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KYBERNET IK A — VOLUME 4 4 ( 2 0 0 8 ) , NU MB ER 1 , P AG E S 6 1 – 7 4

NONLINEAR STATE PREDICTION
BY SEPARATION APPROACH
FOR CONTINUOUS–DISCRETE STOCHASTIC SYSTEMS

Jaroslav Švácha and Miroslav Šimandl

The paper deals with a filter design for nonlinear continuous stochastic systems with
discrete-time measurements. The general recursive solution is given by the Fokker–Planck
equation (FPE) and by the Bayesian rule. The stress is laid on the computation of the
predictive conditional probability density function from the FPE. The solution of the FPE
and its integration into the estimation algorithm is the cornerstone for the whole recursive
computation. A new usable numerical scheme for the FPE is designed. In the scheme,
the separation technique based on the upwind volume method and the finite difference
method for hyperbolic and parabolic part of the FPE is used. It is supposed that sep-
aration of the FPE and choice of a suitable numerical method for each part can achieve
better estimation quality comparing to application of a single numerical method to the
unseparated FPE. The approach is illustrated in some numerical examples.

Keywords: stochastic systems, state estimation, nonlinear filters, Fokker–Planck equation,
numerical solutions, finite volume method, finite difference method

AMS Subject Classification: 93E11

1. INTRODUCTION

The problem of state estimation of nonlinear continuous stochastic systems with
discrete-time measurements is of special interest when dealing with real continu-
ous processes and the digital devices used for processing measurements. The aim
of the state estimation problem is to determine the filtering probability density
function (pdf) at the measurement time instants and the predictive pdf on the
intervals between measurements. A general recursive solution of the problem is
given by the Fokker–Planck equation (FPE) and by the Bayesian rule (BR) [1, 5].
The FPE [14] is a partial differential equation (PDE) that governs the evolution of
the predictive pdf between the measurement time instants, and the BR represents
a correction of the previous predictive pdf at the measurement times. Exact solu-
tion is available for a few special cases only [1, 5]. These cases include for example
the linear Gaussian system where the solution of the BR and the FPE is represented
by the Kalman–Bucy filter [5, 6]. In other cases it is necessary to apply some ap-
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proximative methods. These methods can be divided into two groups with respect
to validity of the acquired estimates. The first group of the methods provides results
with validity within some neighborhood of a point estimate only and thus can be
called local methods. The second group of the methods provides results valid almost
in the whole state space and thus they can be called global methods.

The local methods often approximate the pdf representing state estimate by Gaus-
sian pdf. This means that the complete description of the estimated pdf can be given
by the first two moments, i. e. mean value and covariance matrix. The main dis-
advantage of these methods is local validity of the state estimate and consequently
impossibility to ensure convergence of the state estimate. The analytical approach
to the local estimation uses approximation of a nonlinear function by the first few
terms of the Taylor expansion [5, 15].

On the other hand, global methods, based on the approximation of the condi-
tional pdf produce results with global validity. The disadvantage of these methods
lies in the growth of theoretical and computational demands. There are three main
approaches to the solution providing global estimates: analytical approach based on
system approximation and Gaussian sum approximation of the pdf [1, 16, 19], nu-
merical approach using numerical solution of the FPE [23] and simulation approach
taking advantage of the Monte Carlo (MC) approximation [4].

The solution of the FPE and its integration into estimation algorithm can be
viewed as a cornerstone for the whole recursive computation. Extensive numerical
simulations of the FPE have been performed using finite element methods (FEM’s)
[11] or the Monte Carlo simulation [17]. Monte Carlo simulation methods are ad-
vantageous in high dimensional cases as their computational demands increase with
dimension linearly only, but on the other hand they do not generally provide high
estimation quality. Further, the finite difference methods (FDM’s) [13, 25] belong
to standard numerical approaches to the solution of PDE’s and thus can also be ap-
plied to the approximation of the FPE. Nevertheless, most of these approaches are
focused on specific physical processes and do not correspond to a direct manipulation
in estimation algorithm based on the FPE.

The goal of the paper is to present a new usable and alternative numerical solution
of the FPE in state estimation problem based on the separation of the FPE into
two parts. The aim is to solve the first hyperbolic part by upwind finite volume
methods (FVM’s) [9] and the second parabolic part by the standard FDM’s [13]. It
is supposed that separation of the FPE and choice of a suitable numerical method
for each part should achieve better estimation quality comparing to the application
of a single numerical method to the unseparated FPE.

