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GROWTH RATES AND AVERAGE OPTIMALITY
IN RISK–SENSITIVE MARKOV DECISION CHAINS

Karel Sladký

In this note we focus attention on characterizations of policies maximizing growth rate of
expected utility, along with average of the associated certainty equivalent, in risk-sensitive
Markov decision chains with finite state and action spaces. In contrast to the existing liter-
ature the problem is handled by methods of stochastic dynamic programming on condition
that the transition probabilities are replaced by general nonnegative matrices. Using the
block-triangular decomposition of a collection of nonnegative matrices we establish neces-
sary and sufficient conditions guaranteeing independence of optimal values on starting state
along with partition of the state space into subsets with constant optimal values. Finally,
for models with growth rate independent of the starting state we show how the methods
work if we minimize growth rate or average of the certainty equivalent.

Keywords: risk-sensitive Markov decision chains, average optimal policies, optimal growth
rates
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1. INTRODUCTION AND NOTATION

In recent years there is a growing interest in so called risk-sensitive Markov de-
cision processes when the outcome, say ξ, generated by a Markov reward process
is evaluated using a utility function with constant risk sensitivity γ ∈ R (see e. g.
[4, 5, 6, 7, 8, 9, 10]). Then the utility function uγ(·) takes on the following form

uγ(ξ) :=

{
sign(γ) exp(γξ), if γ 6= 0

ξ for γ = 0.
(1.1)

Obviously uγ(·) is continuous, strictly increasing, and convex (resp. concave) for
γ > 0, the risk seeking case (resp. γ < 0, the risk averse case). In case that γ = 0
the utility function is risk-neutral, i. e. a linear function and neither large nor small
values of ξ are preferred.

The aim of this note is a complete characterization of policies maximizing growth
rate of expected utility, along with average of the associated certainty equivalent, in
risk-sensitive Markov decision chains with finite state and action spaces.
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We consider a Markov decision chain X = {Xn, n = 0, 1, . . .} with finite state
space I = {1, 2, . . . , N} and finite set Ai = {1, 2, . . . ,Ki} of possible decisions
(actions) in state i ∈ I. Supposing that in state i ∈ I action a ∈ Ai is selected,
then state j is reached in the next transition with a given probability pij(a) and
one-stage transition reward rij(a) will be accrued to such transition.

A (Markovian) policy controlling the chain, π = (f0, f1, . . .), is identified by a
sequence of decision vectors {fn, n = 0, 1, . . .} where fn ∈ F ≡ A1 × . . . × AN
for every n = 0, 1, 2, . . ., and fni ∈ Ai is the decision (or action) taken at the
nth transition if the chain X is in state i. Policy which takes at all times the same
decision rule, i. e. π ∼ (f), is called stationary; P (f) is transition probability matrix
with elements pij(fi). Let ξnX0

(π) =
∑n−1
k=0 rXk,Xk+1(fkXk) be the stream of transition

rewards received in the n next transitions of the considered Markov chain X if policy
π = (fn) is followed and the process starts in state X0. Similarly, let ξ(m,n)

Xm
(π) be the

total (random) reward obtained from the mth up to the nth transition (obviously,
ξnX0

(π) = ξ
(0,n)
X0

(π) = rX0,X1(f0
X0

) + ξ
(1,n)
X1

(π)).

In this article we assume that the stream of transition rewards ξnX0
(for the sake

of brevity we often delete the argument π) is evaluated by an exponential utility
function given by (1.1). In particular, for the (random) utility assigned to ξnX0

, we
have

uγ(ξnX0
) :=

{
sign(γ) exp(γξnX0

), if γ 6= 0

ξnX0
for γ = 0.

(1.2)

Obviously, if γ = 0 then uγ(ξnX0
(π)) =

∑n−1
k=0 rXk,Xk+1(fkXk).

Supposing that the chain starts in state X0 = i and policy π = (fn) is followed,
then for expected utility in the n next transitions we have (Eπi denotes expectation
if policy π is followed and the starting state X0 = i)

Ūπi (γ, 0, n) := Eπi [uγ(ξnX0
)] = (sign γ)Uπi (γ, 0, n) (1.3)

where

Uπi (γ, 0, n) := Eπi

[
exp

(
γ

n−1∑

k=0

rXk,Xk+1(fkXk)

)]
> 0. (1.4)

Similarly, for m < n if the starting state Xm = i we write

Uπi (γ,m, n) := Eπi

[
exp

(
γ

n−1∑

k=m

rXk,Xk+1(fkXk)

)]
. (1.5)

Moreover, let Gπi (γ) ∈ R+ be the growth rate of Uπi (γ, 0, n) defined implicitly by

α1 (Gπi (γ))n ≤ Uπi (γ, 0, n) ≤ α2 (Gπi (γ))n (1.6)

where real numbers α2 > α1 > 0.
In addition, if γ 6= 0 for the associated certainty equivalent, say Zπi (γ, 0, n), defined
implicitly by uγ(Zπi (γ, 0, n)) := Eπi [uγ(ξnX0

(fkXk))], and for its asymptotical mean
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value, say Jπi (γ, 0), we have

Zπi (γ, 0, n) =
1
γ

ln

{
Eπi

[
exp

(
γ

n−1∑

k=0

rXk,Xk+1(fkXk)

)]}
(1.7)

Jπi (γ, 0) = lim sup
n→∞

1
n
Zπi (γ, 0, n). (1.8)

Note that for γ = 0 we have Zπi (γ, 0, n) = Eπi [
∑n−1
k=0 rXk,Xk+1(fkXk)] (the standard

expected reward criterion) and Jπi (γ, 0) is the corresponding mean value.
In what follows we shall often abbreviate Ūπi (γ, 0, n), Uπi (γ, 0, n), Zπi (γ, 0, n) and

Jπi (γ, 0) respectively by Ūπi (γ, n), Uπi (γ, n), Zπi (γ, n) and Jπi (γ) respectively. Simi-
larly Uπ(γ, n) (resp. Zπ(γ, n), resp. Jπ(γ)) is reserved for the vector of expected
utilities (resp. certainty equivalents, resp. mean values of certainty equivalents)
whose ith element equals Uπi (γ, n) (resp. Zπi (γ, n), resp. Jπi (γ)). The symbol I is
reserved for an identity matrix and e is a unit (column) vector. Moreover, for any
f ∈ F , let

Q(γ)(f) =
[
q

(γ)
ij (fi)

]
(1.9)

be an N ×N nonnegative matrix with elements

q
(γ)
ij (fi) := pij(fi) exp(γ rij(fi)). (1.10)

Observe that Q(γ)(f) is irreducible if and only if P (f) is irreducible, and a class
of states is closed in Q(γ)(f) if and only if it is closed in P (f). Similarly as in
the Markov chain theory we can speak of accessibility of elements (states) of the
matrix Q(γ)(f). Moreover, if Ĩ(f) ⊂ I is a closed set of transient states (with the
corresponding submatrix P̃ (f) having the spectral radius less than unity), then the
spectral radius of Q̃(γ)(f) may be equal to the spectral radius of Q(γ)(f) and even
greater than the spectral radius of any other irreducible class of Q(γ)(f). Finally,
observe that, similarly to the “product property” of the set of “transition probabil-
ity matrices” arising in standard models of dynamic programming, the considered
collection {Q(γ)(f), f ∈ F} of nonnegative matrices also fulfills the “product prop-
erty.”

