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K Y B E R N E T I K A — V O L U M E 4 3 ( 2 0 0 7 ) , N U M B E R 5 , P A G E S 6 7 5 – 6 9 6

ON GENERALIZED ENTROPIES,
BAYESIAN DECISIONS AND STATISTICAL DIVERSITY

Igor Vajda and Jana Zvárová

The paper summarizes and extends the theory of generalized φ-entropies Hφ(X) of ran-
dom variables X obtained as φ-informations Iφ(X;Y ) about X maximized over random
variables Y . Among the new results is the proof of the fact that these entropies need not
be concave functions of distributions pX . An extended class of power entropies Hα(X) is
introduced, parametrized by α ∈ R, where Hα(X) are concave in pX for α ≥ 0 and convex
for α < 0. It is proved that all power entropies with α ≤ 2 are maximal φ-informations
Iφ(X;X) for appropriate φ depending on α. Prominent members of this subclass of power
entropies are the Shannon entropy H1(X) and the quadratic entropy H2(X). The paper
investigates also the tightness of practically important previously established relations be-
tween these two entropies and errors e(X) of Bayesian decisions about possible realizations
of X. The quadratic entropy is shown to provide estimates which are in average more than
100 % tighter than those based on the Shannon entropy, and this tightness is shown to
increase even further when α increases beyond α = 2. Finally, the paper studies various
measures of statistical diversity and introduces a general measure of anisotony between
them. This measure is numerically evaluated for the entropic measures of diversity H1(X)
and H2(X).

Keywords: φ-divergences, φ-informations, power divergences, power entropies, Shannon en-
tropy, quadratic entropy, Bayes error, Simpson diversity, Emlen diversity
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1. INTRODUCTION AND BASIC CONCEPTS

The models of data and variables in the digital world are usually discrete. Therefore
we are interested in random variables with discrete true distributions p = (p(i) : i ∈
I) and discrete hypothetical distributions q = (q(i) : i ∈ I) with finite I. We drop
the indices i ∈ I irrelevant for both p and q in the sense p(i) + q(i) = 0, i. e. we
suppose p(i) + q(i) > 0 for all i ∈ I.

The divergence of distributions p, q is often expressed by the φ-divergence for φ
from the class Φ of real valued functions convex on the interval (0,∞) and strictly
convex at t = 1 with φ(1) = 0. Following Csiszár [4, 5] or Liese and Vajda [17, 18],
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if φ ∈ Φ then the φ-divergence of distributions p, q can be defined by formula

Dφ(p‖q) =
∑

i:q(i)>p(i)

q(i)φ
(
p(i)
q(i)

)
+

∑

i:q(i)<p(i)

p(i)φ∗
(
q(i)
p(i)

)
(1.1)

where φ∗ ∈ Φ is adjoined to φ in the sense that for all t ∈ (0,∞)

φ∗(t) = tφ (1/t) , (1.2)

and the (possibly infinite) values φ(0), φ∗(0) needed in (1.1) are obtained as limits of
φ(t), φ∗(t) for t ↓ 0. It is clear from (1.1) that Dφ∗(p‖q) = Dφ(q‖p). As well known,
the φ-divergences take on values between 0 and φ(0) + φ∗(0) where Dφ(p, q) = 0 if
and only if p = q. For this and further properties see [17] or [18].

0 1
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1

t

φ
−
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Fig. 1.1. Functions φ+(t) = (t− 1)+ = max(t− 1, 0) and

φ−(t) = (t− 1)− = −min(t− 1, 0).

The most simple functions φ ∈ Φ are φ+(t) and φ−(t) = φ∗+(t) given in Figure 1.1
leading to the upper variation

Dφ+(p‖q) = V+(p‖q) =
∑

i:p(i)>q(i)

(p(i)− q(i)) (1.3)

and lower variation

Dφ−(p‖q) = V−(p‖q) =
∑

i:p(i)<q(i)

(q(i)− p(i)), (1.4)

and their sum φ(t) = φ+(t) + φ−(t) = |t − 1| which is self-adjoined in the sense
φ∗(t) = φ(t) and leads to the total variation

Dφ(p‖q) = V (p‖q) =
∑

i

|p(i)− q(i)|. (1.5)

Well known class of φ-divergences parametrized by α ∈ R is obtained from the power
functions

φα(t) =
tα − α(t− 1)− 1

α(α− 1)
for α(α− 1) 6= 0 (1.6)
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and their limits
φ1(t) = t ln t− t+ 1, φ0(t) = − ln t+ t− 1. (1.7)

In what follows we use the simplified notation Dα(p‖q) = Dφα(p‖q) and call these
expressions power divergences. The adjoining rule (1.2) for the power functions
(1.6), (1.7) is φ∗α(t) = φ1−α(t) and leads to the skew symmetry

Dα(p‖q) = Dα(q‖p), α ∈ R (1.8)

of the corresponding power divergences.
The best known power divergence is perhaps the statistical Pearson divergence

D2(p‖q) =
∑

i

p(i)2

q(i)
− 1 =

∑

i

(p(i)− q(i))2

q(i)
(1.9)

where (and also in the sequel) the summands with q(i) = 0 in the denominator
are assumed to be infinite. Another important examples are the double-Pearson
divergence

D4(p‖q) =
∑

i

p(i)4

q(i)3
− 1, (1.10)

the classical information-theoretic divergence often called Kullback divergence

D1(p‖q) =
∑

i

p(i) ln
p(i)
q(i)

(1.11)

and the Hellinger divergence (squared Hellinger distance)

D1/2(p‖q) = 4
∑

i

(√
p(i)−

√
q(i)

)2

. (1.12)

The power divergences defined by the class of functions (1.6), (1.7) are usually
attributed to Cressie and Read [3]. We would like to emphasize here that the power
divergences D̄α(P‖Q) obtained for arbitrary probability measures P,Q and all α > 0
from the functions

