
Kybernetika

Arturo Erdely; José M. González–Barrios
Exact distribution under independence of the diagonal section of the empirical copula

Kybernetika, Vol. 44 (2008), No. 6, 826--845

Persistent URL: http://dml.cz/dmlcz/135894

Terms of use:
© Institute of Information Theory and Automation AS CR, 2008

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/135894
http://project.dml.cz


KYBERNET IK A — VOLUME 4 4 ( 2 0 0 8 ) , NU MB ER 6 , P AG E S 8 2 6 – 8 4 5

EXACT DISTRIBUTION UNDER INDEPENDENCE
OF THE DIAGONAL SECTION
OF THE EMPIRICAL COPULA

Arturo Erdely and José M. González–Barrios

In this paper we analyze some properties of the empirical diagonal and we obtain its
exact distribution under independence for the two and three-dimensional cases, but the
ideas proposed in this paper can be carried out to higher dimensions. The results obtained
are useful in designing a nonparametric test for independence, and therefore giving solution
to an open problem proposed by Alsina, Frank and Schweizer [2].
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1.INTRODUCTION

A copula C is said to be Archimedean, see Nelsen [24], if C(u, v) = ϕ[−1][ ϕ(u) +
ϕ(v) ] , where ϕ is called the generator of the copula, which is a continuous, convex,
strictly decreasing function from [ 0, 1 ] to [ 0,∞ ] such that ϕ(1) = 0 , and ϕ[−1] is
the pseudo-inverse of ϕ. Its diagonal section is given by

δC(u) = C(u, u) = ϕ[−1][ 2ϕ(u) ] . (1)

Therefore if we know the form of the generator ϕ then it is straightforward to obtain
δC . One may ask, as observed by Darsow and Frank [8], how much information
about an Archimedean copula is contained in its diagonal section. In other words,
given δ , what can be said about ϕ ? We may rewrite (1) as

ϕ
(
δ(u)

)
= 2ϕ(u) , u ∈ [ 0, 1 ] . (2)

The above equation is a particular case of Schröder’s functional equation, which
has been studied in one form or another, according to Kuczma [19], since the late
nineteenth century. Frank [13] announced that a sufficient, but not necessary condi-
tion for an Archimedean copula C to be uniquely determined by its diagonal section
δ is given by the left derivative δ ′(1−) = 2, which we will call Frank’s condition.
This is an almost immediate consequence of standard results on convex solutions of
Schröder’s equation via the representation of these copulas. Frank also illustrated
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that this condition is not necessary by constructing families of Archimedean copulas
having identical diagonals. The problem of finding conditions under which an Arch-
imedean copula is or is not uniquely determined by its diagonal section has been
also studied in the context of triangular norms, see for example Klement, Mesiar
and Pap [15] and Klement and Mesiar [16].

Whenever Frank’s condition is satisfied, we may apply Kuczma’s [19] Theorem
6.6 to obtain the following formula for ϕ in terms of diagonal δ :

ϕ(u) = lim
n→∞

2n
[
1− δ−n(u)

]
,

where δ−n is the composition of δ−1 with itself n times. An important example of
an Archimedean copula that satisfies Frank’s condition is the case of the product
copula Π(u, v) = uv , which characterizes a couple of independent continuous random
variables, via Sklar’s Theorem [26], and so it is uniquely determined by its diagonal
section δΠ(u) = u2.

As a consequence of the above results, Alsina, Frank and Schweizer [2] included
in their book as an open problem, the following:

Can one design a test of statistical independence based on the assump-
tions that the copula in question is Archimedean and that its diagonal
section is δ(u) = u2 ?

For this purpose, first we recall Sklar’s Theorem [26] and an immediate corollary:

Theorem. (Sklar) Let X and Y be random variables with distribution functions F
and G , respectively, and joint distribution function H . Then there exists a copula
C such that

H(x, y) = C(F (x), G(y)) .

If F and G are continuous, C is unique; otherwise, C is uniquely determined on
RanF ×RanG .

Corollary. Let X and Y be continuous random variables. Then X and Y are
independent if and only if their corresponding copula is C(u, v) = uv .

It is customary to use the notation Π(u, v) := uv and to call it the product or
independence copula. The previous results imply that the product copula character-
izes independent random variables when the distribution functions are continuous.
The product copula is Archimedean and it is characterized by the diagonal section
δΠ(u) = u2 , since it satisfies Frank’s condition.