In this note we focus attention on the characterization of policies maximizing
growth rate of expected utility, along with average of the associated certainty equiv-
alent. It is known from the literature that for communicating Markov chains (and
also for unichain models with the risk-sensitivity close to zero) optimal average val-
ues of certainty equivalents are independent of the starting state (see [5, 8]). In
contrast to the existing literature our analysis is based on methods of stochastic
dynamic programming on condition that the transition probabilities are replaced
by general nonnegative matrices. In particular, we focus on the properties of (in
general) nonhomogeneous matrix products selected from a collection of nonnegative
matrices {Q(γ)(f), f ∈ F} arising in the recursive formulas for the growth of ex-
pected utilities. Using the block-triangular decomposition of the set of nonnegative
matrices and the existence of some “dominating” matrix in the above mentioned
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matrix collection, we establish necessary and sufficient conditions guaranteeing in-
dependence of the growth rates and average optimal values on starting state along
with partition of the state space into subsets with constant growth rates and average
optimal values.

Alternatively, instead of transition rewards it is also possible to consider transition
costs cij(a); then we are trying to minimize the considered utility function. In
particular, for models with growth rates (and average optimality) independent of
the starting state we show how our methods work if we minimize the growth rate
(or average of the associated certainty equivalent).

The paper is organized as follows. Section 2 summarizes some useful facts on non-
negative matrices and presents reformulation of the problem in terms of stochastic
dynamic programming where transition probability matrices are replaced by general
nonnegative matrices. In Section 3 we present necessary and sufficient condition
guaranteeing that the growth rate and average of the associated certainty equivalent
are independent of the starting conditions. Recalling the uniform block-triangular
decomposition of a collection of nonnegative matrices fulfilling the “product prop-
erty” (see [15, 18, 19, 20]) in Section 4 we are able to decompose the state space in
the classes with the same growth rate and same average optimality. In Section 5
we indicate how the obtained results can be employed if we minimize the considered
utility function, i. e., instead of transition rewards we consider transition costs. Fi-
nally, conclusions and comparison with current results are made in Section 6. In the
Appendix we present a slight modification of a policy iteration algorithm (originally
suggested in [12]) for finding policies minimizing the growth rate and/or average
optimality for models with constant growth rates.

2. CONNECTIONS WITH NONNEGATIVE MATRICES

Since the exponential utility function uγ(·) is separable and the considered control
policy π is Markovian, from uγ(ξnX0

) = exp(γrX0,X1) · uγ(ξ(1,n)
X1

) (here for the sake
of brevity we omit arguments π and fkXk) on taking expectations we conclude that
(observe that E[uγ(rX0,X1(f0

X0
))] =

∑
j∈I pX0,j(f

0
X0

) exp(γ rX0,j(f
0
X0

)))

Eπi u
γ(ξnX0

) = Eπi {E eri,X1 (f0
i ) · EπX1

uγ(ξ(1,n)
X1

)|X1}

=
∑

j∈I
pij(f0

i )eγrij(f
0
i )Eπj u

γ(ξ(1,n)
X1

) (2.1)

that can be also written as (recall that qγij(·) = pij(·)eγrij(·))

Uπi (γ, 0, n) =
∑

j∈I
q

(γ)
ij (f0

i ) · Uπj (γ, 1, n) with Uπi (γ, n, n) = 1 (2.2)

or in vector notation

Uπ(γ, 0, n) = Q(γ)(f0) ·Uπ(γ, 1, n) with Uπ(γ, n, n) = e. (2.3)
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Iterating (2.3) we get if policy π = (fn) is followed

Uπ(γ, n) = Q(γ)(f0) ·Q(γ)(f1) · . . . ·Q(γ)(fn−1) · e. (2.4)

In particular, (Markovian) policy π̂(n) = (f̂ (k,n)) maximizing Uπ(γ, n), i. e.
U π̂(γ, n) = maxπ Uπ(γ, n) must fulfill the following dynamic programming recursion

U π̂(γ, k, n) = max
f∈F
{Q(γ)(f) ·Uπ(γ, k + 1, n)}

=: Q(γ)(f̂ (k,n)) ·Uπ(γ, k + 1, n) for k = 0, 1, . . . , n− 1 (2.5)

U π̂(γ, n− 1, n) = max
f∈F
{Q(γ)(f) · e} =: Q(γ)(f̂ (n−1,n)) · e. (2.6)

(Here the vectorial maximum is considered componentwise and always exists since
the ith row of Q(γ)(f) depends only on the decision (action) taken in state i, cf. the
“product property” of the set of matrices Q(γ)(f)’s.)

Since Q(γ)(f) is a nonnegative matrix, by the well-known Perron–Frobenius theo-
rem (see, e. g. [3, 11]) the spectral radius ρ(γ)(f) ofQ(γ)(f) is equal to the maximum
positive eigenvalue of Q(γ)(f) and the corresponding left (row) and right (column)
eigenvectors, say y(γ)(f), x(γ)(f), (called the Perron eigenvectors) can be selected
nonnegative. In particular, it holds

ρ(γ)(f)y(γ)(f) = y(γ)(f) ·Q(γ)(f) with y(γ)(f) ≥ 0 (2.7)

ρ(γ)(f)x(γ)(f) = Q(γ)(f) · x(γ)(f) with x(γ)(f) ≥ 0. (2.8)

In case thatQ(γ)(f) is irreducible (i. e. if P (f) is irreducible) the Perron eigenvectors
can be selected strictly positive, i. e. (2.7), (2.8) hold with y(γ)(f) > 0, x(γ)(f) > 0.
(In a vector inequality a ≥ b denotes that ai ≥ bi for all elements of the vectors a,
b, and ai > bi at least for one i, but not for all i’s and a > b if and only if and
ai > bi for all i’s.)

Moreover, strictly positive Perron eigenvectors still exist for reducible nonnega-
tive matrices with a specific structure. Necessary and sufficient condition for the
existence of a strictly positive right eigenvector x(γ)(f) of a nonnegative matrix
Q(γ)(f) with f ∈ F can be formulated as follows (see, e. g. [3, 11]):

If for suitable labelling of states of the underlying Markov chain (i. e. on suitably
permuting rows and corresponding columns of Q(γ)(f)) it is possible to decompose
Q(γ)(f) on the following block-triangular form:

Q(γ)(f) =

[
Q

(γ)
(NN)(f) Q

(γ)
(NB)(f)

0 Q
(γ)
(BB)(f)

]
(2.9)

where Q(γ)
(NN)(f) and Q(γ)

(BB)(f) (with spectral radius ρ(γ)
(N)(f) and ρ

(γ)
(B)(f)) are (in

general reducible) matrices such that:
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• ρ(γ)
(N)(f) < ρ(γ)(f),

• ρ(γ)
(B)(f) = ρ(γ)(f) and Q(γ)

(BB)(f) is diagonal, in particular,

Q
(γ)
(BB)(f) =




Q
(γ)
(11)(f) . . . 0

...
. . .

...
0 . . . Q

(γ)
(rr)(f)


 (2.10)

where Q(γ)
(ii)(f) (with i = 1, . . . , r) are irreducible submatrices (the so-called

basic classes of Q(γ)(f)) such that the spectral radius ρ(γ)
i (f) of every Q(γ)

(ii)(f)
(with i = 1, . . . , r) is equal to ρ(γ)(f),

• each irreducible class of Q(γ)
(NN)(f) (such a class is a non-basic class of Q(γ)(f),

i. e., its spectral radius is less than ρ(γ)(f)) has access to some basic class
of Q(γ)(f) (accessibility is considered with respect to the underlying Markov
chain P (f), hence at least some elements of Q(γ)

(NB)(f) are nonvanishing).

