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A NEW NUMERICAL MODEL FOR PROPAGATION
OF TSUNAMI WAVES

Karel Švadlenka

A new model for propagation of long waves including the coastal area is introduced. This
model considers only the motion of the surface of the sea under the condition of preservation
of mass and the sea floor is inserted into the model as an obstacle to the motion. Thus we
obtain a constrained hyperbolic free-boundary problem which is then solved numerically by
a minimizing method called the discrete Morse semi-flow. The results of the computation
in 1D show the adequacy of the proposed model.
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1. INTRODUCTION

In this paper we present several basic ideas on a new model for the propagation of
waves on the surface of a sea. The aim is to develop a model meeting the following
requirements:

• it should be simple in the sense that it takes into account only the surface of
the sea and not the movement of the whole body of water;

• it should be capable of treating the whole surface, i. e. not only in the deep
water region but also near the shore including the climbing of waves onto land;

• it should accurately approximate the long wave equations in the deep water
regions.

The first requirement is a practical one, since if we want to predict the strength
of tsunami in certain regions based on the measurements of the initial stages of
its propagation and known facts about its origin, we usually only have information
about the surface displacement measured by satellites, buoys etc. Moreover, if we
obtain a sufficiently precise model for the surface, one can expect that it will be
computationally less demanding than any model for the entire body of water.

Existing models combine different approaches for the deep water region, for the
region near the shore, and for inundation. It would be convenient if there was a
model treating all these stages synthetically. Here, such a treatment is attempted
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by introducing the notion of an obstacle and a free boundary (i. e., the set of points
where water touches the shore). Naturally, we also include the condition of volume
preservation.

The last requirement of agreement with accurate models for long waves in deep
water is obviously indispensable for a reliable model. In our case, this property is
not taken into consideration when constructing the model but is merely checked
after the construction.

Long waves (or shallow water waves) are characterized by a large ratio of wave-
length to the depth of the sea and by a small ratio of amplitude compared to the
depth with a certain asymptotical relation between these two ratios. Tsunami waves,
usually generated by earthquakes or landslides, belong to this category. They have
small amplitudes and are very fast in deep water (approximately

√
gh, where h is the

depth and g is the gravitational constant) but when they enter the shoaling water
of coastlines, their velocity diminishes and the wave height increases, striking the
seashore with devastating force. There are many variants of models for such waves,
see [1] for a concise summary and the references therein.

The new model is based on the minimization of a functional under the condition
of preservation of mass and the obstacle constraint. The model is derived in the
next section and the mathematical problem is formulated. In the third section
the approximate problem, suitable for numerical computation, is introduced. The
approximation uses the idea of discrete Morse semi-flow. The last section is devoted
to the numerical scheme and to an experiment suggesting that the model might be
useful.

2. DERIVATION OF THE MODEL

The standard technique for the derivation of equations for long waves starts from
the incompressible irrotational Navier–Stokes equations. We also assume the incom-
pressibility and irrotationality of the flow. The irrotationality particularly leads to
the image of water in the form of layers of particles which are connected one with
each of its neighbours in all directions like beads on strings. Therefore, we can con-
sider that forming a wave is easier in shallow water than in the deep region, since
there are fewer particles to be lifted than in deep sea. We apply this idea to the
construction of a Lagrangian for the surface of the sea. For the sake of clarity, we
carry out the derivation in the one-dimensional case.

A smooth function ϕ describes the sea bed. We consider a sufficiently large space
interval (0, l) so that there is no chance of waves coming up to its boundary. The
surface of the water is expressed using the graph of a scalar function η : [0, T ]×[0, l]→
R (see Figure 1). There are two main conditions imposed on the function η:

η(t, x) ≥ ϕ(x) ∀x ∈ [0, l], ∀ t ∈ [0, T ], (1)
∫ l

0

(η(t, x)− ϕ(x)) dx = V ∀ t ∈ [0, T ],

where V denotes the volume of water in the sea. The second condition corresponds
to the condition of preservation of mass. It is not completely natural but follows
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Fig. 1. Notation.

inevitably from the assumption of incompressibility, which is also put in the case of
the Navier–Stokes model, and results in an infinite velocity of sound. Therefore, we
have accepted this condition under the assumption that we have a connected mass
of water bounded by lands (as in Figure 1) with the view of possibly modifying the
requirement of overall mass-preservation to a local condition in numerical computa-
tions. Moreover, the initial perturbation of the bottom of the sea and consequently
of the sea surface is usually volume-preserving which prevents unnatural spreading
of impulses. We also neglect the effects of roundness and rotation of the Earth at
this stage.

The Lagrangian of a function satisfying the above conditions is then defined as
the difference between potential and kinetic energy:

L(η) =
1
2

∫ T

0

∫ l

0

(
−η2

t + 2g
√

1 + η2
x(η − ϕ)

)
dxdt. (2)

We set the problem in the following manner.