An answer to the question above implies to study the probability distribution
of the empirical diagonal, under the (null) hypothesis of interest, that is, under in-
dependence. In the present work, we prove that it is possible to obtain the exact
probability distribution of the empirical diagonal, under the hypothesis of indepen-
dence. This opens the door to define suitable test statistics based on the empirical
diagonal, for a nonparametric test for independence, with the advantage that their
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exact distribution will be also known, and therefore such a test will be also useful
under small samples, in contrast with other nonparametric tests which rely on the
asymptotic behavior of their proposed statistics.

2.THE EMPIRICAL DIAGONAL AND SOME PROPERTIES:
BIVARIATE CASE

We have seen so far that, in the case of Archimedean bivariate copulas, the diagonal
section contains all the information we need to build the copula in case Frank’s
condition δ ′(1−) = 2 is fulfilled, and in such case this leads us to concentrate in
studying and estimating the diagonal. The main benefit of this fact is a reduction
in the dimension of the estimation, from 2 to 1 in the case of bivariate copulas, and
from m to 1 in the case of m-variate copulas.

Let S := {(X1, Y1), . . . , (Xn, Yn)} denote a random sample of size n from a con-
tinuous random vector (X,Y ) . As defined by Deheuvels [9], the (bivariate) empirical
copula is the function Cn given by

Cn

(
i

n
,
j

n

)
=

1
n

∑

(X Y )∈S

1]−∞ , X(i) ]× ]−∞ , Y(j) ](X,Y ) ,

where X(i) and Y(j) denote the order statistics of the sample, for i and j in {1, . . . , n} ,

and Cn( i
n , 0) = 0 = Cn(0, j

n ) . The domain of the empirical copula is the grid
{0, 1/n, . . . (n − 1)/n, 1}2 and its range is the set of {0, 1/n, . . . , (n − 1)/n, 1}. The
domain of the empirical copula is just a rescaling of the set {0, 1, . . . , n}. Hence
the empirical copula can be thought as equivalent to a discrete copula as noticed
in Mayor et al. [21] and Mesiar [23]. Moreover, an empirical copula is an example
of an irreducible discrete copula as defined in Kolesárová et al. [17]. An empirical
copula is not a copula, but a (two-dimensional) subcopula, for details of subcopulas
see Nelsen [24].

Definition 2.1. The bivariate empirical diagonal is the function δn given by

δn

(
j

n

)
:= Cn

(
j

n
,
j

n

)
j = 0, 1, . . . , n .

Without loss of generality we may assume that the Xk values in S are ordered, then

δn

(
j

n

)
=

1
n

j∑

k=1

1]−∞ , Y(j) ](Yk), , j = 1, . . . , n− 1 , (3)

and δn(0) = 0 , δn(1) = 1 . It is clear from above that δn is a nondecreasing function
of j . Moreover, by the Fréchet–Hoeffding bounds for subcopulas:

max
(

2j

n
− 1, 0

)
≤ δn

(
j

n

)
≤ j

n
. (4)
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We can also prove that

δn

(
j + 1

n

)
− δn

(
j

n

)
∈

{
0,

1
n

,
2
n

}
,

because

δn

(
j + 1

n

)
− δn

(
j

n

)
=

1
n

[
1]−∞ , Y(j+1) ](Yj+1)

+
j∑

k=1

(
1]−∞ , Y(j+1) ](Yk)− 1]−∞ , Y(j) ](Yk)

)]
,

=
1
n

[
1]−∞ , Y(j+1) ](Yj+1) +

j∑

k=1

1] Y(j) , Y(j+1) ](Yk)
]
,

=
1
n

[
1]−∞ , Y(j+1) ](Yj+1) +

j∑

k=1

1{Y(j+1)}(Yk)
]
.

So this means that all the possible paths {δn( j
n ) : j = 0, 1, . . . , n} are between

the paths {max( 2j
n − 1, 0) : j = 0, 1, . . . , n} and { j

n : j = 0, 1, . . . , n} with jumps
of size 0, 1

n , or 2
n between consecutive steps. This also follows from properties of

the diagonal section in discrete copulas and quasi-copulas, see Aguiló et al. [1] or
Kolesárová and Mordelová [18].

Let X be a continuous uniform random variable in ] 0, 1 [ and define the random
variable Y := X . Then the corresponding copula for (X,Y ) is the Fréchet–Hoeffding
upper bound copula M(u, v) := min(u, v) . In this case, a size n sample of observa-
tions of (X,Y ) would be S = {(X1, X1), . . . , (Xn, Xn)} , and applying formula (3)
we get δn( j

n ) = j
n , which is the Fréchet–Hoeffding upper bound in (4). If, instead,

we define Y := 1−X , the corresponding copula for (X,Y ) is the Fréchet–Hoeffding
lower bound copula W (u, v) := max(u+v−1, 0) , and δn( j

n ) equals the lower bound
in (4).