Observe that (2.8), (2.9) well correspond to the canonical decomposition of a multi-
chain transition probability matrix.

Remark. Here and in the sequel subscript N (in roman) is reserved for non-basic
classes and subscript B (in roman) is reserved for basic classes; on the contrary to
latin N reserved for the dimension of the state space I.

Moreover, under condition that x(γ)(f) > 0 for each f ∈ F , it can be shown that
there exists decision vector f̂ ∈ F such that ρ(γ)(f̂) ≡ ρ̂(γ) is the maximum possible
eigenvalue of Q(γ)(f) over all f ∈ F , and

Q(γ)(f) · x(γ)(f̂) ≤ max
f∈F
{Q(γ)(f) · x(γ)(f̂)}

= Q(γ)(f̂) · x(γ)(f̂) = ρ(γ)(f̂)x(γ)(f̂), with x(γ)(f̂) > 0. (2.11)

If all Q(γ)(f)’s are irreducible, the (constructive) proof based on policy iterations
can be found in [12], its extension to (reducible) matrices having strictly positive
right eigenvectors can be found in the Appendix. For further extensions to the case
of general reducible matrices see [15, 17, 18, 19, 20].

3. MODELS WITH CONSTANT GROWTH RATES AND CONSTANT
AVERAGE CERTAINTY EQUIVALENTS

In this section we consider risk-sensitive Markov decision chains where the maximal
growth rate (or equivalently mean values of the certainty equivalent) is independent
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of the starting condition. In contrast to the existing literature our approach is based
on the analysis of the growth rate of (in general nonhomogeneous) products of a
family of nonnegative matrices and relations between the growth rate and certainty
equivalents, cf. (1.4) – (1.8).

Recalling (2.11) we make the following assumption.

Assumption 3.1. There exists ρ̂(γ) ≡ ρ(γ)(f̂) and x̂(γ) ≡ x(γ)(f̂) > 0 (unique
up to a multiplicative constant) such that (for a given value of the risk aversion
coefficient γ)

ρ̂(γ) x̂(γ) = max
f∈F
{Q(γ)(f) · x̂(γ)} = Q(γ)(f̂) · x̂(γ) (3.1)

such that on using the matrix decomposition according to (2.8), i. e., on writing

Q(γ)(f̂) =

[
Q

(γ)
(NN)(f̂) Q

(γ)
(NB)(f̂)

0 Q
(γ)
(BB)(f̂)

]
(3.2)

where Q(γ)
(BB)(f̂) is the “biggest” diagonal class with spectral radius ρ(γ)(f̂) among

all Q(γ)(f)’s fulfilling (3.1).

Theorem 3.1. If condition (3.1) holds then for a given γ there exist numbers
α

(γ)
2 > α

(γ)
1 > 0 such that

α
(γ)
1 x(γ)(f̂) ≤ (ρ̂(γ))−n

n−1∏

k=0

Q(γ)(fk) · e ≤ α(γ)
2 x(γ)(f̂) (3.3)

for any policy π = (fk) maximizing the growth of Uπ(γ, n) for n = 0, 1, . . . .
In addition, (3.3) is also fulfilled for stationary policy π̂ ∼ (f̂).

P r o o f . If Assumption 3.1 holds (with x(γ)(f) not necessarily strictly positive for
each f ∈ F), we can select x(γ)(f̂) > 0 such that either x(γ)(f̂) ≥ e or x(γ)(f̂) ≤ e.
Iterating (2.11) we can immediately conclude that for x(γ)(f̂) ≥ e and any policy
π = (fk)

n−1∏

k=0

Q(γ)(fk) · e ≤
n−1∏

k=0

Q(γ)(fk) · x(γ)(f̂)

≤ (Q(γ)(f̂))n · x(γ)(f̂) = (ρ̂(γ))n x(γ)(f̂) (3.4)

and hence the asymptotic behaviour of Uπ(γ, n) (or of Uπ(γ,m, n) if m is fixed)
heavily depends on ρ(γ)(f̂) ≡ ρ̂(γ), and elements of

∏n−1
k=0 Q

(γ)(fk) ·x(γ)(f̂) must be
bounded from above by ( ˆρ(γ))n · x(γ)(f̂).
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Similarly, on selecting x(γ)(f̂) ≤ e from (2.5), (2.11) we get for any policy π̂(n) =
(f̂ (k,n)) maximizing Uπ(γ, n):
n−1∏

k=0

Q(γ)(f̂ (k,n)) ·e ≥
n−1∏

k=0

Q(γ)(f̂) ·e ≥ (Q(γ)(f̂))n ·x(γ)(f̂) = (ρ̂(γ))n ·x(γ)(f̂). (3.5)

Hence the growth of Uπ(γ, n) if a policy maximizing Uπ(γ, n) is followed is bounded
from below by ( ˆρ(γ))n · x(γ)(f̂).

From (3.4) and (3.5) we immediately get conclusions of Theorem 3.1. 2

For what follows it is convenient to rephrase Theorem 3.1 in words as

Corollary 3.2. Under condition (3.1) if policy π = (fn) maximizing Uπ(γ, n) is
followed the growth rate of each element of Uπ(γ, n) =

∏n−1
k=0 Q

(γ)(fk) · e is the
same and equals ρ̂(γ). Moreover, stationary policy π̂ ∼ (f̂) also maximizes the growth
rate.

Denoting elements of x(γ)(f̂) > 0 by x
(γ)
j (f) (for j = 1, . . . , N) and elements of

an N×N matrixQ(γ)(f) by q(γ)
ij (fi) (recall that by (1.10) q(γ)

ij (fi) = pij(fi) eγ rij(fi)),
for
g(f) := γ−1 ln (ρ(γ)(f)), wj(f) := γ−1 ln(x(γ)

j (f)) (with j = 1, . . . , N)
(2.11), (3.1) can be also written as the following set of (nonlinear) equations:

eγ (g(f̂)+wi(f̂)) = max
a∈Ai





∑

j∈I
pij(a) · eγ (rij(a)+wj(f̂))



 , for i = 1, . . . , N, (3.6)

called γ-average reward optimality equation.
In the multiplicative form (used before) (3.6) takes on the form:

ρ(γ)(f̂)x(γ)
i (f̂) = max

a∈Ai





∑

j∈I
pij(a) · eγrij(a) · x(γ)

j (f̂)



 , for i = 1, . . . , N. (3.7)

Observe that the solution to (3.6), resp. (3.7), i. e. g(f̂), wi(f̂), resp. ρ(γ)(f̂), xi(f̂)
is unique up to an additive constant (added to wi(f̂)’s), resp. multiplicative constant
(applied to x(γ)

i (f̂)’s) and the matrix P (f) = [pij(f)] occurring in (3.6), (3.7) may
be periodic.

Using the above facts Corollary 3.2 can be formulated as

Theorem 3.3. If condition (3.1) holds then for any policy π = (fn) the asymp-
totical mean value Jπi (γ, 0) is bounded from above by g(f̂) := γ−1 ln (ρ(γ)(f̂)).
Moreover, stationary policy π̂ ∼ (f̂) yields the maximum asymptotical mean value
Jπi (γ, 0) that is independent of the starting state i ∈ I and equal to g(f̂) :=
γ−1 ln (ρ(γ)(f̂)).
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Assumption 3.2. For each f ∈ F the transition probability matrix P (f) has
a single recurrent class, i. e., we assume existence of some state, say N , that is
accessible from any state i ∈ I under each f ∈ F (hence N is recurrent under each
f ∈ F).

