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PERONA–MALIK EQUATION:
PROPERTIES OF EXPLICIT FINITE VOLUME SCHEME

Angela Handlovičová

The Perona–Malik nonlinear parabolic problem, which is widely used in image process-
ing, is investigated in this paper from the numerical point of view. An explicit finite volume
numerical scheme for this problem is presented and consistency property is proved.

Keywords: Perona–Malik equation, finite volume method, consistency, stability monotonic-
ity property
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1. INTRODUCTION

The modified Perona–Malik problem suggested by [2] is a nonlinear parabolic prob-
lem of the form

∂tu+ F (x, u,Du,D2u) = 0 in QT ≡ [0, T ]× Ω, (1)
∂νu = 0 on [0, T ]× ∂Ω, (2)

u(0, ·) = u0 in Ω, (3)

where F (x, u,Du,D2u) = −∇.(g(|∇Gσ ∗ u|)∇u), Ω ⊂ R2 is a rectangular domain,
[0, T ] is a scaling interval, and

g(s) is a Lipschitz continuous decreasing function with Lipschitz constant Lg, (4)
and second derivative is bounded with constant L2g, (5)

g(0) = 1, 0 < g(s)→ 0 for s→∞, (6)
Gσ ∈ C∞(Rd) is a smoothing kernel with compact support Kσ (7)

with
∫

Rd
Gσ(x) dx = 1

and Gσ(x)→ δx for σ → 0, δx – Dirac function at point x, u0 ∈ L2(Ω). (8)
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2. FORMULATION OF THE FINITE VOLUME METHOD

Let τh be a uniform mesh of Ω with cells p of measure m(p) and diameter d(p)
(we assume square cells here). Let us denote by h = maxp∈τh d(p). For every cell
p we consider a set of the neighbours N(p) consisting of all cells q ∈ τh for which
common interface of p and q, denoted by epq, is of non-zero measure m(epq). We
denote the set of all these edges for all volumes p ∈ τh by E and by σ we denote the
edge which connects the volumes p and q. (Clearly epq = eqp = epqI.) It is assumed
that for every p, there exists a representative point xp ∈ p, such that for every pair
p, q ∈ N(p), the vector xq−xp

|xq−xp| is equal to a unit vector npq which is normal to epq
and oriented from p to q. Let dpq be defined as dpq := |xp − xq|. In a simple case of
a uniform grid xp is just the center of the pixel. Then, let xpq be the point of epq
intersecting the segment xpxq. We define

Tpq :=
m(epq)
dpq

≤ T0. (9)

In this paper we will consider square finite volumes only, that means m(p) =
h2,m(epq) = h, dpq = h, Tpq = 1.

Any discrete approximation of a solution of partial differential equation is con-
sidered to be piecewise constant on control volumes [3].

The finite volume explicit scheme on a uniform grid is then written as follows:

Let 0 = t0 ≤ t1 ≤ · · · ≤ tn · · · ≤ tN , N · k = T denote the scale discretization steps
with tl = tl−1 + k, where k is the discrete scale step, l = 1, 2, . . . , N .

For n = 0, . . . , N − 1 we look for un+1
p , p ∈ τh, satisfying the identities

(
un+1
p − unp

)
m (p) = k

∑

q∈N(p)

gσ,npq Tpq
(
unq − unp

)
, (10)

u0
p =

1
m(p)

∫

p

u0(x) dx, (11)

gσ,npq := g (|∇Gσ ∗ ũn (xpq)|) , (12)

where ũn is a mirror extension of the discrete image computed in the nth scale step
and unp is a value of the numerical solution on the volume p in the nth scale step.

Let uh,k denote the finite volume numerical solution for some fixed space mesh h
and scale step k. In each time step this solution is piecewise constant on each finite
volume as it is usual for finite volume numerical schemes of a parabolic type. The
function piecewise constant on each finite volume at the lth scale step is denoted
by ūl.

