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KYBERNET IK A — VOLUME 4 4 ( 2 0 0 8 ) , NU MB ER 4 , P AG E S 5 7 1 – 5 8 4

GLOBAL SYNCHRONIZATION OF CHAOTIC LUR’E
SYSTEMS VIA REPLACING VARIABLES CONTROL

Xiao-Feng Wu, Yi Zhao and Mu-Hong Wang

Finding sufficient criteria for synchronization of master-slave chaotic systems by replac-
ing variables control has been an open problem in the field of chaos control. This paper
presents some recent works on the subject, with emphasis on chaos synchronization of both
identical and parametrically mismatched Lur’e systems by replacing variables control. The
synchronization schemes are formally constructed and two classes of sufficient criteria for
global synchronization, linear matrix inequality criterion and frequency-domain criterion,
are reviewed and discussed.
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1. INTRODUCTION

In 1990, Pecora and Carroll [4, 5] published their pioneering work on synchroniza-
tion of chaotic systems by replacing variables control. Since then, synchronization
of chaotic systems has received considerable attention and has been studied in sev-
eral master-slave synchronization schemes related to various control techniques, e. g.
feedback control [3, 7 – 10, 12, 14], and impulsive control [11, 18], etc. Many sufficient
criteria for chaos synchronization have been proposed over the last decade.

However, sufficient criterion for chaos synchronization by replacing variables con-
trol has received less attention and theoretical advances on the subject has seldom
been reported. A synchronization criterion used in some references [4, 5] is to ana-
lyze the negativity of conditional Lyapunov exponents of the slave system. However,
this criterion is only necessary but not sufficient for synchronization [12].

This paper summarizes our recent works [13, 15, 16] on the master-slave Lur’e
chaos synchronization by replacing variables control. Both identical and parametri-
cally mismatched synchronization schemes are introduced and linked to the absolute
stability of the corresponding error systems. Two classes of sufficient global synchro-
nization criteria, linear matrix inequality criterion and frequency-domain criterion,
are reviewed and discussed. Chua’s circuits are used as an example to show the
effectiveness of the criteria.

The rest of the paper is organized as follows. In the next section, basic theory
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on the absolute stability is introduced. Chaos synchronization for identical M-S
Lur’e systems and the one with parameter mismatch is discussed in Section 3 and
Section 4, respectively. Some synchronization results for Chua’s circuits are given
in Section 6. The final section presents some concluding remarks.

2. DEFINITIONS AND LEMMAS

Consider the following Lur’e system:

ẏ = Ay + Bf(Cy), (1)

where y ∈ Rn, f : Rnh → Rnh , A ∈ Rn×n, B ∈ Rn×nh , C ∈ Rnh×n.

Definition 1. For 0 < µ < +∞, f = {f1, f2, · · · , fnh
} is said to be belonging to

sector [0, µ], or f ∈ Fµ, if for i = 1, 2, . . . , nh,

fi ∈ Fµ = {ϕ ∈ R : ϕ continues and ϕ(0) = 0, 0 ≤ σϕ(σ) ≤ µσ2, σ 6= 0}. (2)

Definition 2. System (1) is said to be absolutely stable in the function set Fµ, if
for any f ∈ Fµ, the zero solution of the system is globally asymptotically stable.

Definition 3. System (1) is said to be absolutely non-asymptotically stable in Fµ,
if for any f ∈ Fµ, y(t) 6→ 0 as t →∞.

Definition 4. System (1) is called a principal case, if all the eigenvalues of the
matrix A have negative real parts, i. e. Re λ(A) < 0. While a particular case occurs
in system (1) if apart from some eigenvalues having negative real parts, there are
also some eigenvalues with zero real parts in A. When A has only a simple zero
eigenvalue and the rest have negative real parts, system (1) is called the simplest
particular case.

Definition 5. The complex-valued function T (z) belongs to a class of strictly
positive real functions (T (z) ∈ {SPR}) if for real values of z, this function is real,
and if Re z ≥ 0 then this function always has ReT (z) > 0.