Problem 1. Find a stationary point of L in the convex set

K = {η ∈ H1((0, T )× (0, l)); (η − ϕ)(0) = (η − ϕ)(l) = 0; η satisfies (1)}, (3)

satisfying initial conditions η(0, x) = η0(x) and ηt(0, x) = v0(x).

The potential energy can also be interpreted as the energy needed to lift a string
with constant mass density from the sea floor ϕ to the position η. The following
lemma tells us that this form of potential energy is reasonable.

Lemma 1. Let ν be a nonnegative, smooth, even function increasing on [0,∞).
Then the smooth minimizer of

∫ l
0
ν(ηx)(η − ϕ) dx in K is a constant function in

{η > ϕ}.

P r o o f . Since 0 ≤ ν(0) < ν(y) for every y ∈ R \ {0} and η ≥ ϕ on [0, l], we have

∫ l

0

ν(ηx)(η − ϕ) dx ≥
∫ l

0

ν(0)(η − ϕ) dx = ν(0)V.
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The existence of an x0 in the region {η > ϕ}, for which ηx(x0) 6= 0 and ηx is
continuous at x0, would lead to a sharp inequality in the above and thus to a
contradiction with minimality. ¤

We approximate the square root in (2) in order to simplify the calculations and to
be able to practically implement the model. We use the approximation

√
1 + η2

x ≈
1 + η2

x/2 and omit the term
∫ l

0
(η − ϕ) dx which is constant due to (1):

L̃(η) =
1
2

∫ T

0

∫ l

0

(
−η2

t + gη2
x(η − ϕ)

)
dxdt. (4)

Lemma 1 is applicable to this functional, too. Since the stationary point η is con-
tinuous, taking the first variation of this functional, one can reduce the formulation
by means of a differential equation:

ηtt(t, x)− g[ηx(t, x)(η(t, x)− ϕ(x))]x +
g

2
ηx(t, x)2 = λ(t) (5)

in {(t, x) : η(t, x) > ϕ(x)}
η(t, x) = ϕ(x) in {(t, x) : η(t, x) ≤ ϕ(x)},

where

λ(t) =
1
V

∫ l

0

(
ηtt(η − ϕ) + gηx(η − ϕ)x(η − ϕ) +

g

2
η2
x(η − ϕ)

)
dx (6)

is a Lagrange multiplier depending on time.
We have obtained a hyperbolic free-boundary problem with volume constraint.

Now, we would like to show that these equations accurately describe the propagation
of long waves in deep water. To this end, we introduce scaling parameters ε and σ
which relate the typical amplitude of the wave a to the typical depth of the sea H,
and the typical depth H to the typical wavelength d, respectively:

ε =
a

H
, σ =

H

d
.

Tsunami waves in deep water have generally very small values of ε and σ with ε ≈ σ2.
Further, we scale the variables t, x, ϕ and η, so as to obtain variables t̂, x̂, ϕ̂ and

η̂, which are of order O(1):

t̂ =
√
gH

d
t, x̂ =

x

d
, ϕ̂ =

ϕ

H
, η̂ =

η

a
.

Equation (5) rewritten in the new variables becomes

η̂t̂t̂ − (η̂x̂ (εη̂ − ϕ̂))x̂ +
1
2
εη̂2
x̂ = λ̂.

One can immediately see that the leading part of the equation for long waves in
deep water is

ηtt + g(ηxϕ)x = λ′



A New Model for Tsunami Waves 897

with

λ′ =
1
V

∫ l

0

(−ηttϕ+ gηxϕϕx) dx.

Let us, moreover, suppose that the sea has constant depth H. Then, inserting a
wave of the form a sin(kx−ωt) in the last equation, we get the relation for the phase
velocity of the wave in the form

C =
ω

k
=

√
gH.

As kH = H/d = σ and tanhσ = σ+O(σ3), this corresponds quite well to the result
from linear wave theory which states that

C2 =
g

k
tanh(kH).

Remark. In the potential energy term of (2), we have used the weight correspond-
ing to the depth η − ϕ. Since the considerations in the beginning of this section do
not determine a specific form for this weight, we could use some other weight in the
form of a function of the depth (i. e., F (η − ϕ)). However, by calculations similar
to those above, we would obtain the deep-water phase velocity

√
gF (H), which is

expected to be near
√
gH. This justifies the adopted form of the potential energy

and suggests the possibility of modifying the weight function in the shallow parts
in order to obtain better results both physically and mathematically (the difficulty
in proving the existence of approximate solutions constructed in the next section is
caused mainly by the vanishing of η−ϕ on the free boundary – this could be avoided
by a suitable modification of the weight function).

