(ηxy)− f(η)] + λo[f(ηor)− f(η)] (4.1)

for every η ∈ NT and cylinder function f on NT , where ηor(x) =
8
<
:

η(x) x 6= r
η(r) + 1 x = r.

The following analogy of Proposition 1.2, i. e. an existence theorem for invariant
measures of open zero range processes, can be proved in the same way.
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Proposition 4.1. Consider an open zero range process (4.1) and assume that its
single particle law satisfies: y ∈ {x+, x+} ⇒ p(x, y) 6= 0. Let (π(x) : x ∈ T ) be a
nonnegative solution of equations:

∑
y∈T∪{o}

(
p(y, x)π(y)− p(x, y)π(x)

)
= 0 ∀x ∈ T

π(o) = 1
(4.2)

Then product measures νπ defined on space NT by their marginal distributions:

νπ(η : η(x) = k) =
(λo

λx
π(x)

)k(
1− λo

λx
π(x)

)
∀ k ∈ N (4.3)

∀x ∈ T , are invariant for the open zero range process if

λo <
λx

π(x)
∀x∈T.

Our aim is to describe invariant measures for the open model assuming again a
simple random walk on tree T as a single particle law. So let us consider in what
follows p(x, y) defined by (2.1) changed in the root like the following picture shows
(we again assume the correction of rate at the root).
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Realise that if we put the outer source to the model it makes sense to assume
in addition to p ∈ (0, 1) also p = 1, so called totally asymmetric random walk. We
obtain the following result as a consequence of Proposition 4.1.

Theorem 4.2. Consider an open zero range process (4.1) with a simple random
walk (2.1) as the single particle law for some p ∈ (0, 1], with arrival rate λo > 0 (see
picture above). Then

(I) there is no invariant measure in cases

• p ∈ (0, 1
2 ]

• p ∈ ( 1
2 , 1] and

(
λo ≥ λx2|x|(p− q) for some x ∈ T

)

(II) there exists invariant measure ν which is product defined by marginals

ν(η : η(x) = k) =
(λo

λx

1
2|x|

1
p− q

)k(
1− λo

λx

1
2|x|

1
p− q

)
∀ k ∈ N (4.4)

for every x ∈ X, in case
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• p ∈ ( 1
2 , 1] and λo < λx2|x|(p− q) ∀x.

Furthermore,

(α) ν is the unique invariant measure in case

• p ∈ ( 2
3 , 1],

(β) there exists an infinitely dimensional set of extremal invariant measures
if

• p ∈ ( 1
2 , 2

3 ] and λo <
λx

δ(x) + 1
2|x|

1
p−q

∀x, for some set of positive

(δx)x∈T such that infx δx( 2q
p )|x| > 0.

This set is formed by product measures νπ defined by (4.3) where

π(x) =
1

2|x|
1

p− q
+ α(x) ∀x (4.5)

for any positive solution α(x) of (2.2) such that λo <
λx

α(x) + 1
2|x|

1
p−q

∀x.

P r o o f . Investigating equations (4.2) one can find out that there is

— no non-negative solution for case p ∈ (0, 1
2 ],

— the unique non-negative solution π(x) = 1
2|x|

1
p−q for case p ∈ ( 2

3 , 1] and

— a family of solutions (4.5) for case p ∈ ( 1
2 , 2

3 ].

The uniqueness in the second item can be proved using the same approach as at the
end of the proof of Theorem 2.3 (iv).

To obtain statement (I) we need in addition to realise that for each invariant
measure µ function a(x) = λxµ(η(x) > 0), a(o) = 1, has to solve (4.2). Compare
with the first part of the proof of Theorem 2.3 (iv).

The existence-part of (II) is an immediate consequence of Proposition 4.1. The
sufficient condition for the existence of infinitely dimensional set of extremal invariant
measures is adopted from Section 3, case (iii).

It remains to prove the uniqueness-part of (II). Assume that µ is an arbitrary
invariant measure in case p ∈ ( 2

3 , 1] & λo < λx2|x|(p− q) for every x. Note that the
uniqueness of π as a solution of (4.2) implies that

λxµ(η(x) > 0) =
1

2|x|
1

p− q
∀x ∈ T. (4.6)

But this is not enough information about µ. To get more information let us employ
the ordinary coupling process (associated with process (4.1)) given by generator L̃o

which differs from (3.6) only in additional term λo(f(ηor)−f(η)). One can construct
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a measure ν̃ on NT ×NT which is invariant for L̃o and its first and second marginals
are measures µ and ν, respectively. Cf. proof of Theorem 2.3 (ii).