Lemma 1 (Aizerman and Gantmacher [1]) The complex-valued function T (z) ∈
{SPR} if and only if the following conditions are satisfied:

(i) For real values of z, the function T (z) takes on real values only.

(ii) The function T (z) has no poles in Re z > 0.

(iii) On the imaginary axis, the function T (z) can have only simple poles with
positive residues.

(iv) The inequality ReT (jω) > 0 holds for ∀ω ∈ R ∪ {∞}.
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Lemma 2. (Meyer, Kalman and Yacubovic [17]) Suppose A ∈ Rn×n, B ∈ Rn, F ∈
Rn, Re λ(A) < 0, and the constant r > 0. Then, the following matrix equations for
real symmetric matrices P ∈ Rn×n and D ∈ Rn×n, and vector q ∈ Rn,

{
PA + AT P = −qqT −D,

PB − F =
√

rq

have solutions P > 0 and D > 0 if and only if

T (z) = r + 2FT A(z)−1B ∈ {SPR},

where A(z) = zI −A.

3. CHAOS SYNCHRONIZATION
FOR IDENTICAL MASTER–SLAVE LUR’E SYSTEMS

3.1. Synchronization scheme

Consider the following master Lur’e system:

M : ẋ = Ax + Bσ(Cx), (3)

where the state vector x ∈ Rn is divided into (xd, xr)T with the driving (control)
vector xd ∈ Rnd and the responsive vector xr ∈ Rnr , nd + nr = n. The nonlinear
function σ(·) : Rnh → Rnh belongs to sector [0, k]. The system matrix is

A =
(

A11 A12

A21 A22

)
∈ Rn×n,

with A11 ∈ Rnd×nd , A12 ∈ Rnd×nr , A21 ∈ Rnr×nd , A22 ∈ Rnr×nr , B = (Bd, Br)T ∈
Rn×nh , Bd ∈ Rnd×nh , Br ∈ Rnr×nh , C = (Cd, Cr) ∈ Rnh×n, Cd ∈ Rnh×nd , Cr ∈
Rnh×nr .

Hence, system (3) can be represented as

M :

{
ẋd = A11xd + A12xr + Bdσ(Cx),

ẋr = A21xd + A22xr + Brσ(Cx).
(4)

Now, assume the signals of the control vector xd can be extracted and used to
control the following identical slave system:

S : ż = Az + Bσ(Cz). (5)

The slave system has a similar form of

S :

{
żd = A11zd + A12zr + Bdσ(Cz),

żr = A21zd + A22zr + Brσ(Cz),
(6)
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where the vectors z, zd and zr are of dimension n, nd and nr, respectively. The slave
system is controlled by replacing variables as follows:

zd(t) = xd(t), ∀ t ≥ 0. (7)

Our aim is to choose the control vector xd such that the responsive subsystem
(xr, zr), for any initial system state (x(0), z(0)), satisfies

lim
t→∞

‖xr(t)− zr(t)‖2 = 0, (8)

where ‖ · ‖2 denotes the Euclidean norm.
Define the error variable er(t) = xr(t) − zr(t). Then, for the synchronization

controller (7), we obtain a dynamical error system,

ėr = A22er(t) + Brη(Crer, Cz), (9)

where the nonlinear function η : Rnh × Rnh → Rnh , and

η(Crer, Cz) = σ(Cx)− σ(Cz) = σ(Crer + Cz)− σ(Cz). (10)

Suppose η belongs to Fk for Crer, 0 < k < ∞. Hence, for i = 1, 2, . . . , nh and
nonzero Cri ∈ Rl×nh ,

0 ≤ Crierη(Crier, Cz) ≤ k(Crier)2, ∀ z. (11)

For a diagonal constant matrix 0 ≤ Λ ∈ Rnh×nh , the following inequality holds:

ηT Λ(η − kCrer) ≤ 0, ∀ er, z. (12)

Since η = 0 if er = 0, er = 0 is an equilibrium point of the error system (9).
Obviously, synchronization in the sense of (8) is equivalent to the global asymptotic
stability of the error system (9) at the equilibrium point er = 0.

