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K Y B E R N E T I K A — V O L U M E 4 3 ( 2 0 0 7 ) , N U M B E R 2 , P A G E S 1 5 7 – 1 8 2

YAGER’S CLASSES OF FUZZY IMPLICATIONS:
SOME PROPERTIES AND INTERSECTIONS

MichaÃl Baczyński and Balasubramaniam Jayaram

Recently, Yager in the article “On some new classes of implication operators and their
role in approximate reasoning” [12] has introduced two new classes of fuzzy implications
called the f -generated and g-generated implications. Along similar lines, one of us has pro-
posed another class of fuzzy implications called the h-generated implications. In this article
we discuss in detail some properties of the above mentioned classes of fuzzy implications and
we describe their relationships amongst themselves and with the well established (S,N)-
implications and R-implications. In the cases where they intersect the precise sub-families
have been determined.
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1. INTRODUCTION

Recently, Yager [12] has introduced two new families of fuzzy implications, called the
f -generated and g-generated implications, respectively, and discussed their desirable
properties as listed in [4] or [5]. Also, Balasubramaniam [3] has discussed f -generated
implications with respect to three classical logic tautologies, viz., the distributivity,
the law of importation and the contrapositive symmetry. In [2, 3] a new class of
fuzzy implications, along the lines of f -generated implications, called the h-generated
implications has been proposed.

In this work, we attempt to answer the following questions:

Problem 1.

(i) What are the properties of f -, g- and h-generated implications?

(ii) Do the above families of fuzzy implications intersect with the two well-known
classes of fuzzy implications, viz., (S,N)-implications and R-implications?

We show that they are, in general, different from the well established (S,N)- and
R-implications. In the cases where they intersect with the above families of fuzzy
implications, we have determined precisely the sub-families of such intersections.
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The paper is organized as follows. In Section 2 we present some preliminary defi-
nitions and results connected with (S,N)- and R-implications. In the next three sec-
tions we give the definitions of the newly proposed families of f -, g- and h-generated
fuzzy implications and also prove some new results concerning them. While in Sec-
tion 6 we investigate the intersections amongst the families of f -, g- and h-generated
fuzzy implications, Sections 7 and 8 contain our investigations on the intersections
of the families of f -, g- and h-generated fuzzy implications with (S,N)- and R-
implications, respectively. Section 9 gives some concluding remarks.

2. PRELIMINARIES

We assume that the reader is familiar with the classical results concerning basic
fuzzy logic connectives (fuzzy negations, t-norms, t-conorms, fuzzy implications),
but we briefly recall some definitions, examples and facts that will be useful in the
sequel (for more details see [5, 8] or [6]).

Definition 1. (Fodor and Roubens [5], Klement et al. [7]) A decreasing function
N : [0, 1] → [0, 1] is called a fuzzy negation if N(0) = 1 and N(1) = 0. A fuzzy
negation N is called

(i) strict if, in addition, it is strictly decreasing and continuous.

(ii) strong if, in addition, it is an involution, i. e., N(N(x)) = x for all x ∈ [0, 1].

Example 1. Table 1 lists a few negations with the properties they satisfy. For
more examples see [5] or [8].

Table 1. Examples of fuzzy negations and their properties.

Name Formula Properties

classical NC(x) = 1− x strong

Gödel NG1(x) =

{
1, if x = 0
0, if x > 0

not continuous, smallest

dual Gödel NG2(x) =

{
1, if x < 1
0, if x = 1

not continuous, greatest

In the literature, especially at the beginnings, we can find several different def-
initions of fuzzy implications (see [4, 5]). In this article we will use the following
one, which is equivalent to the definition introduced by Fodor and Roubens (cf. [5],
Definition 1.15).
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Definition 2. A function I : [0, 1]2 → [0, 1] is called a fuzzy implication if it satisfies
the following conditions:

I is decreasing in the first variable, (I1)
I is increasing in the second variable, (I2)

I(0, 0) = 1, I(1, 1) = 1, I(1, 0) = 0. (I3)

Definition 3. (cf. Dubois and Prade [4], Fodor and Roubens [5], Gottwald [6])
A fuzzy implication I is said to satisfy

(i) the left neutrality property or is said to be left neutral, if
I(1, y) = y, y ∈ [0, 1]; (NP)

(ii) the exchange principle, if
I(x, I(y, z)) = I(y, I(x, z)), x, y, z ∈ [0, 1]; (EP)

(iii) the identity principle, if
I(x, x) = 1, x ∈ [0, 1]; (IP)

(iv) the ordering property, if
x ≤ y ⇐⇒ I(x, y) = 1, x, y ∈ [0, 1]; (OP)

(v) the contrapositive symmetry with respect to a fuzzy negation N , CP(N), if
I(x, y) = I(N(y), N(x)), x, y ∈ [0, 1]. (CP)

Definition 4. Let I be a fuzzy implication. The function NI defined by NI(x) =
I(x, 0) for all x ∈ [0, 1], is called the natural negation of I.

It can be easily shown that NI is a fuzzy negation for every fuzzy implication I.

Definition 5. (Fodor and Roubens [5], Gottwald [6] or Baczyński and Jayaram [1])
A function I : [0, 1]2 → [0, 1] is called an (S,N)-implication if there exist a t-conorm
S and a fuzzy negation N such that

I(x, y) = S(N(x), y), x, y ∈ [0, 1].

If N is a strong negation, then I is called a strong implication (or S-implication).
The family of all (S,N)-implications will be denoted by IS,N .
The following characterization of (S,N)-implications is from [1], which is an ex-

tension of a result in [10] (see also [5], Theorem 1.13).

Theorem 1. (Baczyński and Jayaram [1], Theorem 5.1) For a function I : [0, 1]2 →
[0, 1] the following statements are equivalent:

(i) I is an (S,N)-implication generated from some t-conorm S and some contin-
uous (strict, strong) fuzzy negation N .

(ii) I satisfies (I2), (EP) and NI is a continuous (strict, strong) fuzzy negation.
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Definition 6. (Dubois and Prade [4], Fodor and Roubens [5], Gottwald [6]) A
function I : [0, 1]2 → [0, 1] is called a residual implication (shortly R-implication) if
there exists a left-continuous t-norm T such that

I(x, y) = max {t ∈ [0, 1] | T (x, t) ≤ y} , x, y ∈ [0, 1]. (1)

The family of all R-implications will be denoted by IT .

In general, R-implications can be considered for all t-norms (with supremum
in (1)), but this class of implications is related to a residuation concept from the
intuitionistic logic and in this context this definition is proper only for left-continuous
t-norms (see [6], Proposition 5.4.2 and Corollary. 5.4.1).

Theorem 2. (Fodor and Roubens [5], Theorem 1.14) For a function I : [0, 1]2 →
[0, 1] the following statements are equivalent:

(i) I is an R-implication based on some left-continuous t-norm T .
(ii) I satisfies (I2), (OP), (EP) and I(x, ·) is right-continuous for any x ∈ [0, 1].

Example 2. The basic (S,N)- and R-implications can be found in the literature
(see [5, 8] or [6]). Here we present only some examples of (S,N)- and R-implications,
which will be used in the next part of this article.