Under Assumption 3.2 for suitable labelling of states (i. e., on suitably permuting
rows and corresponding columns of P (f)) it is possible to decompose P (f) such
that:

P (f) =

[
P (NN)(f) P (NB)(f)

0 P (BB)(f)

]
(3.8)

where (in general reducible) submatrix P (NN)(f) contains all transient states of
P (f) and an irreducible class P (BB)(f) containing all recurrent states is a single
submatrix of P (f) with spectral radius equal to one. Of course, the substochastic
matrix P (NN)(f) can be further decomposed in the following block-triangular form
(P (N)ii(f) are irreducible classes of transient states)

P (NN)(f) =




P (N)11(f) P (N)12(f) . . . P (N)1u(f)
0 P (N)22(f) . . . P (N)2u(f)
...

...
. . .

...
0 0 . . . P (N)uu(f)


 . (3.9)

Since the matrix Q(γ)(f) is generated from P (f) by multiplying its ijth entry by
eγ rij(fi) and since its spectral radius ρ(γ)(f) is a continuous function of the matrix
elements1, the matrix Q(γ)(f) still have a strictly positive right (Perron) eigenvector
if the risk aversion coefficient γ is sufficiently close to null. Of course, if at least for
one pair of transient states, say i0, j0, belonging to the same irreducible class it holds
ri0,j0(·) > rij(·) for any pair of states i, j belonging the recurrent class P (BB)(f) of
P (f) then for sufficiently large risk-aversion coefficient γ it happens that the class
P (BB)(f) of recurrent state is no more the basic class of the corresponding matrix
Q(γ)(f) and hence there exists no strictly positive right Perron eigenvector of the
matrix Q(γ)(f) as the following example can show.

Example 1. Consider an uncontrolled model (hence the argument f is deleted)
where N = 4; pij = 0.25, rij = 1, for i, j = 1, 2; pij = 0.25, rij = 0, for i = 1, 2,
j = 3, 4; and for i = 3, 4 we have pi1 = pi2 = 0, ri1 = ri2 = 0, pi3 = pi4 = 0.5,
ri3 = ri4 = 0. Hence using the decomposition according to (3.8) we have

P (NN) =

[
0.25 0.25

0.25 0.25

]
, P (NB) =

[
0.25 0.25

0.25 0.25

]
, P (BB) =

[
0.5 0.5

0.5 0.5

]

where
P (NB) = Q

(γ)
(NB), P (BB) = Q

(γ)
(BB) for any γ ∈ R, but Q

(γ)
(NN) = eγP (NN).

1Recall that eigenvalues of a (finite) dimensional matrix can be calculated as the roots of the
respective a characteristic polynomial being a continuous function of the matrix elements.
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Then the spectral radius ρ(γ)
(B) of Q(γ)

(BB) = P (BB) equals 1, and the spectral radius

ρ
(γ)
(N) of Q(γ)

(NN) is equal to 0.5 eγ . Obviously, the corresponding (right) eigenvectors

of Q(γ)
(BB) and Q(γ)

(NN) are two-dimensional unit vectors. Observe that for γ = ln 2

ρ
(γ)
(N) = ρ

(γ)
(B) = 1.

Hence if γ < ln 2, for the spectral radius of Q(γ) we have ρ(γ) = ρ
(γ)
(B) = 1 and the

corresponding right Perron eigenvector x(γ) = [(2 − eγ)−1 (2 − eγ)−1 1 1]T is
strictly positive.
On the contrary if γ > ln 2, for the spectral radius ρ(γ) of Q(γ) we have ρ(γ) =
0.5eγ > 1 and the corresponding right Perron eigenvector x(γ) = [1 1 0 0]T is not
strictly positive.
Conclusions:
If γ < ln 2 then the the growth rate Gπi (γ) = 1 and the asymptotic mean values
Jπi (γ) = 0 are independent of the starting state i. On the other hand:
If γ > ln 2 the growth rate Gπi (γ) = 1 only for i = 3, 4, but Gπi (γ) = eγ for i = 1, 2.

4. MODELS WITH NON–CONSTANT GROWTH RATES AND
NON–CONSTANT AVERAGE CERTAINTY EQUIVALENTS

In this section we consider risk-sensitive models with non-constant growth rates and
non-constant average values of the certainty equivalents. To this end at least some
matrices pertaining to the set {Q(γ)(f), f ∈ F} must be reducible with no strictly
positive right eigenvector.

First observe that for any (reducible) nonnegative matrix Q(γ)(f) we can easily
identify its basic classes. In case that there exists a single basic class of Q(γ)(f),
for suitable labelling the states of the underlying Markov chain X or equivalently
on suitably permuting rows and corresponding columns of the matrix Q(γ)(f), then
Q(γ)(f) can be decomposed as

Q(γ)(f) =

[
Q

(γ)
11 (f) Q

(γ,1)
1 (f)

0 Q(γ,1)(f)

]
(4.1)

where the structure of the diagonal block Q(γ)
11 (f) with spectral radius ρ(γ)

1 (f) =
ρ(γ)(f) is the same as in (2.9) (i. e. all elements of Q(γ)

11 (f) have access to the basic
class ofQ(γ)

11 (f)), and for the spectral radius ofQ(γ,1)(f) we have ρ(γ,1)(f) ≤ ρ(γ)(f).
In particular, in virtue of (2.8), (2.9) we can conclude that

Q
(γ)
11 (f) =

[
Q

(γ)
1(NN)(f) Q

(γ)
1(NB)(f)

0 Q
(γ)
1(BB)(f)

]
(4.2)

with Q(γ)
1(BB)(f) being the basic class of Q(γ)

11 (f) (and also of Q(γ)(f)). Since all

elements of Q(γ)
1(NN)(f) are accessible to Q(γ)

1(BB)(f), there exists a strictly positive
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(right) Perron eigenvector of Q(γ)
11 (f), i. e.

Q
(γ)
11 (f) · x(γ)

1 (f) = ρ
(γ)
1 (f)x(γ)

1 (f) (4.3)

where ρ
(γ)
1 (f) is the spectral radius of Q(γ)

11 (f) (and hence also of Q(γ)(f)) and
x

(γ)
1 (f) > 0 is the corresponding (right) Perron eigenvector.

Similarly for the diagonal blockQ(γ,1)(f) (assuming the existence of a single basic
class of Q(γ,1)(f)) on suitably permuting rows and corresponding columns formulas
analogous to (4.1) – (4.3) will hold for the matrix Q(γ,1)(f) and its upper diagonal
block Q(γ)

22 (f)

Q(γ,1)(f) =

[
Q

(γ)
22 (f) Q

(γ,2)
2 (f)

0 Q(γ,2)(f)

]
, Q

(γ)
22 (f) =

[
Q

(γ)
2(NN)(f) Q

(γ)
2(NB)(f)

0 Q
(γ)
2(BB)(f)

]

along with the diagonal blocks of Q(γ)
22 (f) denoted Q(γ)

2(NN)(f), Q(γ)
2(BB)(f) and its

“transition” off-diagonal block Q(γ)
2(NB)(f).

Repeating this reasoning we can conclude that for suitable labelling of states
of the underlying Markov chain, or equivalently on suitably permuting rows and
corresponding columns, the matrix Q(γ)(f) can be decomposed into the following
block-triangular form (the number s of diagonal blocks depends on f)

Q(γ)(f) =




Q
(γ)
11 (f) Q

(γ)
12 (f) . . . Q

(γ)
1s (f)

0 Q
(γ)
22 (f) . . . Q

(γ)
2s (f)

...
...

. . .
...