Definition 2.2. Let (X1, Y1), . . . , (Xn, Yn) be a random sample of the random
vector (X,Y ) of continuous random variables, where X1 < X2 < · · · < Xn . Let us
define the diagonal random path by the vector

T =
(

δn

(
0
n

)
, δn

(
1
n

)
, . . . , δn

(n

n

))

where
δn

(
j

n

)
:=

1
n

j∑

k=1

1]−∞ , Y(j) ](Yk) , j = 1, . . . , n− 1 ,

with δn(0) = 0 , δn(1) = 1 .
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Associated to the diagonal random path we may define the diagonal random incre-
ments by the vector I :=

(
δn

(
1
n

)
− δn

(
0
n

)
, δn

(
2
n

)
− δn

(
1
n

)
, . . . , δn

(
n
n

)
− δn

(
n−1

n

))

so that knowledge of T = (t0 = 0, t1, . . . , tn−1, tn = 1) is equivalent to knowledge of
I = (i1, . . . , in) , where ij = tj − tj−1 and tj =

∑j
k=1 ik .

Alternatively, we may write I = (i1, . . . , in) = 1
n (b1, . . . , bn) where the bj ∈

{0, 1, 2} . Moreover, in = 1−tn−1 = 1−∑n−1
k=1 ik so knowledge of B := (b1, . . . , bn−1)

completely specifies any path. Different values of B can be labeled as vectors of
ternary numbers. For example, with n = 7 the Fréchet–Hoeffding lower bound path
{max( 2j

n − 1, 0) : j = 0, 1, . . . , n} is specified by the vector (0, 0, 0, 1, 2, 2, 2), while
the Fréchet–Hoeffding upper bound path { j

n : j = 0, 1, . . . , n} is specified by the
vector (1, 1, 1, 1, 1, 1, 1).

We will call an admissible diagonal path any vector of ternary numbers satisfying
the Fréchet–Hoeffding conditions. We will now find the exact number of admissible
paths for any n ≥ 2. For this purpose, we have to recall the problem of walks on
the integral lattice, where we look at walks of m + k unit steps into upward and
rightward directions, starting at the origin (0, 0) and ending at (m, k). The number
of such paths without further restrictions is

(
m+k

k

)
, as exactly k of the m + k steps

are upward steps. Now consider just those upward-rightward paths with k ≤ m,
that is, paths remaining on or under the diagonal. For this to happen it is necessary
to have at any step of the path an accumulated number of rightward steps equal or
larger than the number of upward steps: “a rightward step before any upward step.”

For the case k = m it is proved in Theorem 3.1 in Barcucci and Verri [4] that
Em := 1

m+1

(
2m
m

)
is the number of the under-diagonal rightward-upward one-step

walks on the integral lattice (the sequence {Em} is known as the Catalan numbers).
An equivalent result is the classical Chung–Feller Theorem, see Chung and Feller [7],
or Feller [12] in his chapter On fluctuations in coin-tossing and random walks. For
the general case, by a result in Bailey [3], we may calculate the number of under-
diagonal rightward-upward one-step walks on the integral lattice, starting at (0, 0)
and ending at (m, k), by

m + 1− k

m + 1

(
m + k

m

)
, k ≤ m . (5)

In his original version, Bailey [3] obtains (5) by counting the number of sequences
with non-negative partial sums that consist of m positive 1’s and k negative 1’s. An
equivalent result is found in Engleberg [10].

Proposition 2.3. Let Pn denote the number of admissible paths for the bivariate
empirical diagonal δn of n points in [ 0, 1 ] 2 and n ≥ 2. Then

Pn =
[[n/2]]∑

r0=0

(
n
r0

)(
n− r0

r0

)

r0 + 1

where [[ x ]] denotes the greatest integer less than or equal to x.
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P r o o f . Let (x1, y1), . . . , (xn, yn) ∈ [0, 1]2 be n points and let δn be their empirical
diagonal. Let r0, r1 and r2 denote the number of zeros, ones and twos respectively
in the empirical diagonal nδn. Then r0 + r1 + r2 = n and r1 + 2r2 = n, so r0 = r2

by (18). Hence
r1 + 2r0 = n, (6)

any nonnegative integers r0 and r1 satisfying (6), could provide an admissible path
for the empirical diagonal whenever the Fréchet–Hoeffding bounds are satisfied. Ob-
serve that r0 ≤ [[n/2 ]].