(i) If S is any t-conorm and N is the Gödel negation NG1, then we always obtain
the smallest (S,N)-implication

IG1(x, y) =

{
1, if x = 0,
y, if x > 0,

x, y ∈ [0, 1].

(ii) If S is any t-conorm and N is the dual Gödel negation NG2, then we always
obtain the greatest (S,N)-implication

IG2(x, y) =

{
1, if x < 1,
y, if x = 1,

x, y ∈ [0, 1].

(iii) If S is the algebraic sum t-conorm SP(x, y) = x+ y−xy and N is the classical
negation NC, then we obtain the following S-implication called the Reichen-
bach implication

IRC(x, y) = 1− x+ xy, x, y ∈ [0, 1].

(iv) The R-implication generated from the product t-norm TP(x, y) = xy is the
following Goguen implication

IGG(x, y) = min
(

1,
y

x

)
=

{
1, if x ≤ y,
y
x , if x > y,

x, y ∈ [0, 1].
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3. THE FAMILY OF f–GENERATED IMPLICATIONS

In this section, after giving the definition of this new family of fuzzy implications, we
discuss some of their properties. Specifically, we show that the generator from which
f -generated implication is obtained, is only unique up to a positive multiplicative
constant. We also investigate the natural negations of the above implications.

Proposition 1. (cf. Yager [12], page 197) If f : [0, 1] → [0,∞] is a strictly de-
creasing and continuous function with f(1) = 0, then the function I : [0, 1]2 → [0, 1]
defined by

I(x, y) = f−1(x · f(y)), x, y ∈ [0, 1], (2)

with the understanding 0 · ∞ = 0, is a fuzzy implication.

P r o o f . Firstly, since for every x, y ∈ [0, 1] we have x · f(y) ≤ f(y) ≤ f(0) we see
that the formula (2) is correctly defined. That I defined by (2) is a fuzzy implication
can be easily shown as in [12], page 197. ¤

Definition 7. (Yager [12]) An f -generator f : [0, 1]→ [0,∞] of a fuzzy implication
I is a strictly decreasing and continuous function with f(1) = 0, such that for all
x, y ∈ [0, 1] the function I can be represented by (2). In addition, we say that I is
an f -generated implication and if I is generated from f , then we will often write If
instead of I.

Example 3.

(i) If we take the f -generator f(x) = − log x, which is a continuous additive
generator of the product t-norm TP, then we obtain the Yager implication

IYG(x, y) =

{
1, if x = 0 and y = 0,
yx, otherwise,

x, y ∈ [0, 1],

which is neither an (S,N)-implication nor an R-implication (see [1]).

(ii) If we take the f -generator f(x) = 1− x, which is a continuous additive gener-
ator of the ÃLukasiewicz t-norm TL(x, y) = max(x + y − 1, 0), then we obtain
the Reichenbach implication IRC, which is an S-implication.

For more examples of f -generated implications see Yager [12].

As can be seen from [7] Theorem 5.1 and as noted in [12] and above, the f -gene-
rators can be used as continuous additive generators of continuous Archimedean
t-norms. Such generators are unique up to a positive multiplicative constant, and
this is also true for the f -generators of the f -generated implications.
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Theorem 3. The f -generator of an f -generated implication is uniquely determined
up to a positive multiplicative constant, i. e., if f1 is an f -generator, then f2 is an
f -generator such that If1 = If2 if and only if there exists a constant c ∈ (0,∞) such
that f2(x) = c · f1(x) for all x ∈ [0, 1].

P r o o f . (=⇒) Let f1, f2 be two f -generators of an f -generated implication, i. e.,
If1(x, y) = If2(x, y) for all x, y ∈ [0, 1]. Using (2) we get

f−1
1 (x · f1(y)) = f−1

2 (x · f2(y)), x, y ∈ [0, 1].

If f1(0) =∞, then

If1(x, 0) = f−1
1 (x · f1(0)) = f−1

1 (x · ∞) = f−1
1 (∞) = 0, x ∈ (0, 1].

Hence, for all x ∈ (0, 1], we have

0 = If1(x, 0) = If2(x, 0) = f−1
2 (x · f2(0)),

so f2(0) = x · f2(0). This implies that f2(0) = ∞ or f2(0) = 0. But f2(0) = 0 is
impossible, since f2 is a strictly decreasing function. By changing the role of f1 and
f2 we obtain the following equivalence:

f1(0) =∞⇐⇒ f2(0) =∞.

Now, we consider the following two cases:

1. If f1(0) <∞, then f2(0) <∞ and we obtain, for every x, y ∈ [0, 1],

f−1
1 (x · f1(y)) = f−1

2 (x · f2(y))⇐⇒ f2 ◦ f−1
1 (x · f1(y)) = x · f2(y).

In particular, for y = 0 and any x ∈ [0, 1], we get

f2 ◦ f−1
1 (x · f1(0)) = x · f2(0)⇐⇒ f2 ◦ f−1

1 (x · f1(0)) = x · f1(0) · f2(0)
f1(0)

. (3)

Let us fix arbitrarily x ∈ [0, 1] and consider z = f1(x). Of course z ∈ [0, f1(0)].
Hence there exists x1 ∈ [0, 1] such that z = x1 · f1(0). From (3) we obtain

f2 ◦ f−1
1 (z) = f2 ◦ f−1

1 (x1 · f1(0)) = x1 · f1(0) · f2(0)
f1(0)

= z · f2(0)
f1(0)

.

Since f1 is a bijection, substituting c =
f2(0)
f1(0)

∈ (0,∞) we get

f2(x) = f1(x) · f2(0)
f1(0)

= c · f1(x).

But x was arbitrarily fixed, so we obtain the claim in this case.
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2. If f1(0) = ∞, then f2(0) = ∞. First see that f2(0) = c · f1(0) and f2(1) =
c · f1(1) for every c ∈ (0,∞). Now, for every x, y ∈ [0, 1] we have

f−1
1 (x · f1(y)) = f−1

2 (x · f2(y))⇐⇒ f2 ◦ f−1
1 (x · f1(y)) = x · f2 ◦ f−1

1 (f1(y)).

By the substitution h = f2 ◦ f−1
1 and z = f1(y) for y ∈ [0, 1], we obtain the

following equation

h(x · z) = x · h(z), x ∈ [0, 1], z ∈ [0,∞], (4)

where h : [0,∞] → [0,∞] is a continuous strictly increasing bijection. Let us
substitute z = 1 above, we get

h(x) = x · h(1), x ∈ [0, 1]. (5)

Now, fix arbitrarily x ∈ (0, 1) and consider z = f1(x). Of course z ∈ (0,∞).
Hence there exists x1 ∈ (0, 1] such that x1 · z ∈ (0, 1). From (4) and (5) we get

h(z) =
h(x1 · z)
x1

=
x1 · z · h(1)

x1
= z · h(1).

Thus, by the definition of h, we have

f2 ◦ f−1
1 (z) = z · f2 ◦ f−1

1 (1).

Since f1 is a bijection, substituting c = f2 ◦ f−1
1 (1) ∈ (0,∞) we get

f2(x) = f1(x) · f2 ◦ f−1
1 (1) = c · f1(x).