The paper is organized as follows: The problem formulation and general solution
of the considered estimation problem is presented in Section 2. Section 3 is focused on
the new numerical solution of the FPE. Afterwards, in Section 4 the grid cells design
is discussed. The results of the paper are illustrated in some numerical examples in
Section 5.
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2. PROBLEM FORMULATION

Consider the problem of state estimation where the state x(t) evolves in continuous
time according to the Itô stochastic differential equation (SDE)

dx(t) = f(x(t), t) dt + G(t) dw(t) (1)

and the measurement zk is given as

zk = h(xk, tk) + vk, (2)

where t is time, tk are time instants for k = 0, 1, 2, . . ., x(t) is state vector with
dimx(t) = n (the short notation xk = x(tk) is used), zk represents measure-
ment vector at time tk with dimzk = m, f(x(t), t) and h(xk, tk) are known vec-
tor functions, and G(t) is a known n × n matrix. The process noise, w(t), is an
Rn-valued Brownian motion with E(dw,dwT ) = I dt. The measurement noise vk

is white and Gaussian with dim(vk) = m, E(vk) = 0 and cov(vk) = Rk, thus
p(vk) = N (vk : 0, Rk). The noises w(t), vk and the random variable x(t0) are
mutually independent.

The aim is to determine the conditional filtering pdf p(xk|zk) and predictive pdf
p(x(t)|zk) for t ∈ Ik,k+1 , (tk, tk+1〉 (i. e. for the measurement times tk < t ≤ tk+1),
where zk , [z0,z1, z2, . . . , zk]T .

The general recursive solution of the filtering problem can be given by the Bayesian
approach. The filtering pdf p(xk|zk) at the measurement times represents a correc-
tion (update) of the previous predictive pdf p(xk|zk−1) and has the following form

p(xk|zk) =
p(xk|zk−1)p(zk|xk)∫

p(xk|zk−1)p(zk|xk) dxk
(3)

where p(x0|z−1) is the prior pdf of the initial state x0.

The predictive pdf p(x(t)|zk) for t ∈ Ik,k+1 is given by the FPE

∂p(x(t)|zk)
∂t

= − ∂p(x(t)|zk)
∂x(t)

f(x(t), t)− p(x(t)|zk) tr
(

∂f(x(t), t)
∂x(t)

)
(4)

+
1
2

tr
(

Q(t)
∂2p(x(t)|zk)

∂x2(t)

)

with the initial condition p(xk|zk), where ∂p(x(t)|zk)
∂x(t) is the gradient of p(x(t)|zk)

with respect to x(t), ∂f(x(t),t)
∂x(t) is the Jacobian of f(x(t), t) with respect to x(t), tr de-

notes “trace”, ∂2p(x(t)|zk)
∂x2(t) is the Jacobian of the transpose of the gradient ∂p(x(t)|zk)

∂x(t)

and Q(t) = G(t)G(t)T .
The key idea of most numerical approaches for generating the conditional pdf’s

of the state is to substitute a nonnegligible part of the state space by a grid of cells.
The values of the pdf are computed at the grid points only and thus the solution of
(3) and (4) is performed numerically over the grid instead of the continuous support.
The nonnegligible support is a region in the state space where the actual state is
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probable to lie and hence the values of the pdf are nonnegligible there. Increasing
the number of cells and extending the significant region causes approaching of the
approximate posterior pdf to the true conditional pdf of the state. Obviously as the
number of grid cells increases, the computational demands of the method increase
as well. It is also clear that the computational demands rise with increasing state
dimension dramatically.
The basic numerical scheme can be summarized in the following recursive algorithm:

Algorithm.

Initialization: Set k = 0 and suppose t0.
Define a grid G0 in Rn by grid points x[i1, . . . , in] for the prior pdf p(x0|z−1):

G0 = {x[i1, . . . , in]}, (5)
where il = 1, 2, . . . , Nl and l = 1, 2, . . . , n.

For each axis l it holds that x[i1, . . . , il, . . . , in] < x[i1, . . . , il+1, . . . , in]. The grid
G0 is orthogonal and equidistant and defines N = N1 ×N2 . . .×Nn cells. The sizes
∆x1, . . . , ∆xn of the cells are given by the distances of two arbitrary neighbouring
points on each axis, e. g. ∆x1 = x[2, i2, . . . , in] − x[1, i2, . . . , in]. E.g. for one-
dimensional case the N intervals (grid cells) are given by end points x[i− 1/2] and
x[i + 1/2] where x[i − 1/2] = x[i] − ∆x

2 and x[i + 1/2] = x[i] + ∆x
2 (the index 1 is

dropped).
Compute the value

P ′
0[i1, . . . , in] = p̂x0|z−1

(
x[i1, . . . , in]|z−1

)
, (6)

where P ′
0[i1, . . . , in] represents the approximate value of the pdf at x[i1, . . . , in].