0 0 . . . Q(γ)
ss (f)




(4.4)

where Q(γ)
ii (f)’s are the “biggest” submatrices of Q(γ)(f) having strictly positive

right Perron eigenvectors, i. e., there exist x(γ)
i (f) > 0 such that for all i = 1, 2, . . . , s

Q
(γ)
ii (f) · x(γ)

i (f) = ρ
(γ)
i (f) x(γ)

i (f) with ρ
(γ)
i (f) ≥ ρ(γ)

i+1(f). (4.5)

Furthermore, the above results can be extended to the whole collection of non-
negative matrices {Q(γ)(f), f ∈ F} as it is summarized in the following theorem
(for the proofs see [17, 18, 19, 20]).

Theorem 4.1. There exists f̂ ∈ F and a suitable labelling of states inducing the
partition of the state space, say Î ≡ ⋃s

i=1 Ii(f̂), called the basic partition, such that:

Keeping the partition in accordance of Î then every Q(γ)(f) is block triangular, i. e.

Q(γ)(f) =




Q
(γ)
11 (f) Q

(γ)
12 (f) . . . Q

(γ)
1s (f)

0 Q
(γ)
22 (f) . . . Q

(γ)
2s (f)

...
...

. . .
...

0 0 . . . Q(γ)
ss (f)



, ∀f ∈ F (4.6)
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where all Q(γ)
ii (f) have fixed dimensions equal to card Ii(f̂), and for i = 1, . . . , s

Q
(γ)
ii (f̂)’s are the “biggest” submatrices of Q(γ)(f) having strictly positive right

eigenvectors corresponding to the maximum possible spectral radii of the corre-
sponding submatrices, i. e., there exists Q(γ)

ii (f̂) along with x(γ)
i (f̂) > 0 such that

for any f ∈ F and all i = 1, 2, . . . , s

ρ
(γ)
i (f̂) ≥ ρ(γ)

i (f); ρ
(γ)
i (f̂) ≥ ρ(γ)

i+1(f̂) (4.7)

Q
(γ)
ii (f) · x(γ)

i (f̂) ≤ Q
(γ)
ii (f̂) · x(γ)

i (f̂) = ρ
(γ)
i (f̂) x(γ)

i (f̂). (4.8)

Observe that ρ(γ)
1 (f̂) = ρ(γ)(f̂) and that each diagonal block Q(γ)

ii (f) in (4.6) may
be reducible, and if Q(γ)

ii (f̂) is reducible then it can be decomposed similarly as in
(4.2).

Throughout this note we make the following assumption:

Assumption 4.1. For a given value of the risk aversion coefficient γ a strict in-
equalities holds in the second part of (4.7), i. e. :

ρ
(γ)
1 (f̂) > ρ

(γ)
2 (f̂) > . . . > ρ(γ)

s (f̂). (4.9)

Remark. Observe that the case ρ(γ)
i (f) = ρ

(γ)
i+1(f) can be easily excluded, since,

if necessary, we may assume that after small perturbations of some values pij(fi)
and rij(fi) (i. e. the perturbation of q(γ)

ij (fi)), we arrive at ρ(γ)
i (f) > ρ

(γ)
i+1(f) and

condition (4.9) will be fulfilled (recall that the value of the spectral radius is a
continuous function of the matrix elements).

In case that s = 1 we have x(γ)(f̂) > 0. Then by Theorem 3.1 maximum growth
rate of Uπ(γ, n) is given by ρ(γ)(f̂), is independent of the starting state and can be
obtained if stationary policy π̂ ∼ (f̂) is followed.

In case that s > 1 by (4.6) we can immediately conclude that on following sta-
tionary policy π̂ ∼ (f̂) and keeping the basic partition in accordance of Theorem 4.1,
if x(γ)

i (f̂) is selected such that x(γ)
i (f̂) ≤ e, then for any i = 1, 2, . . . , s

U π̂
i (γ, n) = (Q(γ)

ii (f̂))n · e ≥ (Q(γ)
ii (f̂))n · x(γ)

i (f̂) ≥ (ρ(γ)
i (f̂))nx(γ)

i (f̂).

In words: For stationary policy π̂ ∼ (f̂) the growth rate of every U π̂
i (γ, n) is non-

smaller than ρ
(γ)
i (f̂).

Hence to establish that the maximal growth rate of elements pertaining to Ii(f̂)
equals ρ(γ)

i (f̂) it is sufficient to show that ρ(γ)
i (f̂) is also an upper bound on the

growth rate of elements from Ii(f̂). To this end, on considering the basic partition,
policy π∗ generating the maximal growth must fulfil the dynamic programming
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recursion (2.5) that for the considered reducible case can be also written as:



U∗1(γ, k, n)
U∗2(γ, k, n)

...
U∗s(γ, k, n)


 = max

f∈F




Q
(γ)
11 (f) Q

(γ)
12 (f) . . . Q

(γ)
1s (f)

0 Q
(γ)
22 (f) . . . Q

(γ)
2s (f)

...
...

. . .
...

0 0 . . . Q(γ)
ss (f)



·




U∗1(γ, k + 1, n)
U∗2(γ, k + 1, n)

...
U∗s(γ, k + 1, n)




(4.10)
We show by induction on i = s, s − 1, . . . , 1 that for any n = 0, 1, . . . , the maximal
possible growth of each U∗i (γ, k, n) is also dominated by the powers of ρ(γ)

i (f̂).
If i = s the maximal growth rate is given by Q(γ)

ss (f̂) by Theorem 3.1 (cf. (3.3)).
Hence it suffices only to construct the induction step, i. e., to show that supposing
the maximal possible growth of U∗i+1(γ, k, n) is dominated by the growth rate equal
to ρ(γ)

i+1(f̂), then the maximal possible growth of U∗i (γ, k, n) is dominated by ρ(γ)
i (f̂)

(where ρ(γ)
i (f̂) > ρ

(γ)
i+1(f̂) by Assumption 4.1).

For the sake of simplicity we construct the induction step if i = 1. To this end
let U∗(γ, k, n), and Q(γ)(f) be decomposed as (cf. (4.1))

U∗(γ, k, n) =
[

U∗1(γ, n)
U∗(1)(γ, k, n)

]
, Q(γ)(f) =

[
Q

(γ)
11 (f) Q

(γ,1)
(1) (f)

0 Q(γ,1)(f)

]
(4.11)

where Q
(γ,1)
(1) (f) =

[
Q

(γ)
12 (f) . . . Q

(γ)
1s (f)

]
,

Q(γ,1)(f) =



Q

(γ)
22 (f) . . . Q

(γ)
2s (f)

...
. . .

...
0 . . . Q(γ)

ss (f)


 and U∗(1)(γ, k, n) =



U∗2(γ, k, n)

...
U∗s(γ, k, n)


 .