But x ∈ (0, 1) was arbitrarily fixed, so we have the proof in this direction.

(⇐=) Let f1 be an f -generator and c ∈ (0,∞). Define f2(x) = c · f1(x) for
all x ∈ [0, 1]. Firstly, we note that f2 is a well defined f -generator. Moreover,
f−1

2 (z) = f−1
1

(z
c

)
for every z ∈ [0, f2(0)]. Now, for every x, y ∈ [0, 1], we have

x · c · f1(y) ≤ c · f1(y) = f2(y) ≤ f2(0),
x · c · f1(y)

c
= x · f1(y) ≤ f1(y) ≤ f1(0)

and thus

If2(x, y) = f−1
2 (x · f2(y)) = f−1

2 (x · c · f1(y)) = f−1
1

(
x · c · f1(y)

c

)

= f−1
1 (x · f1(y)) = If1(x, y),

for all x, y ∈ [0, 1]. ¤



164 M. BACZYŃSKI AND B. JAYARAM

Remark 1. From the above result it follows, that if f is an f -generator such that
f(0) <∞, then the function f1 : [0, 1]→ [0, 1] defined by

f1(x) =
f(x)
f(0)

, x ∈ [0, 1] (6)

is a well defined f -generator such that If = If1 and f1(0) = 1. In other words, it is
enough to consider only decreasing generators for which f(0) =∞ or f(0) = 1.

Now we investigate the natural negations of If .

Proposition 2. Let f be an f -generator of an f -generated implication If .

(i) If f(0) =∞, then the natural negation NIf is the Gödel negation NG1, which
is non-continuous.

(ii) The natural negation NIf is a strict negation if and only if f(0) <∞.

(iii) The natural negation NIf is a strong negation if and only if f(0) <∞ and f1

defined by (6) is a strong negation.

P r o o f . Let f be an f -generator. We get

NIf (x) = If (x, 0) = f−1(x · f(0)), x ∈ [0, 1].

(i) If f(0) =∞, then for every x ∈ [0, 1] we have

NIf (x) = f−1(x · ∞) =

{
f−1(0), if x = 0
f−1(∞), if x > 0

=

{
1, if x = 0
0, if x > 0

= NG1(x).

(ii) If f(0) < ∞, then NIf is a composition of real continuous functions, so it
is continuous. Moreover, if x1 < x2, then x1 · f(0) < x2 · f(0) and by the
strictness of f−1 we get that NIf is a strict negation. The converse implication
is a consequence of the point (i) of this proposition.

(iii) If f(0) <∞, then because of Remark 1 the function f1 defined by (6) is a well
defined f -generator such that If = If1 and f1(0) = 1. In particular

NIf (x) = NIf1 (x) = f−1
1 (x), x ∈ [0, 1].

If NIf is a strong negation, then also f−1
1 is a strong negation, so f1 = f−1

1 .
Conversely, if f1 is a strong negation, then f−1

1 = f1, so NIf is also a strong
negation. ¤
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Theorem 4. (cf. Yager [12], p. 197) If f is an f -generator of an f -generated
implication If , then

(i) If satisfies (NP) and (EP);

(ii) If (x, x) = 1 if and only if x = 0 or x = 1, i. e., If does not satisfy (IP);

(iii) If (x, y) = 1 if and only if x = 0 or y = 1, i. e., If does not satisfy (OP);

(iv) If satisfies (CP) with some fuzzy negation N if and only if f(0) <∞,
f1 defined by (6) is a strong negation and N = NIf .

(v) If is continuous if and only if f(0) <∞;

(vi) If is continuous except at the point (0, 0) if and only if f(0) =∞.

P r o o f .

(i) That If satisfies (NP) and (EP) was shown by Yager [12], page 197.

(ii) Let If (x, x) = 1 for some x ∈ [0, 1]. This implies that f−1(x · f(x)) = 1, thus
x · f(x) = f(1) = 0, hence x = 0 or f(x) = 0, which by the strictness of f
means x = 1. The reverse implication is obvious.

(iii) Proof is similar to that for (ii).

(iv) If satisfies (NP) and (EP), so by Corollaries 2.3 and 2.5 from [1] it can satisfy
(CP) with some fuzzy negation N if and only if N = NIf is a strong negation.
Therefore, if we assume that If satisfies CP(NIf ), then the natural negation
NIf is strong. Because of Proposition 2 (iii) we obtain the thesis in the first
direction. Conversely, if f(0) <∞ and f1 defined by (6) is a strong negation,
then again from Proposition 2 (iii) the natural negation NIf is strong, hence
If satisfies CP(NIf ).

(v) If f(0) < ∞, then If given by (2) is the composition of the real continuous
functions, so it is continuous. On the other hand, if f(0) = ∞, then because
of previous proposition, the natural negation is not continuous and therefore
If is also non-continuous.

(vi) If f(0) = ∞, then If is continuous for every x, y ∈ (0, 1]. Further, for every
y ∈ [0, 1] we get If (0, y) = 1 and for every x ∈ (0, 1] we have If (x, 0) = 0, so I
is not continuous in the point (0, 0). In addition, for every fixed y ∈ (0, 1] we
have f(y) <∞ and

lim
x→0+

If (x, y) = lim
x→0+

f−1(x · f(y)) = f−1(0) = 1 = If (0, y).

Finally, for every x ∈ (0, 1] we have

lim
y→0+

If (x, y) = lim
y→0+

f−1(x · f(y)) = f−1(∞) = 0 = If (x, 0). ¤

We would like to point out that by Theorem 4 (v) above, the point D-7 in [12],
page 197 is untrue.
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4. THE FAMILY OF g-GENERATED IMPLICATIONS

Yager [12] has also proposed another class of implications called the g-generated
implications. In a similar way as in the previous section we discuss its properties.

Proposition 3. (Yager [12], page 202) If g : [0, 1]→ [0,∞] is a strictly increasing
and continuous function with g(0) = 0, then the function I : [0, 1]2 → [0, 1] defined
by

I(x, y) = g(−1)

(
1
x
· g(y)

)
, x, y ∈ [0, 1], (7)

with the understanding 1
0 =∞ and ∞ · 0 =∞, is a fuzzy implication.

The function g(−1) in (7) is called the pseudo-inverse of g and is given by

g(−1)(x) =

{
g−1(x), if x ∈ [0, g(1)],
1, if x ∈ [g(1),∞].

Therefore, (7) can be written in the following form

I(x, y) = g−1

(
min

(
1
x
· g(y), g(1)

))
, x, y ∈ [0, 1], (8)

without explicitly using the pseudo-inverse.

Definition 8. (Yager [12]) A g-generator g : [0, 1]→ [0,∞] of a fuzzy implication
I is a strictly increasing and continuous function with g(0) = 0, such that for all
x, y ∈ [0, 1] the function I can be represented by (7) (or, equivalently, by (8)). In
addition, we say that I is a g-generated implication and if I is generated from g,
then we will often write Ig instead of I.

Example 4.

(i) If we take the g-generator g(x) = − log(1− x), which is a continuous additive
generator of the algebraic sum t-conorm SP, then we obtain the following fuzzy
implication

I(x, y) =

{
1, if x = 0 and y = 0,
1− (1− y)

1
x , otherwise,

x, y ∈ [0, 1].

which is neither an (S,N)-implication nor an R-implication.