φ̄α(t) =
tα − α(t− 1)− 1

α− 1
α > 0, α 6= 1

and their limit φ̄1(t) = t ln t − t + 1 ≡ φ1(t) were introduced much earlier in the
formulas (1.8), (1.9) of Perez [22]. This means that, in particular, the divergences
Dα(p‖q) of Cressie and Read are obtained from D̄α(p‖q) of Perez in the domain
α > 0 simply by dividing by α. Further, the skew symmetry (1.8) implies that the
Cressie-Read divergences follow from the version of Perez by the similar division rule

Dα(p‖q) = D̄1−α(q‖p)/(1− α)

also in the domain α ≤ 0. For α = 1 both the Perez and Cressie-Read versions
coincide with the Kullback divergence.
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In his classical papers on information theory, Shannon introduced probability
distributions pX;Y (i), i ∈ I = X ×Y as models for the situations where an Y-valued
observation Y informs about an X -valued message X. As a measure of information
he proposed a nonnegative quantity I(X;Y ) which is nothing but the Kullback
divergence D1(pX,Y ‖pXpY ) between the joint distribution pX,Y of X, Y and the
product pXpY of the marginal distributions

pX(x) =
∑

y

pX,Y (x, y), pY (y) =
∑

x

pX,Y (x, y)

of X and Y on X and Y. In other words, the Shannon information is

I1(X;Y ) = D1(pX,Y ‖pXpY ) =
∑

x,y

p(x, y) ln
p(x, y)
p(x) p(y)

(1.13)

(cf. (1.11)). Here and in the sequel we use the conventions

p(x, y) = pX,Y (x, y), p(x) = pX(x) and p(y) = pY (y) (1.14)

which are common in the literature on information theory. The product of marginals
pXpY is a hypothetic distribution qX,Y which is true only ifX,Y are independent. We
see from (1.13) that the Shannon information is a nonnegative measure of association
of the random variables X, Y which is equal zero if and only if X, Y are independent.

A similar measure of association was proposed much earlier by Pearson [21],
namely the mean square contingency

I2(X;Y ) = D2 (pX,Y ‖pXpY ) =
∑

x,y

(p(x, y)− p(x) p(y))2

p(x) p(y)
(1.15)

(cf. (1.9) and (1.14)), used later as a basis in various criteria of statistical association
(Cramér [2], Tschuprow [27], Höffding [14]). Later Höffding [15] proposed postulates
for measures of association of random pairs (X,Y ) based on the measure

V (X;Y ) = V (pX,Y ‖pXpY ) =
∑

x,y

|p(x, y)− p(x) p(y)| (1.16)

(cf. (1.5) and (1.14)) called Höffding coefficient in Zvárová [32].
Motivated by these proposals and also by earlier papers of Rényi [23, 24], Csiszár

[6] and Zvárová [32] introduced the general φ-information

Iφ(X;Y ) = Dφ (pX,Y ‖pXpY ) =
∑

x,y

p(x) p(y)φ
(

p(x, y)
p(x) p(y)

)
(1.17)

(cf. (1.14)) where we used a simplified form of (1.1) since p(x) p(y) > 0 follows for
all x ∈ X , y ∈ Y from the assumption p(x) p(y) + p(x, y) > 0. In other words,
the φ-information is nothing but the φ-divergence of true distribution pX,Y and the
hypothetic distribution pXpY which is true only if X and Y are independent.
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As observed already by Shannon (see e. g. Cover and Thomas [1]), the information
I1(X;Y ) is maximal if Y = X, i. e. if the observed variable is the message X itself.
The amount of information I1(X;X) in the message X is the Shannon entropy

H1(X) = −
∑

x

p(x) ln p(x) (in nats). (1.18)

This is one element from the family of power entropies defined for arbitrary distri-
butions p = pX and all α ∈ R by the formula

Hα(p) ≡ Hα(X) =
∑

x

p(x)ψα(p(x)) (1.19)

using the power functions given by

ψα(π) =
1− πα−1

α− 1
, π ∈ (0, 1], ψα(0) = lim

π↓0
ψα(π) (1.20)

if α 6= 1 and otherwise by the corresponding limit

ψ1(π) = − lnπ, π ∈ (0, 1], ψ1(0) =∞ (1.21)

with the additional rule 0ψα(0) = 0. The functions ψα(π) may be viewed as de-
creasing measures of information in an event of probability π ∈ [0, 1]. Therefore
the entropies Hα(X) are expected amounts of information in the individual events
X = x. If we normalize in (1.20) by (α − 1) ln 2 then the limit entropy H1(X) for
α → 1 will differ from (1.18) by log2 at the place of ln = loge, i. e. the information
H1(X) will be in bits instead of nats.

The subclass of the power entropies (1.19) with parameters α > 0 was first
introduced in a slightly differently normalized form by Havrda and Charvát [13]. As
we shall see, interesting examples of power entropies, in addition to the Shannon
entropy, are

H2(X) = 1−
∑

x

p(x)2 (1.22)

called quadratic entropy by Vajda [28] and

H0(X) = n− 1 for n =
∑

x:p(x)>0

1 (1.23)

indicating the number of possible messages which differ from the delivered one, which
may be called Hartley entropy (it is one-one related to what is commonly called the
Hartley entropy, cf. e. g. [20]).

The power entropies (1.19) belong to the even wider class of ψ-entropies

Hψ(p) ≡ Hψ(X) =
∑

x

p(x)ψ(p(x)) (1.24)

for decreasing continuous functions ψ(π) of variable π ∈ (0, 1] with ψ(1) = 0. These
general entropies were studied in Vajda [29] who proved that they exhibit standard
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desirable properties of information measures when πψ(π) is concave on (0, 1). The
power entropies (1.19) are concave in this sense only for α ≥ 0.

Section 2 summarizes the results of the recent lecture [31]. It shows that the
definition of generalized entropies of information sources as generalized informations
in direct observations of these sources leads to some nonconcave entropies, in par-
ticular to infinitely many nonconcave power entropies. Section 3 studies relations
between the entropies Hα(X) for α ≥ 0 and the errors e(X) of Bayes decisions about
X. Section 4 investigates mutual relation between two important particular power
entropies, namely H1(X) and H2(X).

