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PARETO OPTIMALITY
IN THE KIDNEY EXCHANGE PROBLEM

Viera Borbel’ová and Kataŕına Cechlárová

To overcome the shortage of cadaveric kidneys available for transplantation, several
countries organize systematic kidney exchange programs. The kidney exchange problem can
be modelled as a cooperative game between incompatible patient-donor pairs whose solu-
tions are permutations of players representing cyclic donations. We show that the problems
to decide whether a given permutation is not (weakly) Pareto optimal are NP-complete.
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1. INTRODUCTION

The most effective currently known treatment for endstage renal failure is a kidney
transplantation. The supply of cadaveric kidneys is insufficient for the fast growing
demand. Fortunately, kidneys from living donors can be used, as a person can
live with just one of his/her two kidneys. Improvements of operations techniques,
which minimize the risk for a living donor and better survival rates of live-donor
kidneys really lead to an increase of living donations. Usually, a donor is a genetic
or an emotional relative of a patient. Yet not rarely, even when the donor’s kidney
is transplantable, it cannot be donated to the intended recipient because of ABO
blood type incompatibility or a positive crossmatch (preformed antibodies) and the
willing donor is lost. Therefore several countries or transplantcentres have started
systematic kidney exchange programs, see their descriptions e. g. in [18, 19, 24, 25].

Although in literature indirect exchanges have also been studied [21, 29], in this
paper we consider only direct exchanges, i. e. a donor donates only when his/her
intended recipient receives a kidney from another living donor. In this case, the pool
of patient-donor pairs is partitioned into disjoint cycles that represent the donations,
e. g. cycle A − B − C − A means that patient A receives the kidney of donor B,
patient B the kidney of donor C and patient C of donor A.

In addition to various medical, ethical or legal problems, kidney exchange posed
a lot of questions connected with the formulation of a suitable model, choice of
optimality criteria etc. As the number of patients waiting for kidney transplantation
is very high (the waiting list of the United Network for Organ Sharing in the U. S. A.



374 V. BORBEL’OVÁ AND K. CECHLÁROVÁ

currently registers more than 70 000 candidates [27]), several authors studied the
theoretical efficiency as well as practical performance of used algorithms on simulated
or real data, see e. g. [3, 18, 21, 24, 25].

The kidney exchange problem is usually represented by a directed graph, whose
vertices correspond to patient-donor pairs and there is a directed arc from vertex
v to vertex u if the patient corresponding to vertex v can accept the kidney from
the donor corresponding to vertex u. An exchange is a permutation π of vertices,
on understanding that a patient in vertex v receives the kidney from vertex π(v).
If a vertex is on a cycle of length 1 in this permutation, i. e. if π(v) = v, patient
v receives no kidney. Usually a social welfare maximizing exchange is sought, i. e.
one that finds a kidney for a maximum number of patients, or one that maximizes
the sum of utilities derived from obtaining kidneys according to this exchange [3].
Further, in the existing kidney exchange programs usually all the transplantations
on an exchange cycle are performed simultaneously to avoid the danger that one of
the donors might withdraw his commitment as soon as his/her intended recipient
already received a transplantation. So the longer the cycle, the greater the logistical
complications and danger of the exchange to fail. Therefore, the length of exchange
cycles is usually a priori restricted (most often to 2) [22].

However, the social welfare criteria might be in conflict with the respect for
patients’ autonomy and their individual optimality criteria, so losses in efficiency
might occur [29]. Therefore game-theoretical approaches have also been applied to
kidney exchanges. In this paper we follow the model suggested in [8]. Here, the
vertices of the exchange digraph are endowed with preferences over exchanges that
combine the preferences over kidneys with the preferences over cycle lengths.

In the resulting ‘kidney exchange game’, computational complexity of the (weak)
core has been intensively studied and several NP-completeness or even inapprox-
imability results have been obtained [4, 9, 16]. In this paper we concentrate on
(weak) Pareto optimal exchanges. Computational complexity of Pareto optimality
in related problems, namely in the house allocation and roommates problem have
been studied e. g. in [1] and [2]. For the kidney exchange game we show that even if
it is quite easy to find a Pareto optimal exchange in the case with strict preferences
of players over kidneys and a weakly Pareto optimal exchange in any case, it is an
NP-complete problem to decide whether a given permutation is (weakly) Pareto op-
timal, and this holds in the case with strict preferences as well as in the case when
all compatible kidneys are considered equally good.