Let us further discuss the relations between the absolute stability of the error
system and the synchronization. If the error system (9) is absolutely stable in
Fk, then for any η ∈ Fk, the actual error system is globally asymptotically stable at
er = 0, so the actual M-system (3) and S-system (5) globally synchronize in the sense
of (8). If the error system (9) is absolutely non-asymptotically stable in Fk, then the
error system with an actual η ∈ Fk is either stable, in the Lyapunov sense, under the
condition of the non-asymptotical stability, or is unstable, at er = 0. The unstable
error system implies that the actual system (3) and system (5) don’t synchronize.
The fact that the error system is stable under the condition of the non-asymptotical
stability implies that the actual system (3) and system (5) robustly synchronize, but
don’t synchronize in the sense of (8). Hence, we obtain the relations between the
absolute stability of the error system and the synchronization of the M-S systems as
follows.

Error system (9) is absolutely stable in Fk ⇒ systems (3) and (5) with an actual
η ∈ Fk globally synchronize in the sense of (8).

Error system (9) is absolutely non-asymptotically stable in Fk ⇒ systems (3) and
(5) with an actual η ∈ Fk don’t synchronize in the sense of (8).

Obviously, the reverse of the above propositions doesn’t hold in general.
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3.2. Linear matrix inequality criteria

Using a quadratic Lyapunov function, V (er) = eT
r Per, P = PT > 0, the following

sufficient criteria for global synchronization or non-synchronization can be obtained
by means of Lyapunov’s direct method.

Theorem 1. (Wu, Zhao, and Huang [15], Wu, Zhao and Zhou [16]) If there
exists a constant matrix 0 < P = PT ∈ Rnr×nr and a constant diagonal matrix
0 ≤ Λ ∈ Rnh×nh , such that the following inequalities is satisfied, then systems (3)
and (5) globally synchronize in the sense of (8):

1) Y1 =




AT
22P + PA22 PBr + kCT

r Λ

BT
r P + kΛCr −2Λ


 < 0, (13)

2) Y2 = AT
22P + PA22 + PBrB

T
r P + k2CT

r Cr < 0. (14)

Theorem 2. (Wu, Zhao, and Huang [15]) If there exists a constant matrix
0 < P = PT ∈ Rnr×nr , such that

Y3 = AT
22P + PA22 − PBrB

T
r P − k2CT

r Cr > 0, (15)

then error system (9) is absolutely unstable in Fk, so systems (3) and (5) don’t
synchronize in the sense of (8).

Remark 1. Both criterion (14) and criterion (15) are independent of the matrix
Λ ∈ Rnh×nh .

3.3. Frequency-domain criteria

We now consider Lur’e systems with single non-linearity, i. e. nh = 1. In this case,
the matrix Λ may be replaced by a positive constant β. Using Lemmas 1 and 2,
we can prove that the above LMI criteria are equivalent to the following frequency-
domain criteria.

It is first considered that the error system (9) belongs to the principal case, i. e.
Re λ(A22) < 0. The following frequency-domain criterion is related to the linear
matrix inequality criterion (13).

Theorem 3. (Wu, Zhao and Zhou [16]) Let A1(z) = zI − A22, W1(z) =
= CrA1(z)−1Br, and z be a complex variable. If Re λ(A22) < 0 and

1− k Re W1(jω) > 0, ∀ω ∈ R ∪ {∞}, (16)

then systems (3) and (5) globally synchronize in the sense of (8).
Now, we consider the case that A22 has a simple zero eigenvalue. In this case,

we are not allowed to directly apply Lemma 2 to the error system (9) and must
transform the error system to be an available equivalent system.
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To obtain the equivalent system, we first determine the eigenvector ν0 ∈ Rnr

associated with the zero eigenvalue of A22 by

A22ν0 = 0. (17)

Then, we construct a nonsingular matrix T ∈ Rnr×nr , the last column vector of
which equals ν0.

Make a transform er = Ty, y ∈ Rnr , so as to obtain u = Crer = CrTy. Conse-
quently, we obtain a dynamical system of nr + 1 dimensions as follows:

ẏ = (T−1A22T )y + T−1Brη(u,Cz), (18)
u̇ = (CrA22T )y + CrBrη(u,Cz), (19)

which is equivalent to (9).