3. THE DISCRETE MORSE SEMI–FLOW

In this section, we present a method that can be used to solve the problem de-
rived in the previous section and potentially also to obtain theoretical results. This
method discretizes time and constructs the approximate solution by minimizing the
discretized functional on each time level. The method is called the discrete Morse
semi-flow and was first introduced in [2] and analyzed and applied to various prob-
lems, e. g., in [3, 4, 6, 7].

In the subsequent text we also consider an outer force f , which allows us to treat
the initial perturbance in the sea surface caused mostly by sudden changes in the
shape of the bottom. We assume that f ∈ L2((0, T ) × (0, l)) is supported far from
the coast (i. e., it does not interfere with the free boundary, precisely the support of
f ⊂ {(t, x) : η(t, x) > ϕ(x)}).

We create an equidistant partition of the interval [0, T ] into N subintervals and
denote h = T/N . We define a new unknown function u by the formula u = η − ϕ
and determine initial functions u0 = η0 − ϕ and u1 = u0 + hv0. Our method is
formulated inductively in the following way.
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Problem 2. For n = 2, 3, . . . , find minimizer un of the functional

Ln(u) :=
∫ l

0

|u− 2un−1 + un−2|2
2h2

χu>0 dx+
g

2

∫ l

0

(u+ ϕ)2
x|u|dx+

∫ l

0

fu dx, (7)

in the function set

K′ :=

{
u ∈ H1

0 (0, l);
∫ l

0

uχu>0 dx = V

}
. (8)

Here χu>0 is the characteristic function of the set {x ∈ [0, l] : u(x) > 0}.
The existence of minimizers is an important issue. However, we have not yet

succeeded in proving the existence for this cubic constrained functional and we leave
this problem for the next report. We have to check that the minimizers un satisfy
the obstacle constraint.

Lemma 2. Minimizers un of the functional Ln in K′ are nonnegative.

P r o o f . Suppose there is x0 ∈ [0, l] such that un(x0) < 0. The Sobolev imbedding
theorem ensures the continuity of un and therefore, there is an interval I, where
un < 0. Let us take the function ũn = unχun>0 ∈ K′ and estimate Ln(ũn)−Ln(un):

Ln(ũn)− Ln(un) =
g

2

∫ l

0

(
(ũn + ϕ)2

x|ũn| − (un + ϕ)2
x|un|

)
dx

≤ −g
2

∫

I

(un + ϕ)2
x|un| dx < 0.

This is in contradiction with the minimality of Ln(un). ¤

In the remaining part of this section, we shall study the connection between the
sequence of minimizers {un}n obtained in Problem 2 and the weak solution of the
original problem defined naturally as a function w ∈ H2(0, T,H1(0, l)) satisfying

∫ T

0

∫ l

0

(
−wtφt + g(w + ϕ)xwφx +

g

2
(w + ϕ)2

xφ+ fφ
)

dxdt−
∫ l

0

v0φ(0, x) dx

=
1
V

∫ T

0

∫ l

0

(
wttw + g(w + ϕ)xwxw +

g

2
(w + ϕ)2

xw + fw
)

dx

(∫ l

0

φ dx

)
dt

for each φ ∈ C∞0 ((0, T )× (0, l)∩ {w > 0}) and w = 0 in the complement of {w > 0}
and the initial condition w(0, x) = u0(x) in the sense of traces.

Let u be the minimizer of Ln, select an arbitrary function ξ ∈ C∞0 (0, l) with
support inside {u > 0} and for ε > 0 set

uε =
u+ εξ

1 + ε
V

∫
ξ dx

.
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If ε is small enough, we have uε ∈ K′, uε ≥ 0 and χu>0 = χuε>0 and we can easily
calculate the limit

A = lim
ε→0+

Ln(uε)− Ln(u)
ε

.

Since A = 0, we obtain for each ξ ∈ C∞0 ((0, l) ∩ {u > 0}) the identity

∫ l

0

(
u− 2un−1 + un−2

h2
ξ + g(u+ ϕ)xuξx +

g

2
(u+ ϕ)2

xξ + fξ

)
dx =

∫ l

0

λnξ dx,

where λn is defined by

λn =
1
V

∫ l

0

(
u− 2un−1 + un−2

h2
uχu>0 + g(u+ ϕ)xuxu+

g

2
(u+ ϕ)2

xu+ fu

)
dx.