2. INFORMATIONS AND ENTROPIES

The φ-informations Iφ(X;Y ) characterize statistical association between the ob-
served random variable Y and an unknown random state of nature X. Motivated
by statistical decision problems, in this paper we are interested in the situations
when these informations achieve maximal values. However, there are many situa-
tions when the interest is concentrated on small values of these informations. As
an example let us mention the situation when Y encrypts a message X or when
Iφ(X;Y ) serve as a mixing coefficients for weakly dependent stochastic processes.

Let us start this section with the formula of Zvárová [32]

sup
Y
Iφ(X;Y ) = Iφ(X;X) = Hφ̃(X) (cf. (1.24)) (2.1)

where Hφ̃(X) is defined by (1.24) with ψ(t) replaced by φ̃(t) = φ∗(t) + φ(0) (1 − t)
for φ∗(t) given by (1.2). It says that the φ-information about X distributed by
p(x) = pX(x) obtained by observing an associated random variable Y is maximized
by directly observing X, and that the maximal value of this information is given by
the φ̃-entropy

Hφ̃(p) ≡ Hφ̃(X) =
∑

x

p(x)φ∗(p(x)) + φ(0)H2(X) (cf. (1.24) and (1.20)). (2.2)

This result jointly with the next assertion emphasize the prominent role of the
quadratic entropy H2(X).

Proposition 2.1. The φ-informations Iφ(X;Y ) corresponding to the simple func-
tions φ = φ+ and φ = φ− from Φ defined in Figure 1.1 achieve maxima given by
the quadratic entropy, i. e.

Hφ̃+
(X) = Hφ̃−

(X) = H2(X) (cf. (1.22)). (2.3)

Therefore the entropy Hφ̃(X) which maximizes the Höffding measure of information
V (X;Y ) given in (1.16) is 2H2(X).

P r o o f . For φ+(t) we get φ+(0) = 0 and φ∗+(t) = φ−(t) = 1− t for all t ∈ [0, 1].
Therefore φ̃+(t) = φ∗+(t) + φ+(0) (1 − t) (cf. the definition of general φ̃(t) above)
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coincides with ψ2(t) from (1.20) so that Hφ̃+
(X) = H2(X). For φ− we get φ−(0) = 1

and φ∗−(t) = φ+(t) = 0 for all t ∈ [0, 1] so that again φ̃−(t) = ψ2(t) and the rest
is as above. The last statement follows from the fact that if φ(t) = |t − 1| then
φ̃(t) = φ̃+(t) + φ̃−(t) = 2ψ2(t). ¤

In the next proposition we are interested in the modified power entropies

H̃α(p) ≡ H̃α(X) = Hφ̃α
(X), α ∈ R (2.4)

given by (2.2) when φ = φα, i. e. when

φ̃α(t) = φ1−α(t) + φα(0) (1− t)

(cf. the adjoining rule φ∗α(t) = φ1−α(t) below (1.7)). These entropies maximize the
general power informations

Iα(X;Y ) = Dα (pX,Y ‖pXpY ) , α ∈ R (2.5)

(cf. (1.17) and (1.6)). The trivial case when the Hartley entropy H0(X) is zero is
excluded, i. e. the number n in (1.23) is supposed to be at least 2.

Proposition 2.2. The entropies H̃α(X) are infinite for α ≤ 0 and finite, given by

H̃α(X) =
1
α
H2−α(X) (2.6)

for α > 0. This confirms the well known fact that the maximal Shannon information
H̃1(X) is the Shannon entropy H1(X). However, this implies also that the maximal
Pearson information H̃2(X) is half of the Hartley entropy H0(X) given in (1.23),
the maximal Hellinger information H̃1/2(X) is the entropy

H3/2(X) = 4
∑

x

p(x)
(

1−
√
p(x)

)
(2.7)

and the maximal double-Pearson information H̃4(X) is the nonconcave entropy

1
2
H−2(X) =

1
12

(∑

x

1
p(x)2

− 1

)
. (2.8)

P r o o f . As mentioned above, the assumption p(x) p(y) − p(x, y) > 0 implies
p(x) > 0 for all x ∈ X . Therefore the sum in (2.2) is finite and H2(X) is by
assumptions positive. Therefore Hφ̃(X) =∞ if and only if

φ(0) = φα(0) =∞.

From (1.6), (1.7) we see that this takes place for α ≤ 0 and that φα(0) = 1/α for
α > 0. Now, assuming α > 0 and substituting φ(0) = 1/α and

φ∗(t) = φ1−α(t) =
1− t1−α
α(1− α)

− 1
α

(1− t) for α 6= 1
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and
φ∗(t) = φ0(t) = − ln t+ t− 1 for α = 1

in (2.2), we find the desired form (2.6) for H̃α(X). The concrete expressions H̃2(X) =
H0(X)/2 as well as the expressions (2.7) and (2.8) follow from (2.6) and from the
definition of α-entropies in (1.19), (1.20). ¤

The last proposition shows that the maximal power informations with α > 2 lead
to modified power entropies H̃α(p) which are convex in p. As an example, consider
for p = (π, 1− π) the nonconcave entropy

H̃−2(p) = h(π) =
1
12

(
1
π2

+
1

(1− π)2
− 1

)
(2.9)

obtained from (2.8). Since ϕ(π) = 1/π2 is convex on (0, 1), we get

h(π) >
1
12

(
2

(1/2)2
− 1

)
= h(1/2) (2.10)

for π 6= 1/2. This as well as the discontinuity h(π) → ∞ for π → 0 contradicts
what is observed in the case of concave entropies like H2(p) = 1 − π2 − (1 − π)2.
But nevertheless the information measure h(π) of (2.9) is justified. Namely, by
(2.1) and Proposition 2.2, h(π) given by (2.9) is the double-Pearson information
H̃4(X) = I4(X;X), i. e. it is the double-Pearson divergence of the 2×2 contingency
tables for pX,X and pX pX that follow.