Step 1: At time tk compute the values of the approximate filtering pdf p̂(xk|zk) at
the grid points using

Pk[i1, . . . , in] = p̂xk|zk

(
x[i1, . . . , in]|zk

)
(7)

= c′−1
k P ′

k [i1, . . . , in] pvk
(zk − hk(x[i1, . . . , in])) ,

where
c′k =

N1∑

i1=1

· · ·
Nn∑

in=1

∆xP ′
k[i1, . . . , in] · pvk

(zk − hk(x[i1, . . . , in])) (8)

and ∆x = ∆x1∆x2 . . . ∆xn.

Consider t0k = tk. The time instant t0k is used as the initial time for prediction
between tk and tk+1.

Step 2: Define a new suitable grid Gk in Rn similarly to the initialization step for
the predictive pdf p(x(t)|zk) for tjk = tk + j ·∆t, where tjk ∈ Ik,k+1 and j = 0, . . . ,M
(i. e. at the time instants tk, tk + ∆t, tk + 2∆t, . . . , tk + (M − 1)∆t, tk+1), ∆t is
the time interval for the prediction. Compute the values P ′

j [i1, . . . , in] for j = 0 as
follows

P ′
j [i1, . . . , in] = p̂xk|zk

(
x[i1, . . . , in]|zk

)
. (9)
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Step 3: Compute values P ′
j [i1, . . . , in] of the approximate predictive pdf p̂(x(t)|zk)

for j = 1, . . .M using a suitable numerical method for the FPE (4).

Let k ←− k + 1 and continue with Step 1.

The given algorithm provides a basic frame only. The solution of the FPE (Step 2
and Step 3) is the cornerstone for the whole recursive computation. The next section
is focused on these two steps of the recursive estimation algorithm within a new
usable solution of the FPE.

3. NEW NUMERICAL SOLUTION
OF THE FOKKER–PLANCK EQUATION

Numerical approaches to the FPE are discussed in many publications: classical FDM
method [25], finite elements methods [11, 17], Monte Carlo simulations [18] or other
possible techniques [24]. Overview and comparison of suitable implicit difference
methods for the FPE can be found in [12, 24], where the well-known Chang–Cooper
method [3] is also introduced. Unfortunately, most of these approaches are focused
directly on specific physical FPE forms following certain processes.

In this paper, the difference methods are preferred to be suitable within estima-
tion algorithm for their simplicity. The basic idea of a new numerical solution of
the FPE (4) is to see the FPE as a composition of a parabolic and a hyperbolic part,
to consider them separately and subsequently to choose an efficient method for the
solution of each part. The hyperbolic part

∂p∗(x(t)|zk)
∂t

= −∂p∗(x(t)|zk)
∂x(t)

f(x(t), t) (10)

with the initial condition pdf p̂(x(t)|zk) representing the estimate of the predictive
pdf p(x(t)|zk), is solved by the upwind FVM’s [9]. Upwind schemes based on FVM’s
represent a powerful class of numerical methods for the hyperbolic PDE’s. The pa-
rabolic part

∂p̂(x(t)|zk)
∂t

= −p̂(x(t)|zk) tr
(

∂f(x(t), t)
∂x(t)

)
+

1
2

tr
(

Q(t)
∂2p̂(x(t)|zk)

∂x2(t)

)
(11)

with the initial condition pdf p∗(x(t)|zk) representing the solution of the hyperbolic
part (10) of the FPE (4), is solved by the implicit scheme FDM’s [13].

Now, Steps 2 and 3 from the basic algorithm considered in Section 2 will be
designed.

3.1. Separation approach for one-dimensional system

Step 2: Divide the nonnegligible support of the filtering pdf p(xk|zk) into N inter-
vals (grid cells) by defining x[i]. The value Pk[i] approximates the average of the pdf
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p(xk|zk) value over the ith interval at time tk and also represents an approximate
value of the pdf at x[i]:

Pk[i] = p̂xk|zk

(
x[i]|zk

)
' 1

∆x

∫ x[i+1/2]

x[i−1/2]

p(xk|zk) dxk. (12)

Step 3: The values Pk[i] (12) represent the initial condition for numerical solution
of the FPE (4) for tjk ∈ Ik,k+1, where j = 0, . . . ,M .