If δn = 1
n (b 1, b 2, . . . , bn) is an admissible path, then b 1 = 0 or b 1 = 1, and

for 2 ≤ i ≤ n b i = 0, 1 or 2. We observe that the restrictions
∑n

i=1 bi = n and∑j
i=1 b i ≤ j must be fulfilled. The basic rule to find admissible paths is “zero before

two.” That is if some b i = 2, then there exists 1 ≤ j < i such that b j = 0. For
example if n = 5 and r0 = 1 , then (0, 1, 1, 2, 1) is an admissible path, but (2, 1, 1, 0, 1)
is not admissible, since for example

∑3
i=1 bi = 4 6≤ 3. Therefore, given the number

of zeros among the bi
′s, we only have to see where they can be located in the vector

(b 1, . . . , bn), following the basic rule. Observe that the ones can be located in any
place.

So first assume that r0 = 0 and r1 = n, then the only path, which by the way
is admissible, is (1, 1, . . . , 1), that is, Fréchet–Hoeffding upper bound path. Now fix
some r0 such that 1 ≤ r0 ≤ [[n/2 ]] . We have to count all the admissible paths that
follow the basic rule “zero before two.” Since the ones can be located any place, we
just have to count the different ways in which we can locate the zeros and the twos.
First, we have to choose r0 +r2 = 2r0 places for the zeros an twos out of the n places
available, which can be made in

(
n

2r0

)
different ways. This last number has to be

multiplied by the number of different ways in which we can locate the r0 zeros and
the r2 = r0 twos in the 2r0 chosen places, but always following the basic rule. We
may relate the zeros to rightward unit steps and the twos to upward unit steps in
(5) with m = k = r0, so the number of admissible paths with r0 zeros is given by

(
n

2r0

)(
2r0

r0

)
1

r0 + 1
=

1
r0 + 1

(
n

r0

)(
n− r0

r0

)
. (7)

The result now follows summing over all possible values of r0. ¤

Remark. (7) also simplifies in terms of a multinomial coefficient to

1
r0 + 1

(
n

r0, r1, r2

)
, (8)

where r2 = r0 and r0 + r1 + r2 = n. This may be understood as follows: the
multinomial coefficient along with the restriction r0 + r1 + r2 = n represents the
number of permutations of repeated elements (r0 zeros, r1 ones, and r2 twos, in this
case), but some of these permutations do not follow the basic rule “zero before two”,
so the role of the factor 1

r0+1 is to leave just those permutations that follow the rule.
To understand how this factor is obtained, we need some combinatorics concepts as
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in, for example, Callan [5], considering the problem of building sequences of 1’s and
−1’s, and their partial sums: A balanced n-path is a sequence of n [1’s] and n [−1’s],
represented as a path of unit upsteps (1, 1) and downsteps (1,−1) from (0, 0) to
(2n, 0). A Dick n-path is a balanced n-path that never drops below the x-axis
(ground level) “·” the parameter X on balanced n-paths defined by X = “number of
upsteps above ground level” is uniformly distributed over {0, 1, 2, . . . , n} and hence
divides the

(
2n
n

)
balanced n-paths into n+1 equal-size classes, one of which consists

of the Dick n-paths (the one with X = n). Indeed, for 1 ≤ i ≤ n , a bijection
from balanced n-paths with X = 0 (inverted Dick paths) to those with X = i is
as follows. Number the upsteps from right to left and top to bottom, starting with
the last upstep. Then remove the first downstep [−1] encountered directly west of
upstep i to obtain the subpaths P and Q, and reassemble as Q [−1]P.

So the problem of counting the different ways of allocating the zeros and twos
following the basic rule is the same as counting the number of Dick n-paths, using
the 1’s to represent zeros, and the −1’s to represent twos (remember that the ones
may be allocated any place, so they will be allocated in the remaining places), and
the result (8) follows.

Now we will calculate the probability of any given (admissible) path, under the
hypothesis of independence.