Let us notice here, that a similar situation has been discovered for other coop-
erative games too. As examples let us mention at least the linear production, flow
and minimum-cost spanning tree games, where polynomial algorithms for finding a
core element exist [13, 17, 20], but testing whether a given imputation in not in the
core is NP-hard [10, 11].

Finally, it may be argued that our model is not suitable for kidney exchanges,
as the risk involved in longer cycles is so high, that patients would rather give up a
slightly better kidney and prefer to participate in an exchange cycle of length just
two. However, let us notice that the proposed model can be used in the context
of residence exchange fairs in Beijing [28] or for other barter exchange markets (for
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DVDs, books, holiday houses or even shoes) referred to in [3].
The organisation of the paper is as follows. In Section 2 the kidney exchange

game is formulated together with the studied solution concepts and results about
the existence and finding of optimal permutations are reviewed. In Section 3 we
concentrate on optimality testing and prove our NP-completeness results.

2. THE KIDNEY EXCHANGE GAME AND OPTIMAL PERMUTATIONS

The kidney exchange problem is represented by a finite simple digraph G = (V,A)
where each vertex represents a patient-donor pair (in general, a patient can have
several donors, but this assumption can easily be dealt with). Loops are not allowed
in G as they correspond to patients who have their own compatible donor and these
usually do not take part in a kidney exchange program. An arc (v, u) ∈ A if patient
v can accept the kidney from donor u; we say that vertex u is acceptable for v.
Moreover, we suppose that each vertex v has a linear ordering ¹v of the acceptable
vertices, meaning that patient v orders compatible kidneys from the medically most
suitable one to the worst one.

If u ¹v w, we say that v prefers u to w. If u ¹v w and w ¹v u, then v is
indifferent between u and w, written u ∼v w. If u ¹v w but not w ¹v u, then v
strictly prefers u to w, written u ≺v w.

There are two extreme cases – the case with strict preferences where no indiffer-
ences in the preferences of vertices are allowed, and dichotomous preferences where
each vertex is indifferent between all acceptable vertices.

Definition 1. An instance of the kidney exchange game (KE for short) is a triple
Γ = (V,G,O), where V is the set of patient-donor pairs (players), G = (V,A) is a
digraph and O = {¹v, v ∈ V }.

Definition 2. An exchange in a KE game Γ = (V,G,O) is a permutation π of V
such that v 6= π(v) implies (v, π(v)) ∈ A for each v ∈ V .

We say, that v is uncovered by permutation π iff π(v) = v. Otherwise, v is covered
by π. In what follows, Cπ(v) denotes the cycle of π containing v and we represent
a permutation by its cycles.

Further we will define an extension of preferences from vertices to preferences
over permutations which incorporate cycle lengths as well.

Definition 3. Let Γ = (V,G,O) be a KE game, v ∈ V a player, π and σ permu-
tations of V . We say that player v prefers permutation π to permutation σ, written
π ¹v σ, if either

• v is uncovered by both π and σ, or

• v is covered by π and uncovered by σ, or

• v is covered by both π and σ and
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(i) π(v) ≺v σ(v) or

(ii) π(v) ∼v σ(v) and |Cπ(v)| ≤ |Cσ(v)|.

Player v strictly prefers permutation π to permutation σ, written π ≺v σ, if π ¹v σ
but not σ ¹v π.

Note that in the dichotomous case, preferences of players over permutations de-
pend only on the lengths of cycles. More precisely, player v strictly prefers permu-
tation π to permutation σ, if either v is covered in π and uncovered in σ, or if v is
covered both in π and σ, but Cπ(v) is shorter than Cσ(v).

With the players’ preferences over permutations, we can define Pareto optimal
and core permutations.

Definition 4. A coalition S ⊆ V weakly blocks a permutation π if there exists a
permutation σ of S such that each player in S prefers σ to π and at least one player
in S strictly prefers σ to π. Coalition S ⊆ V strongly blocks a permutation π if there
exists a permutation σ of S such that each player in S strictly prefers σ to π.

Definition 5. A permutation π is Pareto optimal for game Γ, π ∈ PO(Γ) for
short, if the grand coalition V does not weakly block π. A permutation π is weakly
Pareto optimal for game Γ, π ∈ WPO(Γ) for short, if the grand coalition V does
not strongly block π.