(ii) If we take the g-generator g(x) = x, which is a continuous additive generator of
the ÃLukasiewicz t-conorm SL(x, y) = min(x+y, 1), then we obtain the Goguen
implication IGG, which is an R-implication.

For more examples of g-generated implications see Yager [12].

The g-generators can be used as continuous additive generators of continuous
Archimedean t-conorms. Such a generator is unique up to a positive multiplicative
constant, and this is also true for the g-generators of the g-generated implications.
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Theorem 5. The g-generator of a g-generated implication is uniquely determined
up to a positive multiplicative constant, i. e., if g1 is a g-generator, then g2 is a
g-generator such that Ig1 = Ig2 if and only if there exists a constant c ∈ (0,∞) such
that g2(x) = c · g1(x) for all x ∈ [0, 1].

P r o o f . (=⇒) Let g1, g2 be two g-generators of a g-generated implication, i. e.,
assume that Ig1(x, y) = Ig2(x, y) for all x, y ∈ [0, 1]. Using (7) we get

g
(−1)
1

(
1
x
· g1(y)

)
= g

(−1)
2

(
1
x
· g2(y)

)
, x, y ∈ [0, 1].

If g1(1) = ∞, then g2(1) = ∞. Indeed, let us assume that g2(1) < ∞ and fix arbi-
trarily y0 ∈ (0, 1). Then there exists x0 ∈ (0, 1) such that 1

x0
· g2(y0) > g2(1), since

limx→0+
1
x · g2(y0) = ∞. Hence g(−1)

2

(
1
x0
· g2(y0)

)
= 1, but g(−1)

1

(
1
x0
· g1(y0)

)
=

g−1
1

(
1
x0
· g1(y0)

)
< 1, a contradiction to the assumption that Ig1 = Ig2 . By changing

the role of g1 and g2 we obtain the following equivalence:

g1(1) =∞⇐⇒ g2(1) =∞.

Now, we consider the following two cases:

1. If g1(1) = ∞, then also g2(1) = ∞. Firstly, note that g2(0) = c · g1(0) and
g2(1) = c · g1(1) for every c ∈ (0,∞). Now, for every x, y ∈ [0, 1] we have

Ig1(x, y) = Ig2(x, y)⇐⇒ g−1
1

(
1
x
· g1(y)

)
= g−1

2

(
1
x
· g2(y)

)

⇐⇒ g2 ◦ g−1
1

(
1
x
· g1(y)

)
=

1
x
· g2(y)

⇐⇒ g2 ◦ g−1
1

(
1
x
· g1(y)

)
=

1
x
· g2 ◦ g−1

1 (g1(y)).

By the substitution h = g2 ◦ g−1
1 and z = g1(y) for y ∈ [0, 1], we obtain the

following equation

h

(
1
x
· z

)
=

1
x
· h(z), x ∈ [0, 1], z ∈ [0,∞], (9)

where h : [0,∞]→ [0,∞] is a continuous strictly increasing bijection such that
h(0) = 0 and h(∞) =∞. Let us substitute z = 1 above, we get

h

(
1
x

)
=

1
x
· h(1), x ∈ [0, 1]. (10)

Fix arbitrarily x ∈ (0, 1) and consider z = g1(x). Of course z ∈ (0,∞). Hence

there exists x1 ∈ (0, 1) such that x1 ·
1
z
∈ (0, 1). From (9) and (10) we get

h(z) = x1 · h
(

1
x1
· z

)
= x1 · h

(
1
x1
z

)
= x1 ·

1
x1
z

· h(1) = z · h(1).
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Now, by the definition of h, we have

g2 ◦ g−1
1 (z) = z · g2 ◦ g−1

1 (1),

thus
g2(x) = g1(x) · g2 ◦ g−1

1 (1).

But x ∈ (0, 1) was arbitrarily fixed, so letting c = g2 ◦ g−1
1 (1) we obtain the

result in this case.

2. In the case g1(1) <∞ we also have g2(1) <∞. Now, for every x, y ∈ [0, 1] we
have

Ig1(x, y) = Ig2(x, y)

⇐⇒ g−1
1

(
min

(
1
x
· g1(y), g1(1)

))
= g−1

2

(
min

(
1
x
· g2(y), g2 (1)

))

⇐⇒ g2 ◦ g−1
1

(
min

(
1
x
· g1(y), g1(1)

))
= min

(
1
x
· g2(y), g2(1)

)
.

By the substitution h = g2 ◦ g−1
1 , u =

1
x

and v = g1(y) for x, y ∈ [0, 1], we
obtain the following equation

h (min (u · v, g1(1))) = min (u · h(v), g2(1)) , u ∈ [1,∞], v ∈ [0, g1(1)],

where the function h : [0, g1(1)] → [0, g2(1)] is a continuous and strictly in-
creasing function such that h (0) = 0 and h (g1(1)) = g2(1). Let us fix any
x ∈ (0, 1). Then x · v < g1(1) for all v ∈ (0, g1(1)). Since h is strictly increas-
ing h (x · v) < g2(1) and h(v) < g2(1) for all v ∈ (0, g1(1)). Therefore

h (v) = h

(
1
x
· x · v

)
= h

(
min

(
1
x
· x · v, g1(1)

))

= min
(

1
x
· h (x · v) , g2(1)

)
=

1
x
· h(x · v),

for every v ∈ (0, g1(1)). Hence, from the continuity of h, we have

g2(1) = h (g1(1)) = lim
v→g1(1)−

h(v) = lim
v→g1(1)−

1
x
· h (x · v)

=
1
x
· h

(
x · lim

v→g1(1)−
v

)
=

1
x
· h (x · g1(1)) .

Since x ∈ (0, 1) was arbitrarily fixed, we get

h (x · g1(1)) = x · g2(1), x ∈ (0, 1). (11)

Now, for any fixed v ∈ (0, g1(1)) there exists x1 ∈ (0, 1) such that v = x1 ·g1(1)
and the previous equality implies

h(v) = h (x1 · g1(1)) = x1 · g2(1) = x1 · g1(1) · g2(1)
g1(1)

= v · g2(1)
g1(1)

,
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for all v ∈ (0, g1(1)). Note that this formula is also correct for v = 0 and
v = g1(1). Therefore, by the definition of h we get

g2 ◦ g−1
1 (v) = v · g2(1)

g1(1)
, v ∈ [0, g1(1)],

thus
g2(y) = g1(y) · g2(1)

g1(1)
, y ∈ [0, 1].

Putting c =
g2(1)
g1(1)

we obtain the result.

(⇐=) Let g1 be a g-generator and c ∈ (0,∞). Define g2(x) = c · g1(x) for all
x ∈ [0, 1]. Evidently g2 is a well defined g-generator. Moreover, for any z ∈ [0,∞],

g
(−1)
2 (z) =

{
g−1

1

(z
c

)
, if z ∈ [0, c · g1(1)],

1, if z ∈ [c · g1(1),∞].