Theorem 2.4. Let S = {(X1, Y1), . . . , (Xn, Yn)} be a random sample from the
random vector of continuous random variables (X,Y ) . If X and Y are independent
and if T = (t0 = 0, t1, . . . , tn−1, tn = 1) is an admissible diagonal path. Then

Pr
[
T = (t0 = 0, t1, . . . , tn−1, tn = 1)

]
=

1
n!

n∏

j = 1

f(j) ,

where f(j) is obtained in terms of the following formula, for j = 1, . . . , n :

f(j) =





1 if n(tj − tj−1) = 0 ,

2(j − n tj−1)− 1 if n(tj − tj−1) = 1 ,

(j − 1− n tj−1)2 if n(tj − tj−1) = 2 .

P r o o f . From the continuity assumption we know that with probability one there
are no ties among the Xi

′s or the Yi
′s. Without loss of generality we may assume

that the Xk (k = 1, . . . , n) are ordered, so we have that, by independence of X and
Y , the probability of the random sample {(X1, Y1), . . . , (Xn, Yn))} equals that of
{(X1, Yσ(1)), . . . , (Xn, Yσ(n))} where σ(1), . . . , σ(n) is any permutation of (1, . . . , n) ,
and every permutation has probability (n!)−1.

By rescaling we can assume that Xi = i, for i = 1, 2, . . . , n and Yσ(i) = σ(i), for
i = 1, . . . , n. Hence the sample S is a subset of the grid {1, 2, . . . , n}×{1, 2, . . . , n} :=
I2
n. In fact, for every i ∈ {1, 2, . . . , n} there exists a unique j = σ(i) ∈ {1, 2, . . . , n}

such that (i, σ(i)) ∈ S. That is for any horizontal or vertical segment in the grid I2
n

there is exactly one point that belongs to the sample S.
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In order to calculate Pr
[
T = (0, t1, . . . , tn−1, 1)

]
we just need to count the

number of orderings of {Y1, . . . , Yn} that would lead to the admissible path (t0 =
0, t1, . . . , tn−1, tn = 1) . We will show that this probability is given by

Qn
j = 1 f(j)

n! .
Let B = (b1, b2, . . . , bn) be the vector of ternary numbers which is equivalent

to the admissible diagonal path T = (t0 = 0, t1, . . . , tn−1, tn = 1) , that is bi =
n(ti − ti−1) for i = 1, 2, . . . , n. Define

K = min{i ∈ {1, . . . , n} | bi > 0}.

Since B is an admissible diagonal path, with all the b′is being equal to 0, 1 or 2,
except for b1 which equals 0 or 1, and

∑n
i=1 bi = n. Then K ≤ [[n/2 ]]. Therefore if

K = 1 it means that b1 = 1, and then (1, 1) ∈ S, and there is only one possibility
for σ(1), that is σ(1) = 1.

So, assume that K > 1, from the definition of the empirical copula it is clear that

nti = nCn

(
i

n
,

i

n

)
= card(S ∩ ({1, . . . , i} × {1, . . . , i})) for i = 1, 2, . . . , n,

where card(·) stands for cardinality of a set. So nti gives us the number of sample
points in the sample S that belong to the sub-grid {1, . . . , i}2. Since K > 1, then
b1 = · · · = bK−1 = 0, which is equivalent to t1 = · · · = tK−1 = 0.

Now, first assume that bK = 1, or equivalently tk = 1. Then we observe that
the intersection of the sub-grid {1, . . . ,K − 1}× {1, . . . ,K − 1} and the sample S is
empty, but the intersection of the sub-grid {1, . . . ,K} × {1, . . . ,K} and the sample
S contains a unique point. By noticing that ({1, . . . ,K}×{1, . . . ,K})\({1, . . . ,K−
1} × {1, . . . ,K − 1}) = {(1,K), (2,K), . . . , (K,K), (K,K − 1), . . . , (K, 1)} we can
select the point of the sample in 2K − 1 = 2(K − ntK−1)− 1 forms. If for example
we select the point (2,K) then we know that any point of the form (2, j) for j 6= K,
and any point of the form (l,K) with l 6= 2 do not belong to the sample, that is, we
cancel one column and one row and the remaining points that were not selected.