By (17), one has

Â22 = T−1A22T =
(

A0 0
a 0

)
∈ Rnr×nr , A0 ∈ R(nr−1)×(nr−1), aT ∈ Rnr−1, (20)

GT = CrA22T = (G0, 0), GT
0 ∈ Rnr−1. (21)

Also, let

B̂r = T−1Br = (BT
0 , b)T ∈ Rnr , B0 ∈ Rnr−1. (22)

ρ = CrBr ∈ R. (23)

Suppose y = (y1, y2, . . . , ynr )
T = (y0, ynr )

T , where y0 = (y1, y2, . . . , ynr−1)T ∈
Rnr−1. Then, an nr-dimensional dynamical system consisting of the first equations
of (18) and equation (19) is obtained as follows:

{
ẏ0 = A0y0 + B0η(u, Cz),

u̇ = G0y0 + ρ η(u,Cz).
(24)

Obviously, system (24) is equivalent to system (9) in stability. When A22 belongs
to the simplest particular case, we have Re λ(A0) < 0. When −A22 belongs to that,
we have Reλ(A0) > 0.

Make a new transform,

ξ =
1
r
(G0A

−1
0 y0 − u) ∈ R, (25)

where
r = G0A

−1
0 B0 − ρ. (26)

It can be proved that if system (24) is globally asymptotically stable, then r 6= 0.
By substituting the variable ξ for the variable u, one has

ξ̇ =
1
r
(G0A

−1
0 ẏ0 − u̇) =

1
r
[G0A

−1
0 (A0y0 + B0η)−G0y0 − ρ η] = η(u, Cz), (27)



Globa Synchronization of Chaotic Lur’e Systems 577

where
u = G0A

−1
0 y0 − rξ. (28)

We obtain a dynamical system of nr dimensions, which is equivalent to system (9)
in stability, as follows:

{
ẏ0 = A0y0 + B0η(u, Cz),

ξ̇ = η(u,Cz).
(29)

To analyze the absolute stability of system (29), we take the following Lyapunov
functional:

V (y0, ξ) = yT
0 P0y0 + α(rξ)2, (30)

where 0 < P0 = PT
0 ∈ R(nr−1)×(nr−1), α > 0, r 6= 0.

Hence, we have the following theorem, using Lyapunov’s direct method.

Theorem 4. (Wu, Zhao and Zhou [16]) Suppose A22 has at most one simple zero
eigenvalue, and the real parts of the rest eigenvalues are not equal to zero. The
parameters A0, G0, B0, ρ and r are defined by (20) – (23) and (26), respectively. If
r = 0, then system (9) is absolutely non-asymptotically stable. If r > 0, and there
exists a constant matrix 0 < P0 = PT

0 ∈ R(nr−1)×(nr−1) and a constant α > 0, such
that

Y4 =




AT
0 P0 + P0A0 P0B0 + (G0A

−1
0 )T ar

BT
0 P0 + αrG0A

−1
0 −2ar

k


 < 0, (31)

then systems (3) and (5) globally synchronize in the sense of (8).
Based on Lemmas 1 and 2, we can give a frequency-domain criterion equivalent

to inequality (31), in the following.

Theorem 5. (Wu, Zhao and Zhou [16]) Let A2(z) = zI − A0, W2(z) =
G0A

−1
0 A2(z)−1B0, z be a complex variable, and A0, G0, B0, ρ and r be defined

by (20) – (23) and (26), respectively. If A22 belongs to the simplest particular case,
r > 0, and

1− k Re W2(jω) > 0, ∀ω ∈ R ∪ {∞}, (32)

then systems (3) and (5) globally synchronize in the sense of (8).

The following frequency-domain criteria are equivalent to the linear matrix in-
equality criterion (14).