π 0

0 1− π

π2 π(1− π)

π(1− π) (1− π)2

We see from these tables that the absolute deviations |(p(x, y)/p(x) p(y)) − 1| for
π 6= 1/2 or π = 1/2 are

1− π
π

, 1, 1,
π

1− π or 1, 1, 1, 1

respectively, so that the sum of positive powers of the left-hand deviations may
be arbitrarily larger than the similar sum on the right-hand side. This helps to
understand that if the information in X is measured on the double-Pearson scale
by h(π) then h(π) with π close to zero may be considerably larger than h(1/2).
Explicitly one can calculate the double-Pearson divergence of the contingency tables
for π = 1/2 which is smaller than for π = 1/4 while the Kullback divergence for
π = 1/2 is larger than for π = 1/4 (and the standard Pearson divergence is in
both cases the same). Therefore h(π) of (2.9) satisfies (2.10) while the Shannon
information

h(π) = −π lnπ − (1− π) ln(1− π) (2.11)
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is for π = 1/2 larger than for π = 1/4 and the Pearson information h(π) = 1/2 is
constant for all π ∈ (0, 1).

Thus we can summarize that the form of the entropy measuring the information
in a message X from a given source (X , p(x)) depends on the φ-divergence used to
quantify the information in Y about X. Our nontrivial observation is that some
well known φ-divergences legitimize in this manner nonconcave entropies.

3. ENTROPIES AND BAYESIAN DECISIONS

In the statistical decision theory we are interested in the expected loss EL(d,X)
resulting from a decision d ∈ X under the information about the state of nature
x ∈ X represented by a random variable X distributed by pX on X . Note that in
practical applications the unconditional a priori distribution pX is usually replaced
by conditional a posteriori distributions pX|Y=y, y ∈ Y resulting from observations
of a random variable Y statistically associated with X by a joint distribution pX,Y
on X ⊗ Y. For the indicator loss function L(d, x) = I(x 6= d) the minimal Bayes
loss

e(pX) = arg min
d∈X

EL(d,X)

is achieved at d = arg max pX(x) and has the meaning of minimal decision error
called Bayes error. In what follows we write simply e(X) instead of e(pX), i. e. we
deal with the Bayes error

e(X) = 1−max
x

p(x) for p(x) = pX(x). (3.1)

It is often desirable to estimate this error by means of measures of information
from the class (1.24), in particular by means of its most prominent members H1(X)
and H2(X). R. M. Fano was the first who found for e = e(X) an upper bound H+

1 (e)
achieved by the Shannon entropy H1 = H1(X) and Kovalevskij [16] was probably
the first who found the corresponding lower bound H−1 (e). For h(π) given by (2.11)
and n denoting the number of messages in X , these Fano–Kovalevskij bounds satisfy
the relations

H−1 (e) = h(k(1− e)) + k(1− e) ln k ≤ H1 ≤ h(e) + e ln(n− 1) = H+
1 (e), (3.2)

where the right hand equality holds in the whole range 0 ≤ e ≤ (n− 1)/n while the
left hand equality holds piecewise on the subranges

k − 1
k
≤ e ≤ k

k + 1
for k = 1, . . . , n− 1. (3.3)

Note that the n of (3.2) was defined as the number of messages x ∈ X independently
of whether p(x) > 0 or p(x) = 0. Therefore it coincides with the n of (1.23) only if
p(x) > 0 for all x ∈ X which is not assumed in this section.

With the help of derivatives one can verify that both the bounds H−1 (e) and
H+

1 (e) continuously increase in the variable e ∈ [0, (n−1)/n] from the lowest common
value H−1 (0) = H+

1 (0) = 0 to the largest common value H−1 ((n− 1)/n) = H+
1 ((n−

1)/n) = lnn. An illustration is given in Figure 3.1.
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0 1/2 2/3 5/6 1

ln 2

ln 3

ln 4

ln 5

ln 6

e

H1

Fig. 3.1. Upper and lower bounds H+
1 (e), H−1 (e) for n = 6.

Proposition 3.1. Upper bound H+
2 (e) and lower bound H−2 (e) achieved by the

quadratic entropy H2 = H2(X) under the condition e(X) = e satisfy the relations

H−2 (e) = k(1− e) (1 + e− (1− e) k) ≤ H2 ≤ e
(

2− n e

n− 1

)
= H+

2 (e) (3.4)

where the right hand equality holds on the whole range e ∈ [0, (n− 1)/n] while the
left hand equality holds piecewise on the subranges given in (3.3).

P r o o f . A general Theorem 1 of Vajda and Vašek [30] implies that if H(p) is
any Schur-concave function of probability distributions p = (p1, . . . , pn) then among
all p with e = 1 − max pi from the semiclosed interval ((k − 1)/k, k/(k + 1)], the
function H(p) is maximized at p+ = (1− e, e/(n− 1), . . . , e/(n− 1)) and minimized
at p− = (1− e, . . . , 1− e, 1− k(1− e), 0, . . . , 0). It is easy to see that the quadratic
entropy H2(p) is Schur-concave in the sense of [30] and that H2(p+) and H2(p−) are
the bounds given in (3.4). ¤

The bounds of Proposition 3.1 are illustrated in Figure 3.2. With the help of
derivatives one can verify that both these bounds are continuously increasing in the
variable e ∈ [0, (n − 1)/n] from the lowest common value H−1 (0) = H+

1 (0) = 0 to
the largest common value H−1 ((n− 1)/n) = H+

1 ((n− 1)/n) = (n− 1)/n.
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0 1/2 2/3 5/6 1

1/2

2/3

3/4

5/6

1

e

H2

Fig. 3.2. Upper and lower bounds H+
2 (e), H−2 (e) for n = 6.

Vajda [28] conjectured that the quadratic entropy provides tighter bounds for
the Bayes error than the Shannon entropy. Up to now, this conjecture was neither
rejected nor confirmed. It can be rigorously studied using the differences emax

α (H)−
emin
α (H) between maximal and minimal Bayes errors under the α-entropy Hα = H

in the domain 0 ≤ H ≤ Hmax
α and comparing the average inaccuracies

Aα,n =
1

Hmax
α

∫ Hmax
α

0

[
emax
α (H)− emin

α (H)
]

dH (3.5)

of the best possible estimates of Bayes errors e(X) on the basis of entropies Hα(X)
continuously varying between Hmin

α = 0 and Hmax
α <∞.