This implies, that for every x, y ∈ [0, 1] we get

Ig2(x, y) = g−1
2

(
min

(
1
x
· g2(y), g2(1)

))

= g−1
1

(
1
c

min
(

1
x
· c · g1(y), c · g1(1)

))

= g−1
1

(
min

(
1
x
· g1(y), g1(1)

))
= Ig1(x, y). ¤

Remark 2. From the above result it follows, that if g is a g-generator such that
g(1) <∞, then the function g1 : [0, 1]→ [0, 1] defined by

g1(x) =
g(x)
g(1)

, x ∈ [0, 1] (12)

is a well defined g-generator such that Ig = Ig1 and g1(1) = 1. In other words, it is
enough to consider only decreasing generators for which g(1) =∞ or g(1) = 1.

Proposition 4. Let g be a g-generator. The natural negation of Ig is the Gödel
negation NG1, which is not continuous.

P r o o f . Let g be a g-generator For every x ∈ [0, 1] we get

NIg (x) = Ig(x, 0) = g(−1)

(
1
x
· g(0)

)
= g(−1)

(
1
x
· 0

)

=

{
g(−1)(∞), if x = 0
g(−1)(0), if x > 0

=

{
1, if x = 0
0, if x > 0

= NG1(x). ¤
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Theorem 6. (cf. Yager [12], page 201) If g is a g-generator of a g-generated
implication Ig, then

(i) Ig satisfies (NP) and (EP);

(ii) Ig satisfies (IP) if and only if g(1) < ∞ and x ≤ g1(x) for every x ∈ [0, 1],
where g1 is defined by (12);

(iii) if g(1) = ∞, then Ig(x, y) = 1 if and only if x = 0 or y = 1, i. e., Ig does not
satisfy (OP) when g(1) =∞;

(iv) Ig does not satisfy the contrapositive symmetry (CP) with any fuzzy negation;

(v) Ig is continuous except at the point (0, 0).

P r o o f .

(i) That Ig defined by (7) satisfies (NP) and (EP) was shown by Yager [12], page
201.

(ii) Let us assume firstly that g(1) = ∞. This implies that g(−1) = g−1. Let
Ig(x, x) = 1 for some x ∈ [0, 1]. This implies that g−1

(
1
x · g(x)

)
= 1, thus

1
x · g(x) = g(1) = ∞, hence x = 0 or g(x) = ∞, which by the strictness of g
means x = 1. Therefore Ig does not satisfy (IP) when g(1) = ∞. Let us
assume now, that Ig satisfies the identity property (IP). Therefore it should
be g(1) <∞. By Theorem 5 the function g1 defined by (12) is a well defined
g-generator such that Ig = Ig1 and g1(1) = 1. Now (IP) implies, that for every
x ∈ (0, 1] we get

Ig(x, x) = 1⇐⇒ Ig1(x, x) = 1⇐⇒ g
(−1)
1

(
1
x
· g1(x)

)
= 1

⇐⇒ g−1
1

(
min

(
1
x
· g1(x), g1(1)

))
= 1

⇐⇒ 1
x
· g1(x) ≥ g1(1)⇐⇒ 1

x
· g1(x) ≥ 1

⇐⇒ x ≤ g1(x).

The converse implication is a direct consequence of the above equivalences.

(iii) Let us assume that g(1) =∞. This implies that g(−1) = g−1. Let Ig(x, y) = 1
for some x, y ∈ [0, 1]. This implies that g−1( 1

x · g(y)) = 1, thus 1
x · g(y) =

g(1) =∞, hence x = 0 or g(y) =∞, which by the strictness of g means y = 1.
The reverse implication is obvious.

(iv) By the point (i) above the g-generated implication Ig satisfies (NP) and (EP),
so again it can satisfy the contrapositive symmetry only with NIg which should
be a strong negation. But from Proposition 4 we see that the natural negation
NIg is not strong.
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(v) By the formula (8), the implication Ig is continuous for every x, y ∈ (0, 1].
Further, for every y ∈ [0, 1] we get Ig(0, y) = 1 and for every x ∈ (0, 1] we have
Ig(x, 0) = 0, so Ig is not continuous in the point (0, 0). In addition, for every
fixed y ∈ (0, 1] we have g(y) > 0 and consequently

lim
x→0+

Ig(x, y) = lim
x→0+

g−1

(
min

(
1
x
· g(y), g(1)

))
= g−1(g(1)) = 1 = Ig(0, y).

Finally, for every x ∈ (0, 1] we have 1
x <∞, thus

lim
y→0+

If (x, y) = lim
y→0+

g−1

(
min

(
1
x
· g(y), g(1)

))
= g−1(0) = 0 = Ig(x, 0). ¤

We would like to point out that by Theorem 6 (v) above, the point D-7 in [12],
page 202 is untrue.

In the last theorem in this section, we will show that Ig satisfies the ordering
property only for a rather special class of g-generators.

Theorem 7. If g is a g-generator, then the following statements are equivalent:

(i) Ig satisfies (OP).

(ii) g(1) < ∞ and there exists a constant c ∈ (0,∞) such that g(x) = c · x for all
x ∈ [0, 1].

(iii) Ig is the Goguen implication IGG.

P r o o f . (i) =⇒ (ii) Let us assume that Ig satisfies the ordering property (OP).
From Theorem 6 (iii) we have g(1) < ∞. By Remark 2 the function g1 defined by
(12) is a well defined g-generator such that Ig = Ig1 and g1(1) = 1. Now (OP)
implies, that for every x, y ∈ (0, 1] we get

x ≤ y ⇐⇒ Ig(x, y) = 1⇐⇒ Ig1(x, y) = 1⇐⇒ g
(−1)
1

(
1
x
· g1(y)

)
= 1

⇐⇒ g−1
1

(
min

(
1
x
· g1(y), g1(1)

))
= 1⇐⇒ 1

x
· g1(y) ≥ g1(1)

⇐⇒ 1
x
· g1(y) ≥ 1

⇐⇒ x ≤ g1(y). (13)

This equivalence can be also written in the following form

x > y ⇐⇒ x > g1(y), x, y ∈ (0, 1]. (14)
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We show that g1(x) = x for all x ∈ (0, 1]. Suppose that this does not hold, i. e.,
there exists x0 ∈ (0, 1) such that g1(x0) 6= x0. If x0 < g1(x0), then by the continuity
and strict monotonicity of the generator g1 there exists y0 ∈ (0, 1) such that

x0 < g1(y0) < g1(x0). (15)

Because of (13) we get x0 ≤ y0. Since g1 is strictly increasing g1(x0) ≤ g1(y0), a
contradiction to (15).
If 0 < g1(x0) < x0, then by the continuity and strict monotonicity of the generator
g1 there exists y0 ∈ (0, 1) such that

g1(x0) < g1(y0) < x0. (16)

Because of (14) we get y0 < x0. Since g1 is strictly increasing g1(y0) < g1(x0), a
contradiction to (16).

We showed, that g1(x) = x for all x ∈ (0, 1), but also g1(0) = 0 and g1(1) = 1.
By virtue of (12) we get that g(x) = g(1) · x.

(ii) =⇒ (iii) If g(1) < ∞ and g(x) = c · x for all x ∈ [0, 1], with some c ∈
(0,∞), then g(1) = c and g-generator given by (12) is equal to g1(x) = x. From
Example 4 (ii) we conclude, that Ig1 = Ig is the Goguen implication.