Theorem 6. (Wu, Zhao, and Huang [15]) Let

A3(z) = zI −A22 − kBrCr, W3(z) = CrA3(z)−1Br,

A4(z) = zI −A22 + kBrCr, W4(z) = CrA4(z)−1Br,
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and let z be a complex variable. Then, systems (3) and (5) globally synchronize in
the sense of (8), provided that either of the following condition holds:

1) Re λ(A22 + kBrCr) < 0 and 1 + 2k Re W3(jω) > 0, ∀ω ∈ R ∪ {∞}, (33)
2) Re λ(A22 − kBrCr) < 0 and 1− 2k ReW4(jω) > 0, ∀ω ∈ R ∪ {∞}. (34)

According to the non-synchronization criterion (15), we have the following result.

Theorem 7 (Wu, Zhao, and Huang [15]) Let

A5(z) = zI + A22 − kBrCr, W5(z) = CrA5(z)−1Br,

A6(z) = zI + A22 + kBrCr, W6(z) = CrA6(z)−1Br,

and z be a complex variable. Then, systems (3) and (5) don’t synchronize in the
sense of (8), provided that either of the following condition holds:

1) Re λ(kBrCr −A22) < 0 and 1 + 2k Re W5(jω) > 0, ∀ω ∈ R ∪ {∞}, (35)
2) Re λ(−kBrCr −A22) < 0 and 1− 2k ReW6(jω) > 0,∀ω ∈ R ∪ {∞}. (36)

Remark 2. The above frequency domain criteria belong to the algebraic inequal-
ity criteria. So, compared to LMI criterion, these frequency-domain criteria can
conveniently be applied to design the control variable for the synchronization and to
analyze the influence of the system parameters on the synchronization, as in [15, 16].

4. CHAOS SYNCHRONIZATION FOR THE MASTER–SLAVE LUR’E
SYSTEMS WITH PARAMETER MISMATCH

4.1. Synchronization scheme

Consider the master-slave Lur’e systems as follows:

M : ẋ = A′x + B′σ(C ′x), (37)
S : ż = Az + Bσ(Cz), (38)

where it is assumed that there exist parameter mismatch between the two systems,
i. e. ‖A′ − A‖2, ‖B′ − B‖2 and ‖C ′ − C‖2 do not equal zero simultaneously. The
state vectors x, z ∈ Rn are divided into x = (xd, xr)T and z = (zd, zr)T with the
replacing vector xd ∈ Rnd , the replaced vector zd ∈ Rnd , and the responsive vectors
xr, zr ∈ Rnr , nd +nr = n. The nonlinear function σ(·) : Rnh → Rnh is diagonal and
continuous, with σi(·) belonging to sector [0, k], for i = 1, 2, . . . , nh.

The system matrices A′, A ∈ Rn×n are decomposed as

A′ =
(

A′11 A′12
A′21 A′22

)
, A =

(
A11 A12

A21 A22

)
,

with A′11, A11 ∈ Rnd×nd , A′12, A12 ∈ Rnd×nr , A′21, A21 ∈ Rnr×nd , A′22, A22 ∈
Rnr×nr ,
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B′, B ∈ Rn×nh , B′ = (B′d, B
′
r), B = (Bd, Br), B′d, Bd ∈ Rnd×nh , B′r, Br ∈

Rnr×nh , C ′, C ∈ Rnh×n, C ′ = (C ′d, C
′
r), C = (Cd, Cr), C ′d, Cd ∈ Rnh×nd , C ′r, Cr ∈

Rnh×nr .
The coupling between the master and the slave systems is carried out by replacing

variables control zd(t) = xd(t), ∀ t ≥ t0. Hence, the master-slave synchronization
scheme with both parameter mismatch and replacing variables control can be de-
scribed as

M :





ẋd = A′11xd + A′12xr + B′dσ(C ′x),

ẋr = A′21xd + A′22xr + B′rσ(C ′x).

S :





żd = A11zd + A12zr + Bdσ(Cz),

żr = A21zd + A22zr + Brσ(Cz),

Θ : zd(t) = xd(t),

(39)

with a replacing variables controller Θ.
Define the responsive error variable er(t) = xr(t)− zr(t). From scheme (39), we

can obtain a dynamical responsive error system, as

ėr(t) = ẋr(t)− żr(t)

= (A′21 −A21)xd + (A′21 −A21)xr

+ B′rσ(C ′x)−Brσ(Cx) + A22er(t) + Brη(Crer, Cz)

= W (x) + A22er(t) + Brη(Crer, Cz).