Definition 6. A permutation π is in the core C(Γ) of game Γ if no coalition
weakly blocks π, and it is in the weak core WC(Γ) of game Γ if no coalition strongly
blocks it.

As each strongly blocking coalition is also weakly blocking, we have

C(Γ) ⊆ WC(Γ) ⊆ WPO(Γ), (1)
C(Γ) ⊆ PO(Γ) ⊆ WPO(Γ) (2)

and the above inclusions can be proper [8].
In the case with strict preferences, the famous Top Trading Cycles algorithm

(TTC for short) [26] can be used. The TTC algorithm was originally proposed
for the house-swapping game where cycle lengths do not influence preferences of
players. The permutation obtained by the TTC algorithm was shown to be in the
core of the KE game in [7], however, only for strict preferences. In the case with
indifferences, unlike in the original house-swapping game, the permutation given by
the TTC algorithm may happen not to be in the core of the KE game, moreover, it
is even NP-complete to decide whether WC(Γ) 6= ∅ and also whether C(Γ) 6= ∅ [6].

According to inclusions (1) – (2), TTC gives also a (weakly) Pareto optimal per-
mutation for a KE game with strict preferences. On the other hand, in [8], it was
argued that PO(Γ) is always nonempty for each KE game Γ irrespective of indif-
ferences. However, even in the case with dichotomous preferences it is NP-hard to
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find a permutation π ∈ PO(Γ) [8] and this implies that finding a permutation in
PO(Γ) is NP-hard also in the general case with indifferences. Unlike this, it is al-
ways possible to find a permutation π ∈ WPO(Γ) in polynomial time: given a KE
game Γ = (V,G,O), take the subgraph G1 of G by including for each vertex v ∈ V
only arcs (v, u) such that {w;w ≺v u} = ∅. As each vertex in G1 has outdegree
at least one, G1 is not acyclic and a shortest cycle C can be found in polynomial
time. Then π = C ∪ {(v), v /∈ C} ∈ WPO(Γ). However, such a permutation may
cover a very small number of vertices. Let us notice here that the problem of finding
a weakly Pareto optimal permutation covering the maximum possible number of
vertices remains open.

3. OPTIMALITY TESTING

In [5], Cechlárová and Hajduková presented a polynomial algorithm for testing
whether a given permutation belongs to the (weak) core of a given KE game for
general preferences. In this paper we show that testing (weak) Pareto optimal-
ity is computationally difficult. We consider the following decision problems: Ke–
nonPO–test and Ke–nonWPO–test ask whether for a given KE game Γ permu-
tation π is not Pareto optimal and not weakly Pareto optimal, respectively. Notice
that both problems belong to the class NP, as when another permutation σ is given,
it can be polynomially verified that each player of the grand coalition (strictly) im-
proves compared to π. We prove that these problems are NP-complete for both
extreme types of preferences – dichotomous and strict.

Theorem 1. Problem Ke-nonPO-test is NP-complete even in the special case
of dichotomous preferences.

P r o o f . To prove the NP-hardness, we will use a polynomial transformation from
the problem Exact 3-cover, shown to be NP-complete in [12]. In Exact 3-cover
a finite set X, |X| = 3q and a family F of three-element subsets of X are given. The
question is whether a subfamily F ′ of F exists such that each element of X belongs
to exactly one set from F ′.

For each instance (X,F) of Exact 3-cover, we construct a KE game Γ =
(V,G,O) with dichotomous preferences and a permutation π.

Suppose that the elements of X are ordered x1, x2, . . . , xn, n = 3q > 3, that
F = {F1, F2, . . . , Fm} and Fi = {x1

i , x
2
i , x

3
i } (not necessarily obeying the order of

elements of X). For each set Fi ∈ F , there will be 9 vertices aki , b
k
i , c

k
i , k = 1, 2, 3

in V and for each element xj ∈ X there will be one vertex xj . The arcs of G are
defined in Figure 1 in the form of incidence lists, where Aj is the set of those aki that
correspond to the occurrence of xj as xki in Fi.