Such a rigorous study was carried out recently by Vajda and Zvárová [31] where
the formula (3.5) was applied to the nonnegative Shannon entropy H1 with Hmax

1 =
lnn and nonnegative quadratic entropy H2 with Hmax

2 = (n− 1)/n to demonstrate
that the inaccuracy A1,n of the estimates based on the Shannon entropy is at least
100 % above the inaccuracy A2,n of the estimates based on the quadratic entropy.

Here we are interested in the wider class of inaccuracies Aα,n of the estimates
of e(X) based on the power entropies Hα(X) of orders α ∈ R. If α < 0 then the
condition Hmax

α <∞ of our definition (3.5) is violated whenever n > 2 because then
the Bayes errors 0 < e(X) ≤ 1/2 can be achieved at the distributions pX with one
component zero, for which Hα(X) = ∞. Therefore we restrict attention to α ≥ 0.
The following generalization of (3.2) – (3.4) and modification (3.5) will be useful. It
uses the indicator function I and the notation

ek =
k − 1
k

for 1 ≤ k ≤ n . (3.6)

Proposition 3.2. If α ≥ 0 then the functions

H+
α (e) =

1− (1− e)α − (n− 1)1−αeα

α− 1
I(0 < e ≤ en) , (3.7)
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H−α (e) =
n−1∑

k=1

1− k(1− e)α − (1− k(1− e))α
α− 1

I(ek < e ≤ ek+1) (3.8)

together with their limits (cf. (3.2), (3.3))

H+
1 (e) = h(e) + e ln(n− 1) , (3.9)

H−1 =
n−1∑

k=1

k(1− e)(1 + e− (1− e)k) I(ek < e ≤ ek+1) (3.10)

are attainable upper and lower bounds for Hα(X) in the class of all X with fixed
Bayes errors e ∈ [0, en]. If α > 0 then the inaccuracies (3.5) satisfy the relation

Aα,n =
1

Hmax
α

∫ en

0

[
H+
α (e)−H−α (e)

]
de (3.11)

for H+
α ,H

−
α defined by (3.7) – (3.10).

P r o o f . If α ≥ 0, then the α-entropies Hα(p) are Schur-concave in the sense of
[30]. It is easy to verify that Hα(p+),Hα(p−) for p+, p− from the proof of Proposi-
tion 3 are the functions given in (3.7) – (3.10). Therefore it remains to prove (3.11). If
α > 0 then the bounds (3.7) – (3.10) continuously increase in the domain e ∈ [0, en],
and emax

α (H), emin
α (H) are inverse to H+

α (e),H−α (e). Therefore the integrals in (3.5)
and (3.11) coincide which completes the proof. ¤

Example 3.1. The bounds (3.9), (3.10) coincide with those given in (3.2), (3.3)
and putting α = 2 in (3.7), (3.8) we obtain the bounds given in (3.4), (3.3). For
α = 0 we get from (3.7), (3.8)

H+
0 (e) = (n− 1) I(0 < e ≤ en), H−0 (e) =

n−1∑

k=1

k I(ek < e ≤ ek+1) . (3.12)

It is evident from this example that if α = 0 then the upper bound H+
0 (e) of

(3.7) is discontinuous at e = 0 and the lower bound H−0 (e) of (3.8) is discontinuous
at all e ∈ {e1, e2, . . . , en−1}. Here H0(X) is the Hartley entropy achieving only n
possible integer values between Hmin

0 = 0 and Hmax
0 = n − 1 so that the average

inaccuracy A0,n can be obtained by the formal extension of (3.11) to α = 0 and
application of (3.12). However, it cannot be obtained by observing that if H0(X) =
k ∈ {0, 1, . . . , n− 1} then the Bayes error e(X) takes on values between

emin
0 (k) = 0 and emax

0 (k) = k/(k + 1) .

Therefore we get the individual inaccuracies

emax
0 (k)− emin

0 (k) = k/(k + 1) for 0 ≤ k ≤ n− 1

leading to the average inaccuracy

A0,n =
1
n

n−1∑

k=1

k

k + 1
= 1− 1

n

n∑

k=1

1
k
. (3.13)

The following assertion uses this formula. It is based on Proposition 3.2.
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Proposition 3.3. For α > 0 the average inaccuracy Aα,n is given by the formula

Aα,n =
1

(1− n1−α)(α+ 1)

(
n−1∑

k=1

1
k(k + 1)α

− n− 1
nα

)
(3.14)

if α 6= 1 and by

A1,n = lim
α→1

Aα,n =
n− 1

2n
− 1

2 lnn

n−1∑

k=1

ln(k + 1)
k(k + 1)

(3.15)

if α = 1. At α = 0 the average inaccuracy (3.13) is larger than the corresponding
limit for α ↓ 0, namely it holds

A0,n = lim
α↓0

Aα,n+1. (3.16)

P r o o f . Let α > 0 be different from 1. It suffices to prove (3.14) because the
functions (3.7), (3.8) applied in (3.11) are bounded and continuous in the neighbor-
hoods of α = 0 and α = 1 with the limits (3.9), (3.10) for α→ 1 and (3.12) for α ↓ 0.
By a routine integration we get

∫ en

0

H+
α (e) de =

1
α− 1

[
en −

nα + n− 2
(α+ 1)nα

]

and ∫ en

0

H−α (e) de =
1

α− 1

[
en −

1
α+ 1

n−1∑

k=1

(k + 1)α − (k − 1)kα−1

[k(k + 1)]α

]
.