An explicit algorithm for the hyperbolic part FPE (10) can be developed [9]:

P ′
j+1[i]

∗ = P ′
j [i]−

∆t

∆x

(
F+(∆P ′

j)[i− 1/2] + F−(∆P ′
j)[i + 1/2]

)
. (13)

The values P ′
j+1[i]

∗, where asterisk refers to the hyperbolic part (10), are modified
at each time step tjk by (13) through the endpoints of the intervals. The specific
variant of the FVM depends on numerical approximation of F+(∆P ′

j)[i− 1/2] and
F−(∆P ′

j)[i + 1/2], e. g.:

F+(∆P ′
j)[i− 1/2] = max{0, f

(
xj [i], t

j
k

)
}

(
P ′

j [i]− P ′
j [i− 1]

)
(14)

F−(∆P ′
j)[i + 1/2] = min{0, f

(
xj [i], t

j
k

)
}

(
P ′

j [i + 1]− P ′
j [i]

)
. (15)

Then the scheme (13) – (15) is an upwind FVM with first-order accuracy. For the
explicit scheme to be stable, the condition

∣∣∣∣f(xj [i], t
j
k)

∆t

∆x

∣∣∣∣ ≤ 1 (16)

has to be satisfied for i = 1, . . . , N and tjk ∈ Ik,k+1. A more usable approximation of
(13) can be found in [9]. The scheme (13) – (15) represents only one of several FVM
variants.

Figure 1 illustrates time and state discretization (grid cells) for numerical solution
of the FPE based on the FMV’s.

Finally, the classical FDM can be used for the parabolic part (11) of the FPE.
The discrete implicit scheme represents a matrix equation of Nth order and is un-
conditionally stable

P ′
j+1[i]− P ′

j+1[i]
∗

∆t
= −∂f (x(t), t)

∂x(t)

∣∣∣∣
x=x(t);t=tj+1

P ′
j+1[i] (17)

+
1
2
Q(tj+1)

P ′
j+1[i + 1]− 2P ′

j+1[i] + P ′
j+1[i− 1]

∆x2
.

3.2. Separation approach for n-dimensional system

Given scheme for the 1-dimensional system, the approach can be extended to a
higher dimension:
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t
j

k
b b b

t
j+1

k
b b b

t
j+2

k
b b b

b b b

b b b

∆t

xj[i − 1] xj[i] xj[i + 1]

P
′

j+1[i − 1] P
′

j+1[i] P
′

j+1[i + 1]

P
′

j+2[i]

xj[i −
1

2
] xj[i + 1

2
]

︸ ︷︷ ︸

∆x

Fig. 1. Grid cells for the numerical solution of the FPE.

Step 2: Divide the nonnegligible support of the filtering pdf p(xk|zk) into N1 ×
N2 . . .×Nn grid cells by defining x[i1, . . . , in]. The value Pk[i1, . . . , in] approximates
the average of the pdf p(xk|zk) over [i1, . . . , in] cell at time tk and also represents
the approximate value of the pdf at x[i1, . . . , in]:

Pk[i1, . . . , in] = p̂xk|zk

(
x[i1, . . . , in]|zk

)
(18)

' 1
∆x

∫ x[i1+1/2,i2,...,in]

x[i1−1/2,i2,...,in]

· · ·
∫ x[i1,i2,...,in+1/2]

x[i1,i2,...,in−1/2]

p(xk|zk) dxk.

Step 3: The values Pk[i1, . . . , in] (18) represent the initial condition for numerical
solution of the FPE (4) for tjk ∈ Ik,k+1.

Figure 2 illustrates time discretization and state discretization (grid cells) for
numerical solution of the FPE (n = 2).