(ii) =⇒ (iii) If Ig is the Goguen implication, then it is a well known result that
it satisfies the ordering property (OP). ¤

5. THE FAMILY OF h-GENERATED IMPLICATIONS

As noted earlier the f - and g-generators can be seen as the continuous additive
generators of t-norms and t-conorms, respectively. Taking cue from this, a new
family of fuzzy implications called the h-generated implications has been proposed
by Balasubramaniam [2], where h can be seen as a multiplicative generator of a
continuous Archimedean t-conorm. In this section we give its definitions and discuss
a few of its properties.

Proposition 5. (Balasubramaniam [2]) If h : [0, 1]→ [0, 1] is a strictly decreasing
and continuous function with h(0) = 1, then the function I : [0, 1]2 → [0, 1] defined
by

I(x, y) = h(−1) (x · h(y)) , x, y ∈ [0, 1], (17)

is a fuzzy implication.

The function h(−1) : [0, 1]→ [0, 1] in the above formula is again the pseudo-inverse
of h and is given by

h(−1)(x) =

{
h−1(x), if x ∈ [h(1), 1],
1, if x ∈ [0, h(1)].

Therefore (17) can be written in the following form

I(x, y) = h−1 (max (x · h(y), h(1))) , x, y ∈ [0, 1], (18)

without explicitly using the pseudo-inverse.
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Definition 9. (Balasubramaniam [2]) An h-generator h : [0, 1]→ [0, 1] of a fuzzy
implication I is a strictly decreasing and continuous function with h(0) = 1, such
that for all x, y ∈ [0, 1] the function I can be represented by (17) (or, equivalently, by
(18)). In addition, we say that I is an h-generated implication and if I is generated
from h, then we will often write Ih instead of I.

Example 5.

(i) If we take h(x) = 1− x, which is a continuous multiplicative generator of the
algebraic sum t-conorm SP, then we obtain the Reichenbach implication IRC,
which is an S-implication.

(ii) If we consider the family of h-generators hn(x) = 1 − xn

n
, n ∈ N, then we

obtain the following fuzzy implications

In(x, y) = min
(

(n− n · x+ x · yn)
1
n , 1

)
, x, y ∈ [0, 1],

which are (S,N)-implications.

For more examples of h-generated implications see Balasubramaniam [2] or [3].

Firstly we prove the following result.

Theorem 8. The h-generator of an h-generated implication is uniquely deter-
mined, i. e., h1, h2 are h-generators such that Ih1 = Ih2 if and only if h1 = h2.

P r o o f . Let h1, h2 be two h-generators of h-generated implication, i.e., Ih1(x, y) =
Ih2(x, y) for all x, y ∈ [0, 1]. Using (18) we have, for all x, y ∈ [0, 1]

Ih1(x, y) = Ih2(x, y)

⇐⇒ h1
−1 (max (x · h1(y), h1(1))) = h2

−1 (max (x · h2(y), h2(1)))

⇐⇒ h2 ◦ h1
−1 (max (x · h1(y), h1(1))) = max (x · h2(y), h2(1)) . (19)

Now letting g = h2◦h1
−1, h2(y) = u and h1(y) = v we get h2(y) = h2◦h1

−1◦h1(y) =
g◦h1(y) = g(v). Also g : [h1(1), 1]→ [h2(1), 1] is a continuous and strictly increasing
function such that g(h1(1)) = h2(1) and g(1) = 1. Substituting the above in (19)
we obtain

g(max (x · v, h1(1))) = max (x · g(v), g(h1(1))) , x ∈ [0, 1], v ∈ [h1(1), 1].

Let us take any x ∈ (h1(1), 1] and put v = 1 above. We get

g(x) = g(x · 1) = g(max (x · 1, h1(1))) = max (x · g(1), h2(1)) = max (x, h2(1)) .

Since the function g is strictly increasing we get g(x) = x for all x ∈ (h1(1), 1].
From the continuity this is also true for x = h1(1). Substituting for g we get
h2 ◦ h1

−1(v) = v for all v ∈ [h1(1), 1] or that h1(x) = h2(x) for all x ∈ [0, 1].
The reverse implication is obvious. ¤
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Proposition 6. Let h be an h-generator of Ih.

(i) The natural negation NIh is a continuous fuzzy negation.

(ii) The natural negation NIh is a strict negation if and only if h(1) = 0.

(iii) The natural negation NIh is strong negation if and only if h = h−1.

P r o o f . Since for every x ∈ [0, 1] we get

NIh(x) = Ih(x, 0) = h(−1)(x · h(0)) = h(−1)(x) = h−1 (max (x, h(1))) ,

it is obvious, that NIh is a continuous fuzzy negation. The other points are the
consequence of the definitions of strict (strong) negations and h-generators. ¤

Theorem 9. If h is an h-generator of an h-generated implication Ih, then

(i) Ih satisfies (NP) and (EP);

(ii) Ih satisfies (IP) if and only if h(1) > 0 and x · h(x) ≤ h(1) for every x ∈ [0, 1];

(iii) Ih does not satisfy (OP);

(iv) Ih satisfies (CP) with some fuzzy negation N if and only if h = h−1 and
N = NIh ;

(v) Ih is continuous.

P r o o f .

(i) For every h-generator h and y ∈ [0, 1] we have

Ih(1, y) = h(−1) (1 · h(y)) = y

and for all x, y, z ∈ [0, 1] we get

Ih(x, Ih(y, z)) = h(−1) (x · h(Ih(y, z)))

= h−1
(
max

(
x · h(h−1 (max (y · h(z), h(1)))), h(1)

))

= h−1 (max (x ·max (y · h(z), h(1)) , h(1)))

= h−1 (max (x · y · h(z), x · h(1), h(1)))

= h−1 (max (x · y · h(z), h(1))) ,

since x · h(1) ≤ h(1). Similarly we get that

Ih(y, Ih(x, z)) = h−1 (max (y · x · h(z), h(1))) .

Thus Ih satisfies the neutral property and the exchange principle.
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(ii) Firstly, note that if h(1) = 0, then it can be seen as the f -generator, and by
virtue of Theorem 4 (ii) it does not satisfy (IP). Let us assume that Ih satisfies
the identity property (IP). Therefore it should be h(1) > 0. Now, for every
x ∈ [0, 1] we get

Ih(x, x) = 1⇐⇒ h(−1)(x · h(x)) = 1⇐⇒ h−1 (max (x · h(x), h(1))) = 1
⇐⇒ x · h(x) ≤ h(1).

The converse implication is a direct consequence of the above equivalences.

(iii) If h(1) = 0, then h can be seen as the f -generator, and because of Theo-
rem 4 (iii) it does not satisfy (OP). Let us assume that there exists an h-
generator h0 with h0(1) > 0, such that Ih0 satisfies the ordering property.
Thus

x ≤ y ⇐⇒ Ih0(x, y) = 1⇐⇒ h
(−1)
0 (x · h0(y)) = 1

⇐⇒ h−1
0 (max (x · h0(y), h0(1))) = 1⇐⇒ x · h0(y) ≤ h0(1),

but there exist x0, y0 ∈ (0, 1) such that 0 < y0 < x0 < h(1) and x0 · h0(y0) <
x0 < h0(1), i. e., Ih0(x0, y0) = 1, a contradiction to the assumed ordering
property.