If we use the fact that

Hmax
α =

1− n1−α

α− 1
and that the last sum equals

n−1∑

k=1

1
kα
−
n−1∑

k=1

1
(k + 1)α

+
n−1∑

k=1

1
k(k + 1)α

=
nα − 1
nα

+
n−1∑

k=1

1
k(k + 1)α

and substitute these expressions in (3.11), we get the desired result (3.14). The
remaining assertions (3.15), (3.16) follow by taking limits for α → 1 and α ↓ 0 in
(3.14). The equality of (3.16) and (3.13) is easily seen. ¤

Example 3.2. By putting α = 2 in (3.14) we get the average inaccuracy

A2,n =
n

3(n− 1)

n−1∑

k=1

1
k(k + 1)2

− 1
3n

.

Using
n−1∑

k=1

1
k(k + 1)2

=
n−1∑

k=1

1
k(k + 1)

−
n−1∑

k=1

1
(k + 1)2

= 2− 1
n
−

n∑

k=1

1
k2

we get
A2,n =

2n
3n− 1

− 2n− 1
3n(n− 1)

− 1
3

n∑

k=1

1
k2
. (3.17)
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Proposition 3.4. The average inaccuracies (3.5) for the power entropy estimates
of the Bayes error satisfy the limit laws

Aα,∞ = lim
n→∞

Aα,n =

{ 1
α+ 1

if 0 ≤ α ≤ 1

1
α+ 1

∞∑

k=1

1
k(k + 1)α

if α > 1 .

(3.18)

P r o o f . For α = 0 this follows from (3.16) where

n−1∑

k=1

1
k

= ln(n− 1) + C + o(1) as n→∞ (3.19)

for the Euler constant C. For 0 < α < 1 this follows from (3.14) and (3.19) because

n−1∑

k=1

1
k(k + 1)α

≤
n−1∑

k=1

1
k
.

For α = 1 it suffices to use (3.15) and the expansion

ln(k + 1)
k(k + 1)

=
ln((k + 1)/k)

k
+

ln k
k
− ln(k + 1)

k + 1

where ln((k + 1)/k) is bounded above by 1/k. Indeed, this expansion implies

0 ≤
n−1∑

k=1

ln(k + 1)
k(k + 1)

≤
∞∑

k=1

1
k2
− lnn

n

so that, by the Euler formula, the constant

∞∑

k=1

1
k2

=
π2

6
(3.20)

uniformly upper bounds the sum. For α > 1 the desired result follows immediately
from (3.14). ¤

Example 3.3. We see from Proposition 3.4 that A0,∞ = 1, A1/2,∞ = 2/3 and
A1,∞ = 1/2. Applying the Euler formula (3.20) in (3.17) we get

A2,∞ =
2
3
− π2

18
.= 0.118 . (3.21)

Next follows a table presenting exact values of some of the average inaccuracies
Aα,n specified in Propositions 3.3, 3.4 and Examples 3.2, 4.2. We see from this table
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that the inaccuracy A1,n of the Shannon-entropy based estimate exceeds the inaccu-
racy A2,n of the quadratic-entropy-based estimate at least twice which confirms the
above mentioned hypothesis of Vajda [28]. The average inaccuracy of the quadratic
entropy is at most 12 % while for the Shannon entropy it can be close to 50 %. But
at the same time it is seen more, namely that the average inaccuracies Aα,n of the
power-entropy-based estimates decrease with α increasing in the domain [0,∞) and
already for α = 4 they remain close to 1 % uniformly for all observations space sizes
n > 1.

Table 3.1. Average inaccuracies Aα,n for selected α and n.

n 2 3 4 5 6 7 8 9 10 . . . ∞
A0,n .250 .389 .479 .543 .592 .630 .660 .686 .707 . . . 1.000

A1/2,n 0 .145 .225 .278 .315 .344 .367 .385 .401 . . . .667

A1,n 0 .092 .142 .175 .198 .215 .229 .240 .249 . . . .500

A3/2,n 0 .061 .093 .113 .127 .137 .144 .151 .156 . . . .229

A2,n 0 .042 .062 .074 .081 .087 .091 .094 .096 . . . .118

A3,n 0 .020 .027 .031 .033 .034 .035 .036 .036 . . . .038

A4,n 0 .009 .012 .013 .013 .014 .014 .014 .014 . . . .014

4. ENTROPIES AND MEASURES OF DIVERSITY

The quadratic entropyH2(X) proposed as a measure of quality of statistical decisions
based on X in Vajda [28] was quite frequently used in this role, see e. g. Devijver
and Kittler [7] or Devroye et al. [8] and further references there. But H2(X) was
proposed much earlier as a measure of equality of an income distributed by pX among
given social groups x ∈ X by Dalton [6] (cf. e. g. Sen [22]). It is also called Simpson’s
measure of diversity in biological literature (or Simpson–Gini index), with a reference
to Simpson [23] and Gini [10] (cf. e. g. Emlen [9] or Marshal and Olkin [17]).

The quadratic entropy is included in a wider class of diversity measures for dis-
tributions p(x) = pX(x)

DU (X) =
∑

x

U(p(x)) (4.1)

introduced for all concave “utility functions” U(π) of variable π ∈ [0, 1] by Dalton
[6]. Thus DU (X) are concave functions of distributions (p(x) : x ∈ X ), among them
H2(X) obtained for U(π) = π(1−π). Such functions were systematically studied as
uncertainty measures in Vajda [26] and Morales et al. [18]. In spite of that this class
is very general, many diversity measures considered in the literature are φ̃-entropies
Heφ(X) in the sense of 2.1 which are nonconcave, and thus not belonging to the
Dalton class (4.1).
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Example 4.1. On p. 412 of Marshal and Olkin [17] study the Fishlow diversity
measure of the form

Heφ(X) =
∑

x

p(x)φ̃(p(x)) =
∑

x

(1/n− p(x))+ (cf. (1.24) and Figure 1.1 )

where (f(x))+ denotes the positive part of any function f(x). Here φ̃(t) = φ+(1/(nt))
= (1/(nt)− 1)+ corresponds in the sense

φ̃(t) = φ∗(t) + φ(0)(1− t) (4.2)

considered in (2.1) to the convex function

φ(t) = t

(
t

n
− 1

)+

=
(
t2

n
− t

)+

(4.3)

of variable t > 0. Thus Heφ(X) is an average amount of information obtained by
observing realizations x ∈ X of X where the individual amounts of information
φ̃(p(x)) = (1/(np(x)) − 1) are nonzero only if the probabilities p(x) of messages
x ∈ X are significant in the sense that they are less than average, i. e. if

p(x) <
1
n

=
1
n

∑

x

p(x) .