An explicit algorithm for the hyperbolic part FPE (10) can be developed [9]:

P ′
j+1[i1, . . . , in]∗ = P ′

j [i1, . . . , in] (19)

−
n∑

l=1

∆t

∆xl
(F+

l (∆P ′
j)[i1, . . . , il − 1/2, . . . , in] + F−

l (∆P ′
j)[i1, . . . , il + 1/2, . . . , in]),

where

F+
l (∆P ′

j)[i1, . . . , il − 1/2, . . . , in] (20)

= max{0, f1

(
xj [i1, . . . , il, . . . , in], tjk

)
}

(
P ′

j [i1, . . . , in]− P ′
j [i1, . . . , il − 1, . . . , in]

)

F−
l (∆P ′

j)[i1, . . . , il + 1/2, . . . , in] (21)

= min{0, f1

(
xj [i1, . . . , il, . . . , in], tjk

)
}

(
P ′

j [i1, . . . , il + 1, . . . , in]− P ′
j [i1, . . . , in]

)
.
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Fig. 2. Grid cells (n = 2) for numerical solution of the FPE.

The scheme (19) – (21) is an upwind FVM with first-order accuracy. For the explicit
scheme to be stable, the condition

n∑

l=1

|fl(xj [i1, . . . , in], tjk)| ∆t

∆xl
≤ 1 (22)

has to be satisfied for i1 = 1, . . . , N1, i2 = 1, . . . , N2 . . . in = 1, . . . , Nn and tjk ∈
Ik,k+1.

The classical FDM is used for the parabolic part (11) of the FPE. The discrete
implicit scheme represents a matrix equation of Nth order (where N = N1·N2 · · ·Nn)
and is unconditionally stable

P ′
j+1[i1, . . . , in]− P ′

j+1[i1, . . . , in]∗

∆t
(23)

= −
n∑

l=1

∂fl (x(t), t)
∂xl(t)

∣∣∣∣
x=x(t);t=tj+1

P ′
j+1[i1, . . . , in] +

1
2

n∑

l=1

Ql,l(tj+1)

·
P ′

j+1[i1, . . . , il + 1, . . . , in]− 2P ′
j+1[i1, . . . , in] + P ′

j+1[i1, . . . , il − 1, . . . , in]
∆x2

l

.

From (19) and (23) it is noticeable that the computational complexity of the al-
gorithm grows exponentially with increasing state dimension for a given accuracy.
Also suitable design of grid cells and the condition of stability (22) are crucial for
stable and time optimal computation at all time instants tjk ∈ Ik,k+1.

4. GRID CELLS DESIGN

The basic idea for an efficient grid cells design is similar to the point-mass (PM)
approach [21, 22]. Utilizing the techniques proposed in the PM approach enables
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to achieve the substantial reduction of numerical demands for the discrete problem
formulation. Generally, it is necessary to cover a part (rectangle for n = 2) of the
state space covering the nonnegligible part of the filtering pdf p(xk|zk) and all pre-
dictive pdf’s p(xj |zk) numerically computed in tjk ∈ Ik,k+1. Then the numerical
solution of the FPE can run without any deformation on borders of the rectangle
(border conditions). This easy trick is demonstrated in Figure 3. The large dashed
rectangle covers individual small dashed rectangles for tjk ∈ Ik,k+1, j = 0, 1, . . . ,M .
The question is how to determine this significant area for all predictive pdf’s before
the prediction step (before numerical computation of the FPE)? The suggestion is
to set the rectangle from estimates of the first two moments of xj given by the
predictive pdf’s p(xj |zk), j = 0, 1, . . . ,M , i. e. the mean x̂′

j|k and covariance ma-
trix P ′

j|k. Two basic techniques are considered: (1) to find a difference stochastic
state model relevant to the given SDE and apply the point mass approach [21], (2)
to apply a conventional prediction approach – e. g. extended Kalman–Bucy filter
(EKBF). The resulting rectangle is used for the computation of all predictive pdf’s
during the prediction step. Then the grid cells can be adapted after each filter-
ing step before numerical computation of the FPE. Generally, the adaptation can
proceed in the prediction step within one-step numerical solution of the FPE. This
approach allows to decrease the nonnegligible part of the state space; on the other
hand, it is very complex to realize this adaptation effectively. The last remaining
questions in grid cells design are related to the size of the cells and the time step ∆t
for numerical scheme. These options are set by the designer and directly involve er-
ror/quality, computational demands and convergence of the used method (condition
of stability (22)).

Fig. 3. Grid design (n = 2) for the FPE numerical solution.

Now, the algorithm for the grid cells design for n-dimensional systems, i. e. Step 2
in the basic numerical scheme, can be presented:

Step 1: Compute the estimates x̂′
j|k, P ′

j|k for given ∆t and j = 1, . . . ,M .

Note. The computation can be realized if a relevant discrete stochastic model is
known for the SDE – e. g. a model acquired by the stochastic Euler scheme [2].
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Other possibility is to apply a conventional prediction approach – e. g. the EKBF
for the predictive estimates.