(iv) This is a direct consequence of Proposition 6 and Corollaries 2.3, 2.5 from [1].

(v) For every h-generator the function given by (18) is a composition of continuous
functions, so it is a continuous function. ¤

Example 6. As an example of h-generated implication which satisfies (IP) consider
the h-generator h(x) = 1− x

2
. By easy calculations we get

Ih(x, y) = min(2− 2x+ xy, 1), x, y ∈ [0, 1].

Firstly see that x · h(x) ≤ h(1) for every x ∈ [0, 1]. Therefore, by above theorem, Ih
satisfies (IP). Indeed, Ih(x, x) = min

(
2− 2x+ x2, 1

)
= 1 for all x ∈ [0, 1].

6. THE INTERSECTIONS BETWEEN IF , IG AND IH

Let us denote the following families of fuzzy implication:

• IF,∞ – f -generated implications such that f(0) =∞,

• IF,ℵ – f -generated implications such that f(0) <∞,

• IF = IF,∞ ∪ IF,ℵ,

• IG,∞ – g-generated implications such that g(1) =∞,

• IG,ℵ – g-generated implications such that g(1) <∞,
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• IG = IG,∞ ∪ IG,ℵ,

• IH,O – h-generated implications Ih obtained from h such that h(1) = 0,

• IH,E – h-generated implications Ih obtained from h such that h(1) > 0,

• IH = IH,O ∪ IH,E .

Proposition 7. The following equalities are true:

IF,ℵ ∩ IG = ∅, (20)
IF ∩ IG,ℵ = ∅, (21)

IF,∞ = IG,∞, (22)
IF,ℵ = IH,O, (23)

IF,∞ ∩ IH,O = ∅, (24)
IF ∩ IH,E = ∅, (25)
IG ∩ IH = ∅. (26)

P r o o f .

(i) The equation (20) is the consequence of Proposition 2 (ii) and Proposition 4.

(ii) Let I ∈ IF . Because of Theorem 4 (ii) we know that I(x, x) = 1 if and only
if x = 0 or x = 1. On the other side, if we assume that I ∈ IG,ℵ, then there
exists a g-generator such that I has the form (7) and g(1) < ∞. Thus, for
every x ∈ (0, 1) we get

I

(
g(x)
g(1)

, x

)
= g(−1)

(
g(1)
g(x)

· g(x)
)

= g(−1) (g(1)) = 1.

Therefore we obtain (21).

(iii) Let us assume that I ∈ IF,∞, i. e., there exists an f -generator f with f(0) =∞
such that I has the form (2). Let us define the function g : [0, 1]→ [0,∞] by

g(x) =
1

f(x)
, x ∈ [0, 1],

with the assumptions, that 1
0 =∞ and 1

∞ = 0. We see that g is a g-generator
with g(1) = ∞. Moreover g(−1)(x) = g−1(x) = f−1( 1

x ). Hence, for every
x, y ∈ [0, 1] we have

Ig(x, y) = g−1

(
1
x
· g(y)

)
= g−1

(
1
x
· 1
f(y)

)
= f−1 (x · f(y)) = I(x, y).
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Conversely, if I ∈ IG,∞, then there exists a g-generator g with g(1) =∞ such
that I has the form (7). Defining the function f : [0, 1]→ [0,∞] by

f(x) =
1

g(x)
, x ∈ [0, 1],

we get that f is an f -generator such that If = I.

(iv) Let us assume that I ∈ IF,ℵ, i. e., there exists an f -generator f with f(0) <∞
such that I has the form (2). Because of Remark 1 the function f1 defined by
(6) is an f generated implication such that If = If1 and f1(0) = 1. Therefore
h = f1 can be seen as a h-generator, with h(1) = 0, such that If = Ih.

Conversely, if I ∈ IH,O, i. e., there exists an h-generator h with h(1) = 0 such
that I has the form (17), then h(−1) = h−1 and it can be seen as an f -generator
with f(0) <∞.

(v) The equation (24) is a consequence of (23).

(vi) If I ∈ IF , then by Theorem 4 (ii) we get I(x, x) = 1 if and only if x = 0 or
x = 1. On the other hand, if I ∈ IH,E , then there exists an h-generator h such
that h(1) > 0. Therefore, by Theorem 9 (iii)

I(x, x) = 1⇐⇒ x · h(x) ≤ h(1),

which is always true for all x ∈ [0, h(1)]. Therefore we get (25).

(vii) From (22), (24) and (25) we see that IH ∩ IG,∞ = ∅. Similarly, from (20), (21)
and (23) we see that IH ∩ IG,ℵ = ∅. ¤

7. THE INTERSECTIONS OF IF , IG, IH WITH IS,N

In this section we investigate whether any of the families IF , IG, IH intersect with
IS,N . In other words, if and when any of the members of the above families can be
written as an (S,N)-implication of an appropriate t-conorm – fuzzy negation pair.
It is obvious from Proposition 4.1 in [1] that for a fuzzy implication I to be an
(S,N)-implication it should satisfy

• the left neutrality property (NP), and

• the exchange principle (EP).

We already know that the families IF , IG, IH all have (NP) and (EP). Hence,
because of the characterizations of some subclasses of (S,N)-implications presented
in Section 2, we need to check their natural negations. These was done in previous
sections and we have the following results.



178 M. BACZYŃSKI AND B. JAYARAM

Theorem 10. If f is an f -generator, then the following statements are equivalent:

(i) If is an (S,N)-implication.

(ii) f(0) <∞.

P r o o f . (i) =⇒ (ii) Let f be an f -generator such that f(0) =∞ and assume that
If is an (S,N)-implication generated from a t-conorm S and a fuzzy negation N .
From Proposition 4.1 in [1] we get that NIf = N , but Proposition 2 (i) gives, that
NIf is the Gödel negation NG1. Hence, from Example 2 (i), it follows that If = IG1.
Thus f−1(x · f(y)) = y for all x ∈ (0, 1], y ∈ [0, 1], which implies x · f(y) = f(y) for
all x ∈ (0, 1], y ∈ [0, 1], a contradiction.

(ii) =⇒ (i) Let f be an f -generator such that f(0) <∞. From Proposition 2 (ii)
the natural negation NIf is a strict negation. Theorem 1 implies that If is an
(S,N)-implication generated from some t-conorm and some strict negation. ¤

It is important, that in this case we can fully describe t-conorms and strict nega-
tions from which the f -generated implications are obtained. Let us denote by Φ
the family of all increasing bijections ϕ : [0, 1] → [0, 1]. We say that functions
F,G : [0, 1]2 → [0, 1] are Φ-conjugate, if there exists a ϕ ∈ Φ such that G = Fϕ,
where Fϕ(x, y) := ϕ−1(F (ϕ(x), ϕ(y)), for all x, y ∈ [0, 1].

Corollary 1. If f(0) <∞, then the function S : [0, 1]2 → [0, 1] defined by

S(x, y) = If (N−1
If

(x), y), x, y ∈ [0, 1]

is a strict t-conorm, i. e., it is Φ-conjugate with the algebraic sum t-conorm SP.