The value λn can be called a Lagrange multiplier because it comes in naturally
through considering the variation of the functional Ln(u)−λn

∫ l
0
uχu>0 dx inH1

0 (0, l).
In order to get a time-dependent function, we interpolate the minimizers in time

and define functions uh, ūh and λ̄h as

ūh(x, t) = un(x),

uh(x, t) =
t− (n− 1)h

h
un(x) +

nh− t
h

un−1(x),

λ̄h(t) = λn,

for (t, x) ∈ ((n − 1)h, nh] × (0, l), n = 1, 2, . . . , N . For t = 0 we define uh(0, x) =
ūh(0, x) = u0(x). Functions uh, ūh satisfy

∫ T

h

∫

Ω

(
uht (t)− uht (t− h)

h
φ+ g(ūh + ϕ)xūhφx +

g

2
(ūh + ϕ)2

xφ+ fφ

)
dxdt

=
∫ T

h

∫

Ω

λ̄hφ dxdt, ∀φ ∈ C∞0 ([0, T )× (0, l) ∩ {uh > 0}),

uh ≡ 0 in (h, T )× (0, l) \ {uh > 0},

and, therefore, we shall call them approximate weak solutions.
One can see the similarity between the equations for a weak solution and approx-

imate weak solution. Nevertheless, to show the convergence (as h → 0) is rather
nontrivial. In [6], we faced the same problem for a similar quadratic functional and
were able to prove the existence and regularity of minimizers in higher dimensions
but not the convergence. The convergence for a quadratic functional with volume
constraint but without free boundary was shown in [5].

4. NUMERICAL EXPERIMENT

Here we show the results of an experiment based on the presented numerical model.
The settings are as follows: The domain under consideration is chosen so that its
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left boundary is far into the sea and the right boundary is on land, where there is no
danger of waves coming. On the left boundary, a homogeneous Neumann boundary
condition is prescribed and the right boundary satisfies a homogeneous Dirichlet
boundary condition. The depth of the sea on the left part is set to −2.2 and the sea
floor then rises to the right in three slopes to the shore (see Figure 2). The initial
values u0 and u1 are both set to zero. An outer force simulating an upheaval of the
sea bed is applied near the left boundary, generating a long wave.

The program uses a standard finite element method to express the unknown
function un and the domain is split into 150 elements. However, the coefficients
corresponding to the basis functions are not arbitrary in this case, due to the volume
preservation condition which constrains them to a hyperplane. We search for the
minimizer of the functional

Ln(u) :=
∫ l

0

|u− 2un−1 + un−2|2
2h2

dx+
g

2

∫ l

0

(u+ ϕ)2
xun−1 dx+

∫ l

0

fu dx

in this constrained space and subsequently cut off the parts of the solution which are
not above the obstacle. The volume thus changes and is adjusted by multiplying by
a suitable constant. In practical computation, there is almost no truncation since
the changes of volume which is of order 102 do not exceed 10−3. Note that the
minimized functional is quadratic due to the simplification in the second term.

The results are shown in Figure 2. The motion naturally depends on the form of
the initial outer force and on the shape of the seafloor. We have chosen two types
of outer forces and two types of shapes for the floor in the numerical experiment in
order to have a glimpse of the dependence. Outer force f1 is a volume-preserving
force having the value of 0.6 at the 4th node and the value of −0.6 at the 33rd node
of the triangulation at the first time level only. The outer force f2 is equal to zero
except at the 4th node, where it is set to −0.6 on the first time level. In the case of
f2 we have also tried to insert an underwater mountain in the way of the wave.

Although the results differ slightly in each case, it is generally observed that
the long wave slows down and becomes steeper and higher when it arrives at the
shallow region. At the same time, a well-known phenomenon occurs, namely, that
the water withdraws from the coast for a moment. A steep wave is formed which
slowly penetrates high into the land and subsequently withdraws with a greater
speed. The inundation is then repeated on a smaller and smaller scale.

The above observations perfectly fit the properties of tsunami waves observed and
measured in reality. However, apart from this qualitative agreement, it is necessary
to compare the quantitative results with real experiments, which remains a future
task. The comparison with solutions of other models such as the KdV equation, the
RLW equation, or Boussinesq systems would also be of interest, but these models
are not able to treat the area near the shore. In any case, the qualitative agreement
of this model with real phenomena, and the simplicity of the model suggesting the
possibility of fast computation, seem quite promising and I believe that parameter
tuning and introduction of new parameters (such as a weighted volume constraint)
will yield a serviceable model.
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Fig. 2. Numerical results at different times.
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5. CONCLUSION

A completely new model for the propagation of tsunami waves has been proposed.
Unlike existing models, this model is able to handle all phases of the wave evolution,
i. e., generation, propagation, shoaling and inundation. The model is based on mini-
mization of a hyperbolic functional under the restrictive conditions of the obstacle in
the form of a seabed and volume preservation. The resulting mathematical problem
seems difficult but it is possible to realize it numerically by the use of the discrete
Morse semi-flow. The simulation produced satisfying results.

Nevertheless, there are still many problems to be solved before the model can be
pronounced applicable. Namely, the mathematical theory must be developed (exis-
tence and regularity of minimizers in higher dimensions, convergence of approximate
solutions) and computational results should be compared to real experiments with
simultaneous parameter tuning.
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