Step 2: Determine a nonnegligible part Ωj of the state space for individual p(xj |zk)
pdf’s for j = 0, 1, . . . ,M based on x̂′

j|k, P ′
j|k estimates. For j = 0 Ωj is matched to

the filtering nonnegligible part of p(xk|zk).

Determine Ωk+1 covering all nonnegligible Ωj for j = 0, 1, . . . ,M – see Figure 3
where Ωk+1 represents the large dashed rectangle.

Step 3: Determine a suitable choice of ∆x1, . . . , ∆xnx (or N1, . . . , Nnx) and ∆t
corresponding to a required quality and the condition of stability (22) for the used
explicit numerical scheme.

The described grid design procedure represents a basic frame only, e. g. in case of
using a discrete implicit scheme for the hyperbolic part of the FPE, the condition of
stability could be eliminated. Also, the considered grid cells design does not respect
a possible rotation in eigenvector direction of the predictive covariance matrix to
ensure a more efficient computation. This approach is a part of floating grid in the
point mass method [21] for discrete case, but for the considered numerical methods
the static grid of cells in prediction step tjk ∈ Ik,k+1 is required.

5. NUMERICAL ILLUSTRATION

5.1. Example 1

To show different performance of the FDM [13] and the new separation approach
(SA), the following linear non-gaussian system is considered

dx(t) = 0.4x(t) dt + dw(t), zk = 2xk + vk

with tk (t0 =0s, t1 =0.1s, t2 =0.2s, . . . , 1s), the prior pdf p(x0|z−1) = N (x0 : −2, 1)
and p(vk) = 0.3N (vk : 0.5, 0.1) + 0.7N (vk : 2, 0.2). The new SA and the classical
implicit FDM filter with grid parameters (∆x = 0.1, x ∈ 〈−10, 10〉, N = 200) and
∆t = 0.01 are designed. The aim is to compare quality of these filters with the exact
filtering pdf produced by the Gaussian sum filter (GSF) [19, 20].

The comparison is time evaluation of the filtering pdf’s

Jfilt =
k=10∑

k=0

∫ 10

−10

(p̂(xk|zk)− p(xk|zk))2 dx

and predictive pdf’s

Jpred =
∫ 1

0

∫ 10

−10

(p̂(x(t)|zk)− p(x(t)|zk))2 dxdt

for the FDM and the SA realized for 50 independent experiments – see Figure 4. It
can be seen that the estimate quality of the SA is better than that of the FDM in
majority of cases.
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Fig. 4. Evolution of Jfilt and Jpred for the FDM (× mark) and the SA (+ mark).

5.2. Example 2

To illustrate the estimate quality of the local EKBF and the global SA filter, the
following nonlinear continuous stochastic process x(t) observed at discrete time in-
stants tk (t0 = 0s, t1 = 0.1s, t2 = 0.2s, . . .)

dx(t) = (x(t)− 0.4x2(t)) dt + dw(t), zk = x2
k + vk

with the given prior pdf p(x0|z−1) = p(x0) = 0.5N (x0 : −2, 1)+0.5N (x0 : 1, 1) and
the pdf of the measurement noise p(vk) = N (vk : 0, 1) is considered.

The SA (with grid cell parameters ∆x = 0.05, x ∈ 〈−10, 10〉, N = 400 and
∆t = 0.02) and the EKBF are designed for this system to compare their filtering
results. The prior pdf of the initial state x0 for the EKBF is derived from the
equality of the mean and the variance as p(x0|z−1) = p(x0) = N (x0 : −0.5, 3.25).
In Figure 5 the estimate development for the initial linearization point chosen to
be negative is shown. It is obvious that the EKBF generates state estimates which
diverge from the state. This fact is caused by the quadratic measurement function of
the given system (25) and the given prior pdf. On the other hand, the SA provides
correct estimates, which have global validity. Evolution of the filtering pdf’s is shown
in Figure 5.
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6. CONCLUSION

A new separation approach for the numerical solution of the FPE was designed. The
approach is based on the separation of the FPE into a hyperbolic and a parabolic part
and the application of efficient numerical methods to each of them. The hyperbolic
part is solved by an explicit FVM and the results are used in an implicit FDM for
the parabolic part. The scheme has simple implementation and the extension to
higher dimension is straightforward. In comparison with the classical implicit FDM,
the SA approach can produce results with higher estimation quality.
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