3. STABILITY AND CONVERGENCE RESULTS

We briefly mention results of [7] obtained for the explicit finite volume scheme con-
cerning the stability and convergence properties. For the semi-implicit scheme see [9].
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First we make the following stability assumption:

k ≤ (1− η)
m(p)∑

q∈N(p)

gσ,npq Tpq
for all p ∈ τh and η ∈ (0, 1). (13)

Stability estimates are of the following type (for the proof of Lemma A see [7],
for Lemma B see [4]):

Lemma A. (A priori estimates in L2(QT )) It holds that there exist positive
constants C1, C2 such that

(i) max
0≤l≤N

∑

p∈τh

(
ulp

)2
m(p) ≤ C1

(ii)
N∑

l=0

k
∑

(p,q)∈E

(
ulp − ulq

)2

dpq
m (epq) ≤ C2

and the constants C1, C2 do not depend on the mesh parameters h, k.

Lemma B. (L∞ stability for a discrete solution) There exists positive constant
C, such that for all n = 1, 2 . . . , N it holds:

‖un+1‖L∞(Ω) ≤ C. (14)

Finally we present the convergence result for the proposed numerical scheme [7]:

Lemma C. (Convergence of uh,k) There exists u ∈ L2 (QT ) which is the weak
solution of (1) – (3) such that

uh,k → u in L2 (QT )

as h, k → 0. Furthermore, the convergence is pointwise.

4. PROPERTIES OF FV SCHEME

We want to prove some properties of our numerical scheme, so following the notations
and results of [1] we first propose some notation and definitions.

We denote by B(Ω) the set of all uniformly bounded functions on domain Ω.
We consider the problem

ut + F (D2u) = 0 on [0, T ]× Ω
u = u0 on Ω× 0 (15)

∂νu = 0 on [0, T ]× Ω,

where u and F are continuous functions of their arguments, D2u denotes the second
derivatives matrix of u with respect to x and F is elliptic.

A general scheme that is supposed to construct (15) can be denote as:

S(k) : B(Ω)→ B(Ω).
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Definition 4.1. Approximation scheme S(k) has the monotonicity property if it
holds for all u, v ∈ B(Ω):

S(k)u ≥ S(k)v if u ≥ v. (16)

Quasi monotonicity property means:

S(k)v ≤ S(k)u+ o(k) if u ≥ v.

Definition 4.2. Approximation scheme S(k) : B(Ω) → B(Ω) has the stability
property if for all K ∈ R, K > 0, u ∈ B(Ω) it holds:

S(k)(u+K) = S(k)u+K. (17)

Definition 4.3. Approximation scheme S(k) : B(Ω)→ B(Ω) has the consistency
property if for all Φ ∈ C∞(Ω) it holds:

lim
k→0

Φ− S(k)Φ
k

= F (D2Φ). (18)

For arbitrary function u ∈ B(Ω) the explicit scheme (10) can be rewritten in the
following way:

S(k)u(x) = u(x) +
k

m (p)

∑

q∈N(p)

gσ,upq Tpq (u(xq)− u(xp)) for every x ∈ p, (19)

where gσ,upq := g (|∇Gσ ∗ ũ (xpq)|) as in (12).

Then we obtain our approximate solution as in [1]:

uN =

{
S(t− n TN )uN (·, n TN )(·) if t ∈

(
n TN , (n+ 1) TN

)
, n = 1, 2, . . . N − 1

u0(·) if t = 0.
(20)

For an arbitrary function Φ ∈ C∞(Ω) we denote by ‖Φ‖L∞ the norm in this
functional space and ‖Φ‖k a norm of a functional space Ck(Ω).

Convergence theorem for problems with elliptic operator F under assumption
of monotonicity, stability and consistency of the approximation solution, is proved
in [1]. Although the convergence of the approximation scheme (10) has been proved
in [7], the presented scheme does not posses the monotonicity property [4]:

Theorem 1. Let
k = C∗m(p), (21)

where C∗ is chosen in such a way that (13) is fulfilled for some η ∈ (0, 1).Then the
explicit approximation scheme (19) has the stability property, but it is not monotone.
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Theorem 2. For the new relation between scale and space step in the form:

k = C ·m(p)2+α, (22)

where α > 0 is small, scheme (10) is quasi monotone.