Hence (4.10) can be also written as
[
U∗1(γ, k, n)

U∗(1)(γ, k, n)

]
= max

f∈F

[
Q

(γ)
11 (f) Q

(γ)
(1,1)(f)

0 Q(γ,1)(f)

]
·
[
U∗1(γ, k + 1, n)

U∗(1)(γ, k + 1, n)

]
(4.12)

where the structure of the diagonal block Q(γ)
11 (f) is given by (4.2). However, by

(4.8)
Q

(γ)
11 (f)x(γ)

1 (f̂) ≤ Q(γ)
11 (f̂)x(γ)

1 (f̂) = ρ
(γ)
1 (f̂)x(γ)

1 (f̂)

with ρ
(γ)
1 (f̂) > ρ

(γ)
2 (f̂) (by Assumption 4.1). Let E be the matrix of one’s, then for

sufficiently small ε > 0 the spectral radius ρ(γ,ε)
(1) (f) of an irreducible matrix

Q(γ,1,ε)(f) := Q(γ,1)(f) + εE

is less than ρ
(γ)
1 (f); hence ε(f) := ρ

(γ,ε)
(1) (f)/ρ(γ)

1 (f) < ε∗ < 1, for any f ∈ F , and

the corresponding right Perron eigenvector x(γ,1,ε)
(1) (f) is strictly positive. Then for

Q(γ,ε)(f) =



Q

(γ)
11 (f) Q

(γ,1,ε)
(1) (f)

0 Q(γ,1,ε)(f)
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we have

(Q(γ,ε)(f))n =


(Q(γ)

11 (f))n
∑

k+`=n−1

(Q(γ)
11 (f))kQ(γ,1,ε)

(1) (f) (Q(γ,1,ε)(f))`

0 (Q(γ,1,ε)(f))n


 . (4.13)

Moreover, selecting Q(γ,1,ε)
(1) such that Q(γ,1,ε)

(1) ≥ Q
(γ,1,ε)
(1) (f) for any f ∈ F and

choosing α ∈ R+ such that Q(γ,1,ε)
(1) · x(γ)

2 (f̂) ≤ αx(γ)
1 (f̂) it holds

∑

k+`=n−1

(Q(γ)
11 (f))k ·Q(γ)

(1,1,ε)(f)·(Q(γ,1,ε)(f))` ·x(γ)
(1)(f̂)

≤ α
∑

k+`=n−1

(ρ(γ)
1 (f̂))k ·(ρ(γ,1)(f̂))`x(γ)

1 (f̂)

= α (ρ(γ)
1 (f̂))n−1

n−2∑

`=0

(ε∗)`x(γ)
1 (f̂) ≤ α (ρ(γ)

(1)(f̂))n−1 · 1
1− ε∗ ·x

(γ)
1 (f̂).

Observe that the above bounds hold also for nonhomogeneous products of matrices
Q(γ,ε)(f) if f ∈ F .
Hence if x(γ)

1 (f) ≥ e, x(γ)
(1)(f) ≥ e we have for policy π∗ fulfilling the dynamic

programming recursion (4.12)
[
U∗1(γ, k, n)

U∗(1)(γ, k, n)

]
≤


 (ρ(γ)

1 (f̂))n−k
{
ρ

(γ)
1 (f̂) + α 1

1−ε∗ ·
}
· x(γ)

1 (f̂)

(ρ(γ,1)(f̂))n−k · x(γ)
(1)(f̂)




and the maximal possible growth of U∗1(γ, n) is dominated by ρ(γ)
1 (f̂).

So we have arrived at the following

Theorem 4.2. Let Assumption 4.1 hold. Then for the matrix Q(γ)(f̂) with f̂ ∈ F
decomposed in accordance with the basic partition Î of the state space it holds:
Maximum possible growth rate Gπ̂j (γ) is the same for each j ∈ Ii(f̂) and is equal to

ρ
(γ)
i (f̂). Moreover, this growth rate can be obtained if stationary policy π ∼ (f̂) is

followed.

Since by (1.4), (1.7) and (1.8) for each j ∈ I

J π̂j (γ) =
1
γ

lim
n→∞

1
n
U π̂j (γ, n) (4.14)

if j ∈ Ii(f̂) we have for suitably selected x(γ)
i (f̂) with elements x(γ)

j (f̂)

J π̂j (γ) =
1
γ

lim
n→∞

1
n

ln[(ρi(f̂))n · xj(f̂))] =
1
γ

ln[ρi(f̂)]. (4.15)

So by Theorem 4.2 for maximal average optimality in risk sensitive Markov deci-
sion processes we have the following result.
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Theorem 4.3. Let Assumption 4.1 hold. Considering the basic partition of the
state space Î = I1(f̂) ∪ I2(f̂) ∪ . . . ∪ Is(f̂) it holds:
Maximum average rewards J π̂j (γ) are the same for each j ∈ Ii(f̂) and are equal to

(γ)−1 ln[ρ(γ)
i (f̂)].

Example 2. Consider an uncontrolled model (hence the argument f is deleted)
where N = 6 with transition probability matrix P and transition reward matrix R
(with elements rij ’s) given by:

P =




0.25 0.25 0.25 0 0.25 0
0.25 0.25 0 0.25 0 0.25

0 0 0.1 0.1 0.4 0.4
0 0 0.1 0.1 0.4 0.4
0 0 0 0 0.5 0.5
0 0 0 0 0.5 0.5



, R =




1 1 0 0 0 0
1 1 0 0 0 0
0 0 0 2 0 0
0 0 2 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



.

Obviously, the transition probability matrix P contains a single class P (BB) of recur-
rent states and two irreducible classes of transient states P (N)11 and P (N)22 where

P (BB) =

[
0.5 0.5

0.5 0.5

]
, P (N)11 =

[
0.25 0.25

0.25 0.25

]
, P (N)22 =

[
0.1 0.1

0.1 0.1

]

and hence

Q(γ) =




Q
(γ)
(N)11 Q

(γ)
(N)12 Q

(γ)
(N)1(B)

0 Q
(γ)
(N)22 Q

(γ)
(N)2(B)

0 0 Q
(γ)
(BB)


 with Q

(γ)
(BB) =

[
0.5 0.5

0.5 0.5

]
,

and the spectral radius ρ(γ)
(B) of Q(γ)

(BB) is equal to one for any γ.

However, for the remaining two diagonal submatrices of Q(γ) we have

Q
(γ)
(N)11 =

[
0.25 eγ 0.25 eγ

0.25 eγ 0.25 eγ

]
, Q

(γ)
(N)22 =

[
0.1 0.1 e2 γ

0.1 e2 γ 0.1

]
.

After some algebra we conclude that the spectral radius ρ(γ)
(N)1 of Q(γ)

(N)11 is equal to

0.5 eγ and the spectral radius ρ(γ)
(N)2 of Q(γ)

(N)22 is equal to 0.1 (e2 γ + 1). Obviously,

for every Q(γ)
(BB), Q

(γ)
(N)11, Q

(γ)
(N)22 the corresponding (right) Perron eigenvector is the

two-dimensional unit vector.
Obviously, both 0.5 eγ and 0.1 (e2 γ + 1) are increasing functions of the risk aversion
coefficient γ; moreover 0.5 eγ = 1 for γ = ln 2, 0.1 (e2 γ + 1) = 1 for γ = 1

2 ln 9, and

0.1 (e2 γ + 1) = 0.5 eγ for γ = ln
(

5+
√

21
2

)
.
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So:

For γ < ln 2 it holds ρ
(γ)
(B) > ρ

(γ)
(N)1 > ρ

(γ)
(N)2, ρ(γ) = ρ

(γ)
(B) = 1

and the right Perron eigenvector x(γ) of Q(γ) is strictly positive.
For γ ∈

(
ln 2, 1

2 ln 9)
)

it holds ρ
(γ)
(N)1 > ρ

(γ)
(B) > ρ

(γ)
(N)2, ρ(γ) = ρ

(γ)
(N)1 = 0.5eγ

and the right Perron eigenvector x(γ) of Q(γ) is not strictly positive.

For γ ∈
(

1
2 ln 9, ln

(
5+
√

21
2

))
it holds ρ

(γ)
(N)1 > ρ

(γ)
(N)2 > ρ

(γ)
(B), ρ(γ) = ρ

(γ)
(N)1 = 0.5eγ

and the right Perron eigenvector x(γ) of Q(γ) is not strictly positive.