P r o o f . Let us assume that f is a decreasing generator such that f(0) < ∞.
Then the function f1 defined by the formula (6) is a strict negation. We know also
that If = If1 , so we get

S(x, y) = If (N−1
If

(x), y) = If1(N−1
If1

(x), y) = If1((If1(x, 0))−1
, y)

= If1((f−1
1 )−1(x), y) = If1(f1(x), y)

= f−1
1 (f1(x) · f1(y)),

for all x, y ∈ [0, 1]. Let us define the function ϕ : [0, 1]→ [0, 1] by ϕ(x) = 1−f1(x) for
all x ∈ [0, 1]. Evidently, ϕ is an increasing bijection. Moreover f−1

1 (x) = ϕ−1(1−x)
for all x ∈ [0, 1]. This implies that

S(x, y) = f−1
1 (f1(x) · f1(y)) = f−1

1 ((1− ϕ(x)) · (1− ϕ(y)))

= ϕ−1(ϕ(x) + ϕ(y)− ϕ(x) · ϕ(y))

for all x, y ∈ [0, 1], i. e., S is Φ-conjugate with the algebraic sum t-conorm SP.
Therefore, by virtue of Theorem 1.9 in [5], S is a strict t-conorm. ¤
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This means, that for f(0) < ∞ we have If (x, y) = S(NIf (x), y) for x, y ∈ [0, 1],
where S is Φ-conjugate with the algebraic sum t-conorm SP. But

NIf (x) = NIf1 (x) = f−1
1 (x) = ϕ−1(1− x), x ∈ [0, 1].

Hence, if f(0) < ∞, then we do not obtain any new implication but only (S,N)-
implication generated from Φ-conjugate algebraic sum t-conorm for

ϕ(x) = 1− f(x)
f(0)

, x ∈ [0, 1],

and the strict negation N(x) = ϕ−1(1− x) for all x ∈ [0, 1].

Now, under the following restricted situations we can obtain S-implications.

Theorem 11. Let f be an f -generator. The function If is an S-implication if and
only if f(0) <∞ and the function f1 defined by (6) is a strong negation.

Theorem 12. If g is a g-generator, then Ig is not an (S,N)-implication.

P r o o f . Assume, that there exists a g-generator g such that Ig is an (S,N)-
implication generated from a t-conorm S and a fuzzy negation N . We get that
NIg = N , but Proposition 4 gives, that NIg is the Gödel negation NG1. Hence,
from Example 2 (i), it follows that Ig = IG1. Thus, for all x ∈ (0, 1], y ∈ [0, 1],

g(−1)

(
1
x
· g(y)

)
= y,

which implies

g−1

(
min

(
1
x
· g(y), g(1)

))
= y.

Let us take any x, y ∈ (0, 1), we get
1
x
· g(y) = g(y), a contradiction. ¤

Theorem 13. If h is an h-generator, then Ih is an (S,N)-implication generated
from some t-conorm S and continuous negation N .

P r o o f . Let h be an h-generator. By Theorem 6 the natural negation NIh is a
continuous negation. By virtue of Theorem 1 we get that Ih is an (S,N)-implication
generated from some t-conorm S and continuous negation N . ¤

Corollary 2. Let h be an h-generator. Ih is an (S,N)-implication generated from
some t-conorm and some strict negation if and only if h(1) = 0.

Corollary 3. Let h be an h-generator. Ih is an S-implication generated from some
t-conorm and some strong negation if and only if h = h−1.
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8. THE INTERSECTIONS OF IF , IG, IH WITH IT

In this section we investigate whether any of the families IF , IG, IH intersect with IT .
In other words, if and when any of the members of the above families can be written
as an R-implication of an appropriate left-continuous t-norm. It is obvious from the
characterization of R-implications (see Theorem 2) that for a fuzzy implication I to
be an R-implication it should

• be increasing in the second variable (I2),

• satisfy the ordering property (OP),

• satisfy the exchange principle (EP), and

• I(x, .) should be right-continuous for any x ∈ [0, 1].

We already know that the families IF , IG, IH all have (I2) and (EP). Hence we need
to check for (OP) and the right-continuity of their members in the second variable.
This was done again in previous sections and we have the following results.

Because of Theorem 4 (iii) we get

Theorem 14. If f is an f -generator, then If is not an R-implication.

The next fact follows from Theorem 7.

Theorem 15. If g is a g-generator of Ig, then the following statements are equiv-
alent:

(i) Ig is an R-implication.

(ii) There exists a constant c ∈ (0,∞) such that g(x) = c · x for all x ∈ [0, 1].

(iii) Ig is the Goguen implication IGG.

Finally, by Theorem 9 (iv), we have

Theorem 16. If h is an h-generator, then Ih is not an R-implication.

9. CONCLUSION

In this work, firstly we discussed some properties of the newly proposed families of
fuzzy implications, viz., f -, g- and h-generated implications. In the light of the prop-
erties that these classes possess, we investigated the intersections that exist amongst
these classes of fuzzy implications, following which these investigations were ex-
tended to study the intersections that exist among the above classes and two of the
well-established classes of fuzzy implications, viz., (S,N)- and R-implications. Ta-
ble 2 gives a summary of the results in this work, while Figure gives a diagrammatic
representation of the intersections.

A few interesting observations can be made with the help of the above table.
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Fig. Intersections between f -,g- and h-generated implications
with (S,N)- and R-implications.

Table 2. Intersections between families of fuzzy implications.

∩ IS,N IT
IF,∞ = IG,∞ ∅ ∅
IF,ℵ = IH,O IF,ℵ ∅

IG,ℵ ∅ IGG

IH,E IH,E ∅

• If the f -generator is such that f(0) =∞, or equivalently a g-generator is such
that g(1) =∞, then we get totally new families of fuzzy implications.

• On the other hand, if the f -generator is such that f(0) < ∞, or equivalently
the h-generator is such that h(1) = 0, then the f -generated, or equivalently
the h-generated implication, becomes an (S,N)-implication for an appropriate
t-conorm S and a continuous fuzzy negation N , but never is an R-implication.
On the other hand, if the g-generator is such that g(1) < ∞, then the g-
generated implication does not become an (S,N)-implication and the only
g-generated implication that is an R-implication is the one obtained from the
g-generator g(x) = x.

• If h is an h-generator, then f(x) = − lnh(1 − x) is an f -generator. Now,
let the h-generator be such that h(1) = 0, then f(0) = ∞ and f(1) = 0.
Interestingly, the f -generated implication If is neither an R-implication nor
an (S,N)-implication, whereas the h-generated implication Ih is an (S,N)-
implication.

• Also because of the characterization of (S,N)-implications we see that h-
generated implications are only another representation of a subclass of (S,N)-
implications.
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The full characterization of f -, g- and h-generated fuzzy implications is as yet
unknown and is significant enough to merit attention. Also the intersections of f -, g-
and h-generated implications with the other classes of fuzzy implication, like QL-,
A- and Rn-implications (see [9, 11]) may turn out to be interesting. Our future
endeavors will be along these lines.

(Received March 25, 2006.)
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