Remark. Quasi monotonicity is sufficient to prove theorem of [1], monotonicity itself
is not necessary.

Theorem 3. For the relation (22) from the previous theorem the consistency prop-
erty holds for our scheme.

P r o o f . For x ∈ Ω and arbitrary Φ ∈ C∞(Ω) we must prove the estimation
∣∣∣∣
Φ(x)− S(k)Φ(x)

k
− F (x,Φ, DΦ, D2Φ)

∣∣∣∣ ≤ Ckη (23)

for some η > 0, where C is a generic constant independent on k and h. After
applying the formula for S(k) into (23) we can see that we must estimate the term:

∣∣∣∣∣∣
− 1
m(p)

∑

q∈N(p)

gσ,Φpq Tpq (Φq − Φp)− F (x,Φ, DΦ, D2Φ)

∣∣∣∣∣∣
,

where we have used the notation

Φq = Φ(xq), Φp = Φ(xp) and gσ,Φpq = g
(∣∣∣∇Gσ ∗ Φ̃ (xpq)

∣∣∣
)

and Φ̃ has the same meaning as before. We can rewrite the previous term in the
following way:

∣∣∣∣∣∣∣
− 1
m(p)

∑

q∈N(p)

∫

epq

gσ,Φpq

Φq − Φp
dpq

ds− F (x,Φ, DΦ, D2Φ)

∣∣∣∣∣∣∣
,

or for our square finite volumes:
∣∣∣∣∣∣∣

1
h2

∑

q∈N(p)

∫

epq

gσ,Φpq

Φq − Φp
h

ds+ F (x,Φ, DΦ, D2Φ)

∣∣∣∣∣∣∣
. (24)

Now we use the same idea as in [6]: For the difference term (Φq − Φp)/(h) let
us use the Taylor expansion on each edge epq in a similar way as for deriving a
usual central difference approximation. Let xp = (x1p, x2p) and xqi = (x1qi , x2qi)
for i = 1, . . . , 4, qi ∈ N (p) where q1 is the neighbor of volume p on the right, q2
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on the top, q3 on the left and q4 on the bottom. Let s = (s1, s2) be a point on the
boundary of a volume p. Then

for a point s ∈ epq1 we have s =
(
x1p +

h

2
, x2p + t

h

2

)
, t ∈ 〈−1, 1〉, (25)

for a point s ∈ epq2 we have s =
(
x1p + t

h

2
, x2p +

h

2

)
, t ∈ 〈−1, 1〉, (26)

for a point s ∈ epq3 we have s =
(
x1p −

h

2
, x2p + t

h

2

)
, t ∈ 〈−1, 1〉, (27)

for a point s ∈ epq4 we have s =
(
x1p + t

h

2
, x2p −

h

2

)
, t ∈ 〈−1, 1〉. (28)

Then for epq1 and epq3 we have

Φq − Φp
h

=
∂Φ(s)
∂ν

+ 2Φxy(s) · sgn(x1q − x1p)(x2q − s2) +O(h2) (29)

and for epq2 and epq4 similarly

Φq − Φp
h

=
∂Φ(s)
∂ν

+ 2Φxy(s) · sgn(x2q − x2p)(x1q − s1) +O(h2). (30)

We get

1
h2

∑

q∈N(p)

∫

epq

gσ,Φpq

Φq − Φp
h

d

=
1
h2

∑

i=1,3

∫

epqi

gσ,Φpqi

(
∂Φ(s)
∂ν

+ 2Φxy(s) · sgn(x1qi − x1p)(x2qi − s2) +O(h2)
)

ds

+
1
h2

∑

i=2,4

∫

epq+i

gσ,Φpqi

(
∂Φ(s)
∂ν

+ 2Φxy(s) · sgn(x2qi − x2p)(x1qi − s1) +O(h2)
)

ds

=
1
h2

∑

q∈N(p)

∫

epq

gσ,Φpq

∂Φ(s)
∂ν

ds

+
1
h2

∑

i=1,3

∫

epqi

gσ,Φpqi 2Φxy(s) · sgn(x1qi − x1p)(x2qi − s2) ds

+
1
h2

∑

i=2,4

∫

epqi

gσ,Φpqi 2Φxy(s) · sgn(x1qi − x1p)(x2qi − s2) ds+ C(‖Φ‖3)h

= I1 + I2 + I3 + C(‖Φ‖3)h.