(40)

In formula (40),

W (x) = ∆A2x + B′rσ(C ′x)−Brσ(Cx) ∈ Rnr ,

where ∆A2 = (A′21 −A21, A
′
22 −A22) ∈ Rnr×n, and

η(Crer, Cz) = σ(Cx)− σ(Cz) = σ(Crer + Cz)− σ(Cz).

The term W (x) reflects the influence of parameter mismatch between the master
and slave systems on the responsive error system. It has been proved [13] that there
always exists a real constant µ > 0 such that

‖W (x)‖2 ≤ µ‖x‖2, ∀x ∈ Rn, (41)

where the constant µ represents a measure for parameter mismatch between the
master and the slave systems.

Our aim is to choose the replacing vector xd such that ‖er‖2 → 0 as t → ∞.
However, a zero error er(t) can not be achieved for the synchronization scheme with
non-identical master-slave systems. Therefore, a new concept of synchronization,
synchronization with finite L2-gain, is introduced here.
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Definition 6. Synchronization scheme (4) achieves global synchronization with a
finite L2-gain, if for any finite initial states (x(0), z(0)), there exist a real constant
d > 0 and a T ≥ 0 such that

‖xr(t)− zr(t)‖2 = ‖er(t)‖2 ≤ dµ, ∀ t ≥ T. (42)

This definition suggests a new concept of robust synchronization which limits the
synchronization error bound in terms of the measure µ for the parameter mismatch
case, differing from Definitions 1 of Ref. [6] for which the synchronization error bound
is independent of parameter mismatch. Moreover, this definition implies global
synchronization instead of the local synchronization presented in Definitions 1 of
Ref. [6]

In order to derive some sufficient criteria for the global synchronization with finite
L2-gain, the following assumption is needed.

Assumption 1. The trajectory of the master system (37) is bounded, i. e. there
exists a real constant δ > 0 such that for any initial condition x0, there exists a time
T (x0) such that

‖x(t, x0)‖2 ≤ δ, ∀ t ≥ T (x0).

Clearly, this assumption is based on the boundary feature of chaotic attractors [6].

4.2. Linear matrix inequality criteria

Based on a quadratic Lyapunov function, V (er) = eT
r Per, P = PT > 0, we have

the following result.

Theorem 8. (Wu and Wang [13]) If there exists a constant matrix 0 < P = PT ∈
Rnr×nr , a constant diagonal matrix 0 ≤ Λ ∈ Rnr×nr , and a positive real constant α,
such that either of the following inequalities is satisfied, then synchronization scheme
(39) achieves global synchronization with a finite L2-gain, where the synchronization
error bound is

d =
2δλmax(P )

α

√
λmax(P )√
λmin(P )

,

and λmax(P ) and λmin(P ) are the maximum and minimum eigenvalues of the matrix
P , respectively:

1) Y5 =




AT
22P + PA22 + αI PBr + kCT

r Λ

BT
r P + kΛCr −2Λ


 < 0, (43)

2) Y6 = AT
22P + PA22 + αI + PBrB

T
r P + k2CT

r Cr < 0. (44)
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4.3. Frequency-domain criteria

For Lur’e systems with single nonlinearity (i. e. nh = 1 ), the following frequency-
domain criteria for synchronization scheme (39) can be derived from inequalities
(43) and (44) by means of Lemmas 1 and 2.