We use equality
∫
L̃of dν̃ = 0 for functions fz(η, ζ) = (η(z)− ζ(z))+, denote

h(z) = λz ν̃
(
η(z) > 0, ζ(z) = 0

)

and then we immediately obtain the following inequalities

h(z) ≤ h(z−)
p

2
+ (h(z+) + h(z+))q ∀ z 6= r, (4.7)

h(r) p ≤ (h(r+) + h(r+))q.

From (4.7), there exists a sequence (xi)∞i=0 of successors, x0 = r, |xi| = i, such that
h(xi) ≥ ( p

2q ) h(xi−1) for every i ≥ 1. But p
2q > 1. So either h(xi) is increasing for

some sequence (xi)∞i=n of successors or h(x) ≡ 0 ∀x ∈ T . Since from the definition
of h and from (4.6)

h(x) ≤ λx ν̃
(
η(x) > 0

)
= λxµ

(
η(x) > 0

)
=

1
2|x|

1
p− q

for every x, only the latter variant can be considered. It means

ν̃
(
η(x) > 0, ζ(x) = 0

)
= 0 ∀x ∈ T.

Using an induction in k it can be proved that

ν̃
(
η(x) > ζ(x), ζ(x) = k

)
= 0 ∀x ∈ T, ∀ k ∈ N. (4.8)

It suffices to plug fz,k(η, ζ) = I[η(z)>ζ(z)=k−1] in
∫
L̃of dν̃ = 0. Nevertheless, (4.8)

implies that
ν̃(η ≤ ζ) = 1

and hence µ ≤ ν follows from the Strassen theorem (the open model is again at-
tractive particle system). But it is possible to repeat whole procedure also for
h(z) = λz ν̃(η(z) = 0, ζ(z) > 0) and therefore also ν ≤ µ holds. Since the relation
≤ is a partial order, µ = ν must hold. 2

We can see that the situation concerning a classification with respect to trend p
is rather different than it was for closed model. Intuitively, a stationary distribution
of the open model seems to put together a stationary distribution of closed model
and a stationary distribution of totally asymmetric open model.

Remark 4.3. Note that the condition infx δx( 2q
p )|x| > 0 from case (β) is not

necessary at all. Compare with Example 3.5.
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Remark 4.4. Let us observe that in the case of totally asymmetric random walk
it is possible to prove the uniqueness of measure ν in a very direct way.

Let µ be an invariant measure with respect to generator (4.1) in the specified
case. We use directly the fact that

∫
Lof dµ = 0 for any cylinder function f . Let

us choose arbitrary finite tree Tn as the subset of tree T ended by nth level and
arbitrary cylinder function f depending only on numbers of particles at nodes of
Tn. In this very special case where p(x, x−) = 0 for every x, function Lof is again
cylinder function and depends only on nodes of Tn. So equality

∫
Lof dµ = 0 can

be rearranged as

0 =
∑

η¹n∈NTn

f(η¹n)

[ ( ∑

y∈Tn

I[η¹n (y)>0]λy−p(y−, y)µ¹n(ηyy−
¹n )− λyµ¹n(η¹n)

)

+
( ∑

y∈Tn+1
\Tn

λy−p(y−, y)µ¹n(ηoy−
¹n )− λoµ¹n(η¹n)

)]
. (4.9)

We use notation: η¹n is a ”short” configuration from product space NTn and µ¹n
stands for a measure on NTn defined by µ¹n(ζ¹n) = µ(η : η(x) = ζ¹n(x) ∀x ∈ Tn).

What is important on equality (4.9) is its dependence on η only through nodes
from Tn. From this reason we can choose stepwise the functions f = Iη¹n and then
obtain that each square brackets in the last term are equal to zero for every n and
for every η¹n ∈ NTn . It means

0 =
∑

ζ¹n∈NTn

L(ζ¹n , η¹n) µ¹n(ζ¹n)− L(η¹n , ζ¹n) µ¹n(η¹n)

for every n and for every η¹n ∈ NTn , where L(η¹n , η
z−z
¹n ) = I[η¹n (z−)>0]λz−p(z−, z).

Nevertheless, {L(η¹n , ζ¹n) : η¹n , ζ¹n ∈ NTn} are transition rates of an irreducible,
countable state space Markov process which has the unique invariant measure

υn(ζ¹n) =
∏

x∈Tn

(λo

λx

1
2|x|

)ζ¹n (x)(
1− λo

λx

1
2|x|

)

for every ζ¹n ∈ NTn if we assume λo < λx2|x| ∀x. It means µ¹n(·) = υn(·) for every
n, so we know every finite dimensional marginal of measure µ. Hence the uniqueness
of the projective limit completes this proof.
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e-mail: fajfrova@utia.cas.cz


		webmaster@dml.cz
	2015-03-29T13:59:48+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