In the obtained KE game, construct permutation

π =
{

(x1, . . . , xn)(aki , b
k
i , c

k
i ), i = 1, . . . ,m, k = 1, 2, 3

}
(3)

and for brevity, call (x1, . . . , xn) the long cycle.
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aki : bki i = 1, . . . ,m; k = 1, 2, 3
bki : xki , c

k
i i = 1, . . . ,m; k = 1, 2, 3

cki : ck+1
i , aki i = 1, . . . ,m; k = 1, 2, 3 (cyclically)

xj : Aj , xj+1 j = 1, . . . , n (cyclically)

Fig. 1. Arcs of G.

We will show, that (X,F) admits an exact 3-cover if and only if permutation
π /∈ PO(Γ).

Suppose that (X,F) admits an exact 3-cover F ′ = {Fi, i ∈ I}. Let us define
permutation σ of V consisting of the following cycles:

(c1i , c
2
i , c

3
i ), (aki , b

k
i , x

k
i ) k = 1, 2, 3, i ∈ I (4)

(aki , b
k
i , c

k
i ) k = 1, 2, 3, i /∈ I, (5)

As F ′ is an exact 3-cover, permutation σ is well defined and |Cσ(v)| = 3 for each
player v ∈ V . Hence each player xj strictly prefers σ to π and other players are
indifferent between σ and π. So permutation π is weakly blocked via σ and therefore
it is not Pareto optimal.

For the other direction, suppose that π /∈ PO(Γ) and σ weakly blocks it. We will
show, that F admits an exact 3-cover.

As π covers each vertex, so does σ. We will moreover show, that σ consists only
of 3-cycles. As G does not contain cycles of length 2, we must have |Cσ(v)| =
|Cπ(v)| = 3 for each player v ∈ V ′ = {aki , bki , cki ; i = 1, . . . ,m; k = 1, 2, 3}. So
vertices in V ′ cannot improve and therefore we must have σ ≺xj π for at least one
vertex xj . Hence xj cannot be on the long cycle. Then necessarily σ(xj) = aki for
some aki ∈ Aj , which implies Cσ(xj) = Cσ(aki ) = (xj , aki , b

k
i ).

If σ(xj) 6= xj+1 for some j, then also Cσ(xj+1) = (xj+1, a
s
r, b

s
r), where xj+1 ∈ Fr

as its sth element. By induction, we get that σ contains only cycles of length 3.
Further, if (aki , b

k
i , x

k
i ) ∈ σ for some i and k, then necessarily Cσ(cki ) = (c1i , c

2
i , c

3
i )

and therefore also (ak+1
i , bk+1

i , xk+1
i ) ∈ σ and (ak+2

i , bk+2
i , xk+2

i ) ∈ σ (superscripts
defined cyclically to be in {1,2,3}). So for each i, either (aki , b

k
i , x

k
i ) ∈ σ for all k or

for none. Hence if we set

I = {i : (aki , b
k
i , x

k
i ) ∈ σ for some k},

then it is immediate that F ′ = {Fi, i ∈ I} is an exact 3-cover of F .

As the above transformation is polynomial, we conclude that problem Ke–nonPO–
test is NP-hard under dichotomous preferences. ¤

Theorem 2. Problem Ke–nonPO–test is NP-complete even in the special case
of strict preferences.
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P r o o f . To prove the NP-hardness, we use exactly the same polynomial trans-
formation from the problem Exact 3-cover as in Theorem 1, but now the orders
of entries in the incidence lists of vertices in Figure 1 define their strict preferences,
with the entries in Aj ordered strictly, but arbitrarily.

The proof is also very similar, we just add some remarks.
When σ is defined by (4) – (5), σ ≺v π not only for players xj , but also for all

players v ∈ {cki , bki ; i ∈ I}, as for them σ(v) ≺v π(v).
For the converse implication, realise that π is the most preferred permutation

for players aki , as π(aki ) is the only acceptable vertex for aki and Cπ(aki ) is shortest
possible. Hence if the grand coalition weakly blocks π via a permutation σ, then
necessarily σ(aki ) = π(aki ) = bki and players aki cannot improve. Further, as Cσ(aki ) =
Cσ(bki ), we have |Cσ(bki )| = 3 for each bki . To have at least one player who strictly
improves, σ must contain at least one cycle of the form (aki , b

k
i , x

k
i ) and the rest of

the proof follows. ¤

Theorem 3. Ke–nonWPO–test is NP-complete even in the special case of di-
chotomous preferences.