So the term for estimation now has the form:
∣∣I1 + I2 + I3 + C(‖Φ‖3)h+ F (x,Φ, DΦ, D2Φ)

∣∣

≤
∣∣I1 + F (x,Φ, DΦ, D2Φ)

∣∣ + |I2|+ |I3|+ Ch.
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Using parametrizations (25) – (28) we can rearrange the term I2 (the term I3 can be
estimated analogously) on the edge epq1 into the following form

2h
2h2

1∫

−1

gσ,Φpq1 Φxy

(
x1p +

h

2
, x2p + t

h

2

)(
−th

2

)
dt

and on the edge epq3 similarly

− 2h
2h2

1∫

−1

gσ,Φpq3 Φxy

(
x1p −

h

2
, x2p + t

h

2

)(
t
h

2

)
dt.

Collecting these two terms together, and using the fact that Φ ∈ C∞(Q) we obtain

|I2| ≤

∣∣∣∣∣∣
h2

2h2

1∫

−1

t
(
gσ,Φpq1 − gσ,Φpq3

)
Φxy

(
x1p +

h

2
x2p + t

h

2
)
)

dt+

h2

2h2

1∫

−1

tgσ,Φpq3

(
Φxy(x1p +

h

2
, x2p + t

h

2
)− Φxy(x1p −

h

2
, x2p + t

h

2
)
)

dt

∣∣∣∣∣∣

≤ ‖Φ‖2
gσ,Φpq1 − gσ,Φpq3

2
+ C(‖Φ‖3)

gσ,Φpq3

2
h.

Putting all together we obtain

|I2|+ |I3| ≤ C(‖Φ‖2)h
(
gσ,Φpq3 + gσ,Φpq4

)
(31)

+ C(‖Φ‖3)
(
|gσ,Φpq1 − gσ,Φpq3 |+ |gσ,Φpq2 − gσ,Φpq4 |

)
. (32)

Last term in this inequality can be estimated as in [5]:
∣∣gσ,Φpq1 − gσ,Φpq3

∣∣ ≤ Ch
(
‖D2Gσ‖L∞‖Φ‖L∞ + ‖DGσ‖L∞‖DΦ‖L∞

)
.

Finally we have
|I2|+ |I3| ≤ C(‖Φ‖2)h.

Now for the first term it holds:

I1 =
1
h2

∑

q∈N(p)

∫

epq

gσ,Φpq

∂Φ(s)
∂ν

ds =
1
h2

∑

q∈N(p)

∫

epq

gσ,Φp

∂Φ(s)
∂ν

ds

+
1
h2

∑

q∈N(p)

∫

epq

(gσ,Φpq − gσ,Φp )
∂Φ(s)
∂ν

ds = II1 + II2

So we must now estimate

|II1 − F (x,Φ, DΦ, D2Φ)|+ |II2|.
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First we can rearrange the term in II2.

gσ,Φpq − gσ,Φp = g
(∣∣∣∇Gσ ∗ Φ̃ (xpq)

∣∣∣
)
− g

(∣∣∣∇Gσ ∗ Φ̃ (xp)
∣∣∣
)
.

For simplicity we denote
spq =

∣∣∣∇Gσ ∗ Φ̃ (xpq)
∣∣∣ ,

sp =
∣∣∣∇Gσ ∗ Φ̃ (xp)

∣∣∣ .

Then
g(sp)− g(spq) = g′ (sp) ·D (sp) |xpq − xp|+O(h2)

So

II2 =
1
h2

∑

q∈N(p)

∫

epq

(gσ,Φpq − gσ,Φp )
∂Φ(s)
∂ν

ds =

1
h2

∑

q∈N(p)

∫

epq

(g′ (sp) ·D (sp) |xpq − xp|+O(h2))
∂Φ(s)
∂ν

ds =

1
h2

∑

q∈N(p)

∫

epq

(g′ (sp) ·D (sp) |xpq − xp|)
∂Φ(s)
∂ν

ds+O(h).