For γ > ln( 5+
√

21
2 ) it holds ρ

(γ)
(N)2 > ρ

(γ)
(N)1 > ρ

(γ)
(B), ρ(γ) = ρ

(γ)
(N)2 = 0.1(e2γ + 1)

and the right Perron eigenvector x(γ) of Q(γ) is not strictly positive.
(The Perron eigenvectors are explicitly calculated− see the footnote.)

Hence2 for the growth rate and average rewards we have:

If γ < ln 2 then the growth rate Gi(γ) = 1 and average reward Ji(γ) = 0 for an
arbitrary starting state i.

For γ ∈
(
ln 2, 1

2 ln 9
)

the growth rate Gi(γ) = 1 and average reward
Ji(γ) = 0 for starting states i = 3, 4, 5, 6. If the chain starts in state i = 1, 2
then the growth rate Gi(γ) = 0.5 eγ and average reward Ji(γ) = 1− 1

γ ln 2.

For γ ∈
(

1
2 ln 9, ln

(
5+
√

21
2

))
the growth rate Gi(γ) = 1 and average reward

Ji(γ) = 0 only for starting states i = 5, 6. If the chain starts in states i = 3, 4
then the growth rate Gi(γ) = 0.1 (e2γ + 1) and average reward
Ji(γ) = 1

γ ln[0.1 (e2γ + 1)]. If the chain starts in state i = 1, 2
then the growth rate Gi(γ) = 0.5 eγ and average reward Ji(γ) = 1− 1

γ ln 2.

If γ > ln
(

5+
√

21
2

)
the growth rate Gi(γ) = 1 and average reward Ji(γ) = 0

only for starting states i = 5, 6. However, if the chain starts in state i = 1, 2, 3, 4
then the growth rate Gi(γ) = 0.1 (e2γ + 1) and average reward
Ji(γ) = 1

γ ln[0.1 (e2γ + 1)].

5. SIMPLE MODELS WITH MINIMAL COSTS

In this section we show that the results of Section 3 can be easily extended to
risk-sensitive Markov decision chains where instead of transition rates we consider
transition costs cij(a) and our aim is to minimizes the growth rates and the corre-
sponding average costs.

In parallel to Assumption 3.1 we make
2After some algebra we obtain for the right Perron eigenvectors

If γ < ln 2 then x(γ) =
h
0.25 17−e2γ

(1−0.5eγ)(9−e2γ)
0.25 17−e2γ

(1−0.5eγ)(9−e2γ)
8

9−e2γ
8

9−e2γ 1 1
iT

;

If γ ∈
`
ln 2, 1

2
ln 9
´

then x(γ) = [1 1 0 0 0 0]T;

If γ ∈
“

1
2

ln 9, ln( 5+
√

21
2

)
”

then x(γ) = [1 1 0 0 0 0]T;

If γ > ln
“

5+
√

21
2

”
then x(γ) =

h
1

0.4(e2γ+1)−2eγ
1

0.4(e2γ+1)−2eγ
1 1 0 0

iT
.
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Assumption 5.1. There exists ρ̂(γ) ≡ ρ(γ)(f̂) and x̂(γ) ≡ x(γ)(f̂) > 0 (unique
up to a multiplicative constant) such that (for a given value of the risk aversion
coefficient γ)

ρ̂(γ) x̂(γ) = min
f∈F
{Q(γ)(f) · x̂(γ)} = Q(γ)(f̂) · x̂(γ) (5.1)

such that on using the matrix decomposition according to (2.9), i. e., on writing

Q(γ)(f̂) =

[
Q

(γ)
(NN)(f̂) Q

(γ)
(NB)(f̂)

0 Q
(γ)
(BB)(f̂)

]
(5.2)

where Q(γ)
(BB)(f̂) is the “biggest” diagonal class with spectral radius ρ(γ)(f̂) among

all Q(γ)(f)’s fulfilling (5.1).

Remark. Of course, a sufficient condition for existence of the matrix Q(γ)(f̂)
fulfilling condition (5.1) is the existence of x(γ)(f) > 0 for each f ∈ F . As it is
shown in the Appendix using e. g. policy iterations in a finite number of steps we
can find f̂ ∈ F such that ρ(γ)(f̂) ≡ ρ̂(γ) is the minimal possible eigenvalue of Q(γ)(f)
over all f ∈ F , and

Q(γ)(f) · x(γ)(f̂) ≥ min
f∈F
{Q(γ)(f) · x(γ)(f̂)}

= Q(γ)(f̂) · x(γ)(f̂) = ρ(γ)(f̂)x(γ)(f̂), with x(γ)(f̂) > 0. (5.3)

Theorem 5.1. If condition (5.1) holds then for a given value of the risk aversion
coefficient γ there exist numbers β(γ)

1 > β
(γ)
2 > 0 such that

β
(γ)
1 x(γ)(f̂) ≤ (ρ̂(γ))−n

n−1∏

k=0

Q(γ)(fk) · e ≤ β(γ)
2 x(γ)(f̂) (5.4)

for any policy π = (fk) minimizing the growth of Uπ(γ, n) for n = 0, 1, . . . .
In addition, (5.4) is also fulfilled for stationary policy π̂ ∼ (f̂).

Theorem 5.1 can be rephrased in words as

Corollary 5.2. Under condition (5.1) if policy π = (fn) minimizing Uπ(γ, n) is
followed, the growth rate of each element of Uπ(γ, n) =

∏n−1
k=0 Q

(γ)(fk) · e is the
same and equals ρ̂(γ). Moreover, stationary policy π̂ ∼ (f̂) also minimizes the growth
rate.

Denoting elements of x(γ)(f̂) > 0 by x(γ)
j (f) (for j = 1, . . . , N) and elements of an

N×N matrix Q(γ)(f) by q(γ)
ij (fi) (recall that by (1.10) q(γ)

ij (·) = pij(·) ·eγrij(·)), (5.1)
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can be also written in alternative forms for g(f) := γ−1 ln (ρ(γ)(f)) and wj(f) :=
γ−1 ln(x(γ)

j (f)) (for j = 1, . . . , N) as the following set of (nonlinear) equations:

eγ (g(f̂)+wi(f̂)) = min
a∈Ai





∑

j∈I
pij(a) · eγ (rij(a)+wj(f̂))



 , for i = 1, . . . , N, (5.5)

called γ-average cost optimality equation.

In the multiplicative form (5.5) takes on the form:

ρ(γ)(f̂)x(γ)
i (f̂) = min

a∈Ai





∑

j∈I
pij(a) · eγrij · x(γ)

j (f̂)



 , for i = 1, . . . , N. (5.6)

Observe that the solution to (5.5), resp. (5.6), i. e. g(f̂), wi(f̂), resp. ρ(γ)(f̂), x(γ)
i (f̂)

is unique up to an additive constant (added to wi(f̂)’s), resp. multiplicative constant
(applied to x(γ)

i (f̂)’s).

Using the above facts Corollary 5.2 can be formulated as

Theorem 5.3. If condition (5.1) holds then for any policy π = (fn) the asymptot-
ical mean value Jπi (γ, 0) is bounded from below by g(f̂) := γ−1 ln (ρ(γ)(f̂)). More-
over, stationary policy π̂ ∼ (f̂) yields the minimal asymptotical mean value Jπi (γ, 0)
that is independent of the starting state i ∈ I and equal to g(f̂) := γ−1 ln (ρ(γ)(f̂)).

6. CONCLUSIONS

The paper, inspired by the work of R. Cavazos-Cadena and D. Hernández-Hernández
[9, 10], presents a complete characterization of policies maximizing growth rates and
the mean values of the associated certainty equivalents over an infinite time horizon
in risk-sensitive Markov decision chains with finite state and action spaces.