P r o o f . We will use a polynomial transformation from the problem Restricted
sat shown to be NP-complete in [15]. In this problem one asks whether a Boolean
formula B in CNF containing n Boolean variables x1, x2, . . . , xn and m clauses
K1,K2, . . . ,Km, such that each variable appears exactly twice nonnegated and ex-
actly twice negated in B is satisfiable.

For each instance B of Restricted sat we construct a KE game Γ = (V,G,O)
with dichotomous preferences and a permutation π.

For each variable xj , j = 1, 2, . . . , n there will be a variable cell Γ(xj) of 8 variable
players x1

j , x
2
j , y

1
j , y

2
j , z

1
j , z

2
j , w

1
j , w

2
j where x1

j (y1
j ) corresponds to the first and x2

j (y2
j )

to the second occurrence of literal xj (xj). Players x1
j , x

2
j , y

1
j , y

2
j will be called proper

variable players.
For each clause Kk = {p1

k, p
2
k, . . . , p

ik
k }, k = 1, 2, . . . ,m (without loss of generality

we suppose ik > 1 for each k ) there is a clause cell Γ(Kk) consisting of 4ik clause
players pik, t

i
k, q

i
k, r

i
k, i = 1, . . . , ik. Player pik corresponds to the ith entry of Kk and

will be called a proper clause player, i = 1, . . . , ik.
Hence game Γ consists of 24n players; there are 8 variable players for each variable

and 4 clause players for each of 4n literals.
We will use the following notation: for each proper variable player v, c(v) denotes

the proper clause player corresponding to the position of the corresponding literal
in B; and for each proper clause player c, the corresponding proper variable player
will be denoted by v(c).

The arc set of G is defined in Figure 2 and the construction is illustrated in
Figures 3 and 4. In Figure 4 the notation f(a) and s(a) denotes the first and the
second vertex in the preference list of player a.

The construction will be completed by the definition of permutation π. For each
variable xj , j = 1, . . . , n we put

(x1
j , z

1
j , y

1
j , w

1
j , x

2
j , z

2
j , y

2
j , w

2
j ) ∈ π,
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xij : zij i = 1, 2; j = 1, . . . , n
zij : c(y3−i

j ), yij i = 1, 2; j = 1, . . . , n
yij : wij i = 1, 2; j = 1, . . . , n
wij : c(xij), x

3−i
j i = 1, 2; j = 1, . . . , n

pik : v(pik), rik i = 1, . . . , ik; k = 1, . . . ,m
rik : qik i = 1, . . . , ik; k = 1, . . . ,m
qik : tik i = 1, . . . , ik; k = 1, . . . ,m
tik : ri+1

k , pi+1
k i = 1, . . . , ik; k = 1, . . . ,m; (subscripts defined cyclically)

Fig. 2. Arcs of G.

z
1

j y
1

j

w
1

j

x
2

j

z
2

jy
2

j

w
2

j

x
1

j

c(x1j )

c(y1j )

c(x2j )

c(y2j )

Fig. 3. Variable cell with adjacent inter-cell cycles.

and for each clause Kk, , k = 1, . . . ,m we put

(p1
k, r

1
k, q

1
k, t

1
k, p

2
k, r

2
k, q

2
k, t

2
k, . . . , p

ik
k , r

ik
k , q

ik
k , t

ik
k ) ∈ π.

These cycles will be called perimeter cycles. Notice that perimeter cycles in variable
cells have length 8, while perimeter cycles in clause cells are of length 4ik, k =
1, . . . ,m.

As π covers all players, let us first analyze how all players can be covered by
cycles not longer than in π. It is easy to see that for players of a variable cell Γ(xj)
there are only three possibilities, all players are:

(i) either on the perimeter cycle, or

(ii) in two cycles (xij , z
i
j , y

i
j , w

i
j , c(x

i
j)), i = 1, 2 (let us call them T-cycles), or

(iii) in two cycles (yij , w
i
j , x

3−i
j , z3−i

j , c(yij)), i = 1, 2 called F-cycles.
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p1
k

p2
k

pik

k

r1
k

q1
k

t1
k

r2
k

q2
kqik−1

k

tik−1

k

rik

k

qik

k

tik

k

v(p1
k
)

f(v(p1
k
))s(f(v(p1

k
)))

f(s(f(v(p1
k
))))

Fig. 4. Clause cell with adjacent inter-cell cycles.