Theorem 9. (Wu and Wang [13]) Let A7(z) = zI − A22, I ∈ Rnr×nr be a unit
matrix and z be a complex variable. Suppose Re λ(A22) < 0. Then, the inequality
(43) with nh = 1 holds if there exist two positive real constants α and β such that

1− Re W7(jω) > 0, ∀ω ∈ R ∪ {∞}, (45)

where

W7(z) =
(

1
β

G1Br + kCT
r

)T

A7(z)−1Br ∈ R,

and 0 < G1 = GT
1 ∈ Rnr×nr satisfies

AT
22G1 + G1A22 = −αI. (46)

Theorem 10. (Wu and Wang [13]) Let Ar = A22−kBrCr, A8(z) = zI−Ar, and
z be a complex variable. Suppose Reλ(Ar) < 0. Then, the matrix inequality (44)
with nh = 1 holds if there exists a constant α > 0 such that

1− 2Re W8(jω) > 0, ∀ω ∈ R ∪ {∞}, (47)

where
W8(z) = (G2Br + kCT

r )T A8(z)−1Br,

and
AT

r G2 + G2Ar = −αI. (48)

5. AN EXAMPLE: CHUA’S CIRCUITS

Generally speaking, not all replacing variables can make the master-slave Lur’e sys-
tems synchronize in the sense of (8) or (42). This is because the choice of xd de-
termines the system matrices A22, Br and Cr in the error system (9), or matrices
(A′22, A22), (B′r, Br) ,(C ′r, Cr) and vector W (x) in the error system (40). Hence, de-
signing suitable replacing variables is an important task for synchronization schemes.

A method to design the replacing variables is to minimize the dimension nd of the
replacing variables such that some obtained synchronization criteria can be satisfied.

Another work related to synchronization is how to determine the ranges of the sys-
tem parameters, in which the master-slave Lur’e systems coupled by the designed
replacing variables achieve global synchronization or non-synchronization. In the
following, we give some results for synchronization of master-slave Chua’s circuits
coupled by a single replacing variable [13, 16].
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Consider the identical M-S Chua’s circuits:




ẋ1 = a(x2 −m1x1)− a(m0 −m1)σ(x1),

ẋ2 = x1 − x2 + x3,

ẋ3 = −bx2,





ż1 = a(z2 −m1z1)− a(m0 −m1)σ(z1),

ż2 = z1 − z2 + z3,

ż3 = −bz2,

where a ≥ 0, b ≥ 0, the nonlinear function σ(x) = 1
2 (|x + d| − |x − d|) belongs to

sector [0, 1].

Using frequency-domain criteria (16) and (32), we can obtain the parameter
ranges corresponding to global synchronization or non-synchronization of the master-
slave Chua’s systems coupled by a single replacing variable, as summarized in Table.
More details for the derivation and illustrating examples can be found in [16].

Table. Ranges of parameters for Chua’s circuits
to synchronize or not to synchronize.

Synchronization Non-Synchronization

xd = x1 b > 0, a ≥ 0,∀m0,∀m1 b = 0, a ≥ 0,∀m0,∀m1

xd = x2 b ≥ 0, a > 0,∀m0,m1 6= 0

xd = x1 b ≥ 0, a > 0,m0 > 1,m1 ≥ 1 (i) b ≥ 0, a > 0,∀m0,∀m1

(ii) b ≥ 0, a > 0,m0 = 1,m1 = 1

By means of the frequency-domain criteria (45) – (48), parameter ranges of the
master-slave Chua’s circuits with parameter mismatch can be analytically solved in
the sense of synchronization with a finite L2-gain via replacing singe-variable control.
It must be noted that the ranges are same as the case of complete synchronization, as
shown in Table. This shows that robustness of synchronization for the master-slave
Chua’s circuits is maintained in the ranges of the parameters.

The illustrative example has verified that within the parameter ranges it is pos-
sible to synchronize the master-slave Chua’s circuits by replacing a single variable
up to a small synchronization error bound, even though the qualitative behavior of
the slave circuit is somewhat different from that of the master one. Simulation on
the example has shown that a smaller synchronization error bound corresponds to
a smaller parameter mismatch between the master and the slave systems, and vice
versa. More details for the derivation can be seen from [13].
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6. CONCLUDING REMARKS

Some recent advances in chaos synchronization of the master-slave Lur’e systems
coupled by replacing variables control has been surveyed in the paper. Two syn-
chronization schemes are described, respectively, for identical and parametrically
mismatched cases. LMI criteria and frequency-domain criteria for the schemes have
been systematically discussed. We believe that the results provide a promising ap-
proach for synchronization of autonomous and non-autonomous chaotic systems via
the simple and effective replacing variables control.
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