Now we can apply Green’s theorem on the first term and according to the properties
of function g and Gσ for |xpq − xp| = h

2 we obtain:

II2 =
1

2h
g′ (sp) ·D (sp)

∫

p

∆Φ(x) dx+O(h).

|II2| ≤ h
(
Lg‖D2Gσ‖L∞‖Φ‖2

)
+O(h) ≤ Ch.

Finally for II1 we can use again Green’s theorem and we have:

II1 =
1
h2

∫

p

∇ ·
(
gσ,Φp ∇Φ(x)

)
dx =

1
h2

∫

p

∇·
(
g

(∣∣∣∇Gσ ∗ Φ̃ (x)
∣∣∣
)
∇Φ(x)

)
dx+

1
h2

∫

p

∇·
((
gσ,Φp − g

(∣∣∣∇Gσ ∗ Φ̃ (x)
∣∣∣
))
∇Φ(x)

)
dx.

So applying the mean value theorem to the first term we obtain

|II1 + F (x,Φ, DΦ, D2Φ)|
≤

∣∣∣∇ ·
(
g

(∣∣∣∇Gσ ∗ Φ̃ (ξ)
∣∣∣
)
∇Φ(ξ)

)
−∇ ·

(
g

(∣∣∣∇Gσ ∗ Φ̃ (x)
∣∣∣
)
∇Φ(x)|

)∣∣∣

+
1
h2

∣∣∣∣∣∣

∫

p

∇ ·
((
gσ,Φp − g

(∣∣∣∇Gσ ∗ Φ̃ (x)
∣∣∣
))
∇Φ(x)

)
dx

∣∣∣∣∣∣
= III1 + III2,
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for some ξ ∈ p For the second III2 term in this estimation we can use again the
same argument as for the estimation of the term II2 before and it is easy to see that
this term is of O(h). For the first term III1 we use the properties of g,Φ and Gσ.
Again we denote

sξ =
∣∣∣∇Gσ ∗ Φ̃ (ξ)

∣∣∣ , sx =
∣∣∣∇Gσ ∗ Φ̃ (x)

∣∣∣

|III1| = |∇ · (g(sξ)∇Φ(ξ))−∇ · (g(sx)∇Φ(x)|)|
≤ |∇g(sξ) · ∇Φ(ξ)−∇g(sx)∇Φ(x)|+ |g(sξ)∆Φ(ξ)− g(sx)∆Φ(x)|
≤ |∇g(sξ) · ∇Φ(ξ)±∇g(sξ) · ∇Φ(x)−∇g(sx)∇Φ(x)|
+ |g(sξ)∆Φ(ξ)± g(sξ)∆Φ(x)− g(sx)∆Φ(x)|
≤ L2g‖D2Gσ‖L∞‖DΦ‖L∞ · h+ ‖Φ‖3 · h.

If we now take into account the relations (13) and (22) we can conclude our proof
with the estimation

∣∣∣∣
Φ(x)− S(k)Φ(x)

k
− F (x,Φ, DΦ, D2Φ)

∣∣∣∣ ≤ Ck
1

2(1+α) . 2

Remark to numerical experiments. Proposed numerical scheme of Perona–Malik
equation can be used in a very effective way for problems of filtering in image pro-
cessing. Many results, examples and numerical experiments can be seen for example
in [4, 5, 7, 8].

5. CONCLUSION

The properties of numerical scheme for Perona–Malik equation was proved. These
properties are sufficient for convergence result of the numerical solution to the exact
one. The results are done for uniform mesh only, the generalization for non-uniform
mesh brings some technical difficulties and calculations.

From computational point of view numerical method based on finite volume is
very effective and natural for image processing, because the initial noisy image is
also piecewise constant function on pixels, which can be used as a first meshing of
an image domain. In practical computations the relation (22) is not so constrained,
because the variable t is not a real time but scale variable and the whole scaling
interval [0, T ] is not usually very long.

(Received January 15, 2006.)
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