As the lengths of the T-cycles and F-cycles are 5, in cases (ii) and (iii) all players
from Γ(xj) are better off than under π. Moreover, as these cycles contain one player
from a clause cell, we will call them proper inter-cell cycles. Notice that any other
cycle involving players from several different cells has length greater than 8, so only
proper inter-cell cycles could be used when we do not want to make anybody worse
off.

Let us now look at a clause cell Γ(Kk). If its non-proper clause players are to
be covered without making anybody worse off, they must be on cycles that use
only arcs within Γ(Kk). Otherwise at least two variable cells have to be crossed,
getting the cycle length greater than 8, which will necessarily make some proper
variable player worse off. Hence the only possibility to cover all players from Γ(Kk)
is either by the perimeter cycle, or by having some proper clause players pik, i ∈ I
in their corresponding proper inter-cell cycles and the remaining players of Γ(Kk)
on the common cycle which uses the perimeter arcs and the corresponding shortcuts
(ti−1
k , rik), i ∈ I. In the latter case all players of Γ(Kk) simultaneously strictly

improve compared to π.
Now suppose that B is satisfied by some Boolean valuation. Create a permutation

σ as follows: cover each variable cell Γ(xj) for which xj is true by two T-cycles
and by two F-cycles if xj is false. As B is satisfied, each clause cell is crossed
by at least one proper inter-cell cycle. Let the remaining players of each clause



382 V. BORBEL’OVÁ AND K. CECHLÁROVÁ

cell be on the common cycle with corresponding shortcuts. It is easy to see that
2 ≤ |Cσ(v)| < |Cπ(v)| for each v ∈ V , so σ ≺v π for each v ∈ V .

For the other direction, suppose that B is not satisfiable, but all players have
strictly improved. Then all variable players are on T-cycles or F-cycles and each
clause cell is crossed by at least one proper inter-cell cycle.

Let us now define a Boolean valuation as follows: for each used T-cycle assign the
underlying variable true and for each used F-cycle make the corresponding variable
false. Clearly such a valuation is not contradictory and it is easy to see that it
satisfies B, a contradiction.

Hence B is satisfiable if and only if π /∈WPO. As the construction is polynomial,
we conclude that Ke–nonWPO–test is NP-complete. ¤

Theorem 4. Ke–nonWPO–test problem is NP-complete even in the special
case of strict preferences.

P r o o f . We will use the same transformation as in Theorem 3 but now we inter-
pret the order of entries in Figure 2 as preferences of players.

The argument is also identical, we just notice that in addition to getting shorter
cycles, each player v, for whom σ(v) 6= π(v), strictly prefers σ(v) to π(v). ¤

4. CONCLUSION

The exchange game studied in this paper turns out to be a computationally and
structurally interesting cooperative game. It is applicable not only in the context of
kidney exchanges, but also in other barter markets, where it can be assumed that
participants care about the lengths of exchange cycles. Let us stress here, that in the
case of strict preferences a core (and hence also Pareto-optimal) permutation can
always be found. Our results indicate some limits when trying to find alternative
permutations that could perhaps be more favourable by some criteria. Moreover, the
studied model puts a great emphasis on avoiding any blocking, even by coalitions
containing a great number of players. It would be interesting to look for permutations
which could only be improved upon by cooperation of many players, as in this case
their coordination may be critical and so the real danger of disrupting the current
exchange will not be so big.

Note added in the proof: On April 9, 2008, the news was published about
the world’s first simultaneous cyclic exchange of length 6, performed at the John
Hopkins Hospital in Maryland, U.S.A., see

http://news.bbc.co.uk/go/pr/fr/-/hi/health/7338437.stm

ACKNOWLEDGEMENT

This work was supported by the VEGA grants 1/3001/06, 1/3128/06, VVGS grant 36/2006
and Science and Technology Assistance Agency contract No. APVT-20-004104.

(Received June 21, 2007.)



Pareto Optimality in the Kidney Exchange Problem 383

R E F E R E N C E S
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[6] K. Cechlárová and J. Hajduková: Computational complexity of stable partitions with
B-preferences. Internat. J. Game Theory 31 (2003), 353–364.

[7] K. Cechlárová and A. Romero Medina: Stability in coalition formation games. Inter-
nat. J. Game Theory 29 (2001), 487–494.
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