The study of the type of dynamic programming problem was initiated by Bellman
in [1, 2]. For an “easy case” when the underlying Markov chain contains a single
class of recurrent state and no transient states (i. e. all states are communicating)
and the transition probability matrix P (f) is irreducible for any f ∈ F} also the
nonnegative matrices Q(γ)(f)’s obtained from the transition probability matrices
P (f)’s must be irreducible. Then for each Q(γ)(f) with f ∈ F there exists strictly
positive (right or left) Perron eigenvector and using policy iterations we can find
{f̂ ∈ F} such that (5.1) or (5.3) holds. Then for each f ∈ F the growth rate of
Q(γ)(f) and also the corresponding values of certainty equivalents are independent
of the starting state (cf. [12, 16]).

Moreover, these results can also be extended to models with transient states. As
we have shown in case that there exists strictly positive right Perron eigenvector the
growth rate of Q(γ)(f) and also the corresponding values of certainty equivalents are
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still independent of the starting state. This holds both maximal or minimal growth
rates and maximal or minimal values of certainty equivalents.

Unfortunately, in the general case no strictly positive right Perron eigenvector
need not exist. In this case, if we maximize the growth rates and also the corre-
sponding values of certainty equivalents the block-triangular decomposition of the
collection of nonnegative matrices {Qγ(f), f ∈ F} may be very helpful. For details
see [15, 17, 18, 19, 20] where algorithmic procedures for finding block-triangular
decomposition of the matrix set {Q(γ)(f), f ∈ F} fulfilling conditions (4.6) – (4.8)
were suggested. This approach is a bit technical, but as we have shown, it enables
to identify subsets of starting states with the maximal growth rate of Qγ(f) and
also maximal values of certainty equivalents. In addition, in an early paper Mandl
[14] investigates convergence radius (i. e. the reciprocal value of the growth rate) of
nonhomogeneous products of a collection of (reducible) nonnegative matrices arising
in dynamic programming using different methods of ours.

Problems of this type began again very popular in the last ten years (see e. g.
[4] – [10]), however, there were not intensively studied in connection with nonnegative
matrices.

A companion problem of finding policies that minimize the growth rates and also
the corresponding values of certainty equivalents for the risk-sensitive Markov control
processes with reducible transition probability matrices is under current research.

APPENDIX: ON A POLICY ITERATION METHOD

For the sake of completeness we present policy iteration algorithm for finding a
matrix with minimal possible eigenvalue in the class of nonnegative matrices with
strictly positive (right) Perron eigenvectors along with its concise proof. For the
irreducible case (guaranteeing existence of a strictly positive Perron eigenvectors)
the algorithm along with its proof is strictly similar to the procedure suggested in
Howard and Matheson [12] for finding a matrix with maximal positive eigenvalue (it
suffices to change min to max). However, some extensions are necessary for handling
the case with reducible matrices possessing strictly positive right eigenvectors. For
the sake of simplicity we shall omit the superscript (γ).

Algorithm A.

Step 0. Select matrix Q(f (0)) with f (0) ∈ F such that the row sums are minimal,
i. e., it holds Q(f (0)) · e ≤ Q(f) · e for any f ∈ F .

Step 1. For the matrix Q(f (k)) with f (k) ∈ F , k = 0, 1, . . . calculate its spectral
radius ρ(f (k)) along with its right Perron eigenvector x(f (k)), cf. (2.8).

Step 2. Construct (if possible) the matrix Q(f (k+1)) with f (k+1) ∈ F , such that

Q(f (k+1)) · x(f (k)) < ρ(f (k))x(f (k)) = Q(f (k)) · x(f (k)) (A.1)

(i. e., a strict inequality holds at least for one i ∈ I).
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Step 3. If such a matrix Q(f (k+1)) exists, then set Q(f (k+1)) := Q(f (k)) and
repeat Step 1, else set Q̂ := Q(f (k)), f̂ := f (k) and stop.

Theorem A. The sequence of spectral radii ρ(f (k)) generated by Algorithm A is
non-increasing (i. e. ρ(f (k+1) ≤ ρ(f (k))), resp. decreasing ifQ(f (k+1)) is irreducible,
and the sequence Q(f (k)) converges monotonously to the matrix Q̂ = Q(f̂) such
that

Q(f) · x(f̂) ≥ ρ(f̂)x(f̂) = Q(f̂) · x(f̂), with x(f̂) > 0 (A.2)

ρ(f) ≥ ρ(f̂) ≡ ρ̂ for all f ∈ F . (A.3)

P r o o f . Employing policy iterations in accordance with Algorithm A we are able
to show that

ρ(f (k+1)) ≤ ρ(f (k)) for k = 0, 1, . . . (A.4)

ρ(f (k+1)) = ρ(f (k))⇒ x(f (k+1)) ≤ x(f (k)) with (A.5)

xi(f (k+1)) = xi(f (k)) for all i ∈ I pertaining to any basic class of Q(f (k+1)).

To this end observe that by (2.8)

ρ(f (k+1))x(f (k+1))− ρ(f (k))x(f (k)) = Q(f (k+1)) · x(f (k+1))−Q(f (k)) · x(f (k))

and after some algebra we conclude that
[
ρ(f (k+1))− ρ(f (k))

]
· x(f (k)) + ρ(f (k+1))

[
x(f (k+1))− x(f (k))

]

= Q(f (k+1)) ·
[
x(f (k+1))− x(f (k))

]
+

[
Q(f (k+1))−Q(f (k))

]
· x(f (k)). (A.6)

On premultiplying (A.6) by the left Perron eigenvector y(f (k+1)) ≥ 0 and recalling
that by (A.1)

ϕ(f (k+1), f (k)) :=
[
Q(f (k+1))−Q(f (k))

]
· x(f (k)) < 0 (A.7)

we immediately conclude that by (2.7) also

[ρ(f (k+1))− ρ(f (k))]y(f (k+1)) · x(f (k+1)) = y(f (k+1)) ·ϕ(f (k+1), f (k)) ≤ 0 (A.8)

implying ρ(f (k+1)) ≤ ρ(f (k)) with ρ(f (k+1)) = ρ(f (k)) iff ϕi(f (k+1), f (k)) = 0
for all i ∈ I pertaining to any basic class of Q(f (k+1)).

In particular, for z(f (k+1)) := x(f (k+1))−x(f (k)) in case that ρ(f (k+1)) = ρ(f (k))
Eq. (A.6) can also written as

ρ(f (k))z(f (k+1)) = Q(f (k+1)) · z(f (k+1)) +ϕ(f (k+1), f (k)). (A.9)
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If we decompose Q(f (k+1)) according to (2.9) and apply this decomposition to
(A.9)we easily verify that x(B)(f (k+1)) = x(B)(f (k)) and ϕ(B)(f (k+1), f (k)) = 0.
Then by (A.9) we have

ρ(f (k+1)) z(N)(f (k+1)) = Q(NN)(f
(k+1)) · z(N)(f (k+1)) +ϕ(N)(f

(k+1), f (k))

=⇒ z(N)(f (k+1)) = (ρ(f (k+1)))−1[I − (ρ(f (k+1)))−1 ·Q(NN)(f
(k+1))]−1 ·

ϕ(N)(f
(k+1), f (k)) < 0 (A.10)

and x(f (n+1)) < x(f (n)); hence the algorithm cannot cycle.

Since the set F of decision vectors is finite, Algorithm A terminates in a finite
number of steps. 2
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