In other words, the events with average and more than average probabilities are con-
sidered to be nonsignificant and thus noninformative. The present diversity measure
Heφ(X) has the form (4.1) for the utility function U(π) = (1/n− π)+ which is con-
vex on [0, 1]. Therefore this diversity measure does not belong to the Dalton class.
Moreover this diversity measure extends the class of entropies introduced in Section
2 which are nonconcave and at the same time are φ-information for a convex φ with
φ(1) = 0. The present particular function φ is given in (4.3).

Example 4.2. Let us now consider the Emlen diversity measure

D(X) =
∑

x

p(x) e−p(x) − c−1, c = 2.718...

introduced to the biometry in [10]. Here we subtracted from the original Emlen’s
proposal the constant c−1 = (2.718...)−1 in order to shift the range of values to the
interval [0,∞). Obviously,

D(X) = Heφ(X) =
∑

x

p(x) φ̃(p(x))

where φ̃(t) = (c1−t − 1)/c corresponds in the sense (4.2) to the convex function

φ(t) = t(c1−1/t − 1)/c, t > 0 (4.4)
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from the class Φ considered in Sections 1 and 2. Thus the Emlen’s D(X) is the
φ-information Iφ(X;X) in the sense of (2.1) for φ ∈ Φ given in (4.4). At the same
time it holds D(X) =

∑

x

U(p(x))

where U(π) = π(c1−π − 1)/c is not concave on [0, 1]. Hence the Emlen diversity
does not belong to the Dalton class (4.1) and is thus another example of nonconcave
entropy which is at the same time a maximal φ− information. However, contrary
to the previous example where the measure of diversity was a convex function of
distribution p = pX , here D(X) is a strictly Schur-concave function of p. Conse-
quently the biometry can serve as a new source of motivation for the Schur-concave
entropies systematically studied in Morales et al. [18] as a natural extension of the
concave entropies studied previously in [26].

An important conclusion from what has been said above is that the diversities of
random variables X can be measured by concave, Schur-concave or convex entropies.
Zvárová [31], Zvárová and Mazura [32] and recently Zvárová and Vajda [33] studied
diversity of the genes X taking on on various alleles x ∈ X with relative frequencies
pX(x) which do not remain the same if we go from one population to other. They
proposed and more deeply investigated the class of measures of genetic diversity

{
Heφ(X) = Iφ(X;X) : φ ∈ Φ

}

containing as a particular cases the Shannon measure H1(X) given in (1.18) and
the Simpson measure given in (1.22) as well as some nonconcave entropies discussed
in Section 2. We have seen that the properties of these diversity measures may be
quite different.

Basic applications of genetic diversity measures are comparisons of diversities of
two different genes X and Y in the same population or of the same gene in two
different populations (this can also be characterized by two random variables X
and Y ). The problem is whether or to what extent the comparison of genetic or
ecological or any other diversities depends on the used diversity measure. In the
rest of this section we study this problem. The role of different diversity measures
D1(X) and D2(X) will be played mainly by the Shannon and Simpson measures
H1(X) and H2(X).

Example 4.3. Let X be geometric random variable with pX(i) = (1 − π)πi for
i = 0, 1, 2, . . .. Then

H1(X) =
h(π)
1− π and H2(X) =

2π
1 + π

for π ∈ [0, 1) and h(π) given in (2.11). Since both these functions are increasing in
π ∈ [0, 1), the diversity measures H1 and H2 are isotone in the family P of geometric
models in the sense that

H1(X) ≶ H1(Y ) iff H2(X) ≶ H2(Y ) (4.5)
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for two geometric random variables X and Y . If however P3 is the class of all discrete
distributions of size n = 3 and

pX =
(

1
2
,

1
2
, 0

)
, pY =

(
3
4
,

1
8
,

1
8

)

are distributions of X, Y from P3 then

H1(X) = ln 2 < H1(Y ) =
3
4

ln
8
3

while
H2(X) =

1
2
> H2(Y ) =

3
8
.

This means that (4.5) fails to hold, i. e. that H1 and H2 are not isotone in the
family P3.

Let D1(X) and D2(X) be diversity measures defined for all observations X dis-
tributed by pX for a given family P of discrete distributions. These measures are
said to be isotone on P if for all X and Y with distributions from P

D1(X) ≶ D1(Y ) iff D2(X) ≶ D2(Y ) . (4.6)

If moreover both Dj(X) take on P all values between Dmin
j < Dmax

j then the set of
all (d1, d2) ∈ (Dmin

1 ,Dmax
1 )× (Dmin

2 ,Dmax
2 ) such that

inf
D2(X)=d2

D1(X) < d1 < sup
D2(X)=d2

D1(X) (4.7)

is called anisotony domain and denoted A(D1,D2|P).

Proposition 4.1. If an anisotony domain A(D1,D2|P) ⊂ R2 has non-void interior
then the diversity measures D1(X) and D2(X) are not isotone on P.

P r o o f . If the assumption holds then there exists a non-void sphere, and con-
sequently a non-void square (d1, d1 + ε) × (d2, d2 + ε) contained in A(D1,D2|P).
By assumptions and (4.7), this means that there exist X,Y with distributions in P
satisfying the relations

D2(X) = d2, D2(Y ) = d2 + ε

and D1(X) > d1 + ε, D1(Y ) < d1 .

These relations contradict (4.6) which completes the proof. ¤

The anisotony domains A(D1,D2|P) are usually open in R2 with non-void interior
as in the case of A(H1,H2|P3) from Example 4.3, but they may be also empty as
in the case of A(H1, H2|P) from the same example. If A(D1,D2|P) is measurable
with the Lebesgue measure µ(A(D1,D2|P)) then the relative size

α(D1,D2|P) =
µ(A(D1,D2|P))

(Dmax
1 −Dmin

1 )(Dmax
2 −Dmin

2 )
(4.8)
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of the uncertainty domain A(D1,D2|P) in the rectangle (Dmin
1 ,Dmax

1 )⊗(Dmin
2 ,Dmax

2 )
can serve as a measure of anisotony of the diversity measures D1(X) and D2(X) on
the family P (a more sophisticated motivation of this measure can be found in [37]).

It is clear from the definition that if D1(X) and D2(X) are isotone on P then
the measure α(D1,D2|P) of their anisotony on P is well defined and equal zero. An
example for this is α(H1, H2|P) = 0 for the set P of geometric distributions from
Example 4.3. The following general result enables to evaluate as a particular case
the measure of anisotony α(H1, H2|P3) for the set P3 of all discrete distribution of
size n = 3 from Example 4.3.

Proposition 4.2. Let Pn be the set of all discrete distributions of size n ≥ 2
and let e1, . . . , en be the numbers from (0, 1) defined by (3.6). Then the anisotony
domain for the diversity measures H1(X), H2(X) on Pn is given by

A(H1,H2|Pn) =
{

(d1, e) : 0 < e < en,H
−
1 (e) < d1 < H+

1 (e)
}

(4.9)

where
H+

1 (e) = h(sn(e)) + sn(e) ln(n− 1) (4.10)
and

H−1 (e) =
n−1∑

k=1

[h(tk+1(e)) + tk+1(e) ln k] I(ek < e ≤ ek+1) (4.11)

for
sn(e) = en −

√
en(en − e), tk(e) = ek +

√
ek(ek − e) . (4.12)

P r o o f . This proof is based on Theorem II.1 of Harremöes and Topsøe [11]. One
can deduce from there that if e ∈ (ek, ek+1] for 1 ≤ k ≤ n− 1 then

max
p:H2(p)=e

H1(p) = H1(p+(e)) (4.13)

and
min

p:H2(p)=e
H1(p) = H1(p−(e)) (4.14)

where

p+(e) =
(
s,

1− s
n− 1

, . . . ,
1− s
n− 1

)
, p−(e) =

(
1− t
k

, . . . ,
1− t
k

, t, 0, . . . , 0
)

are distributions from Pn with s ≥ (1− s)/(n− 1) and t ≤ (1− t)/k depending on
e by means of the condition

H2(p+(e)) = H2(p−(e)) = e .

This condition represents two different quadratic equations in the variable e. Their
unique solutions s = sn(e) and t = tk(e) satisfying the conditions s ≥ (1−s)/(n−1)
and t ≤ (1−t)/k are presented in (4.12). The remaining steps leading to the formulas
(4.10), (4.11) for the extremal values of the diversity H1 are clear. Further, Hmin

2 =
0,Hmax

2 = en and for every d2 ∈ (ek, ek+1] ⊂ (0, en] the values H−1 (d2), H+
1 (d2)

obtained from (4.10), (4.11) represent the infima and suprema from (4.7). Hence
the formula (4.9) with e replaced by d2 represents exactly what is prescribed by the
definition (4.7). ¤
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ln 6

H2
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Fig. 4.1. Upper and lower bounds H+
1 = H+

1 (H2) and H−1 = H−1 (H2) for n = 6.

Figure 4.1 given below illustrates the bounds H+
1 (d),H−1 (d) of Proposition 4.2

and the area between them is an example of the anisotony domain A(H1,H2|Pn)
for n = 6. Analytic evaluation of the integral in the formula

αn(H1,H2|Pn) =
n

(n− 1) lnn

∫ en

0

[
H+

1 (e)−H−1 (e)
]

de (4.15)

obtained from (4.8) for the measure of anisotony of the Shannon and Simpson di-
versities H1(X) and H2(X) on Pn with general n ≥ 2 is too complicated to be
given here. Instead we present in Table 4.1 the values of αn = αn(H1, H2|Pn) com-
puted for selected n by means of numerical integration in (4.15) with the guaranteed
accuracy in the first 3 decimal places. By [37],

Table 4.1. Measures of anisotony αn = αn(H1, H2|Pn) for selected values of n.

n 2 3 4 5 6 7 8 9 10 . . . ∞
αn 0 .070 .097 .113 .125 .133 .139 .145 .150 . . . .333

lim
n→∞

αn =
1
3

+O

(
1

lnn

)
as n→∞. (4.16)
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This justifies the value α∞ = 0.333 in the last column of the table and at the
same time indicates that the rate of convergence in (4.16) is slow, of the logarithmic
order. For example for n = 106 we obtain αn = 0.292 which is still far away from
α∞ = 0.333.

We see from Table 4.1 that the anisotony between the Shannon and Simpson
diversities is not negligible. It slowly increases from 0 to roughly 33 % when the
size of observation space increases in the interval 2 ≤ n ≤ ∞ but remains to be
moderate, below 15 %, for the sizes 2 ≤ n ≤ 10.
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[18] F. Liese and I. Vajda: On divergences and informations in statistics and information
theory. IEEE Trans. Inform. Theory 52 (2006), 4394–4412.

[19] A. W. Marshall and I. Olkin: Inequalities: Theory of Majorization and its Applica-
tions. Academic Press, New York 1979.

[20] D. Morales, L. Pardo, and I. Vajda: Uncertainty of discrete stochastic systems. IEEE
Trans. Systems, Man Cybernet. Part A 26 (1996), 681–697.

[21] K. Pearson: On the theory of contingency and its relation to association and normal
correlation. Drapers Company Research Memoirs, Biometric Ser. 1, London 1904.

[22] A. Perez: Information-theoretic risk estimates in statistical decision. Kybernetika 3
(1967), 1–21.
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[34] J. Zvárová: Information Measures of Stochastic Dependence and Diversity: Theory
and Medical Informatics Applications. Doctor of Sciences Dissertation, Academy of
Sciences of the Czech Republic, Institute of Informatics, Prague 1998.
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