The other possibility is bK = 2. Then we observe that the intersection of the sub-
grid {1, . . . ,K−1}×{1, . . . ,K−1} and the sample S is empty, but the intersection of
the sub-grid {1, . . . ,K}× {1, . . . ,K} and the sample S contains exactly two points.
Just as above we know that, ({1, . . . ,K}×{1, . . . ,K})\({1, . . . ,K−1}×{1, . . . ,K−
1}) = {(1,K), (2,K), . . . , (K,K), (K,K − 1), . . . , (K, 1)} contains two points of the
sample S. Observe that (K,K) can not be a sample point, since in that case, none
of the points (1, K), . . . (K − 1,K), (K,K − 1), . . . , (K, 1) can belong to the sample.
Therefore we can select one point from (1,K), . . . , (K − 1,K) and another from
(K,K−1), . . . , (K, 1), that is we have (K−1)2 = (K−1−ntK−1)2 possible choices.
After selecting these two points we can not repeat the same indexes for columns or
rows, so we cancel two columns and two rows and the remaining points which were
not selected. Now we define

K1 = min{i ∈ {K + 1, . . . , n} | bi > 0},

and we proceed inductively by reducing the dimension of the grid. As an example
consider that n = 5, and the admissible path is given by T = (0 = t0, t1 = 0,
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t2 = 0, t3 = 1/5, t4 = 3/5, t5 = 5/5 = 1), or equivalently B = (b1 = 0, b2 = 0,
b3 = 1, b4 = 2, b5 = 2), in this case

K = min{i ∈ {1, . . . , 5} | bi > 0} = 3.

We first notice that (1, 1), (1, 2), (2, 1) and (2, 2) are not sample points, since K = 3,
see Figure 1.

-

6

×

×

·

·

·

×

×

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

1 2 3 4 5

1

2

3

4

5

0

Fig. 1.

Now, b3 = 1, so we have to select only one point in the set {(1, 3), (2, 3), (3, 3), (3, 2),
(3, 1)}, that is we have 5 = 2(3 − 5t2) − 1 choices. Assume we select (1, 3), then
we cancel the remaining elements not selected and those of the first column and the
third row, see Figure 2.

Now
K1 = min{i ∈ {4, 5} | bi > 0} = 4,

and b4 = 2, in this case we have to select one point between (2, 4) and (3, 4) and
another between (4, 1) and (4, 2), that is 22 = (4− 1− 5t3)2 = (3− 5(1/5))2 choices,
recall that (4, 4) can not be selected. Assume we select (3, 4) and (4, 1), so we cancel
the third and fourth columns and the first and fourth row, and the points that were
not selected, see Figure 3.

Finally,
K2 = min{i ∈ {5} | bi > 0} = 5,

since b5 = 2 we have two select two points between (2, 5) and (5, 2) recall that (5, 5)
cannot be selected, this can be done only in 1 = 12 = (5−1−5t4)2 = (5−1−5(3/5))2

way, see Figure 4. Therefore the number of permutations that lead to the diagonal
path T is 1 · 1 · 5 · 22 · 12 = 20, and hence the probability of T is 20/5! = 1/6. ¤
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3.THE THREE–DIMENSIONAL CASE AND FURTHER

If C is an m-dimensional copula as defined by Schweizer and Sklar [25], then for
every (u1, . . . , um) in [ 0, 1 ]m we have that the Fréchet–Hoeffding bounds are as
follows:

max(u1 + · · ·+ um −m + 1 , 0) ≤ C(u1, . . . , um) ≤ min(u1, . . . , um) , (9)
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but the Fréchet–Hoeffding lower bound is never a copula for m > 2 , and the above
inequality cannot be improved, see Nelsen [24]. According to (9) we have that the
diagonal section of an m-copula satisfies

max(mu−m + 1, 0) ≤ δ(u) ≤ u , u ∈ [ 0, 1 ] .

Particularly, the product (or independence) m-copula Π(m)(u1, . . . , um)=u1u2 · · ·um

has a diagonal section δΠ(u) = um. For an Archimedean m-copula and every m ≥ 2,
from Kimberling [14] we have that its generator must be strict and completely mono-
tonic, but this condition is not necessary if m ≥ 3 and m is fixed, and a weaker
condition, that is m-monotonicity gives the same result, see McNeil and Nešlehová
[22]. But in both cases we have the following expression for its diagonal section:
δ(u) = ϕ−1

(
mϕ(u)

)
, u ∈ [ 0, 1 ]m , or equivalently

ϕ
(
δ(u)

)
= mϕ(u) ,

which again leads us to Schröder’s functional equation, see (2). As a particular
case of Theorem 6.6 in Kuczma [19] (or Theorem 2.3.12 in Kuczma et al. [20]), let
the function γ : [ 0, 1 ] → [ 0, 1 ] be such that 0 < γ(u) < u for all u ∈ ] 0, 1 [ , and
γ ′(0) = 1

m . If s(u) is a solution of the functional equation s
(
γ(u)

)
= 1

m s(u) such
that the function s(u)/u is monotonic in ] 0, 1 [ , then s(u) = k limr→∞ m rγ r(u) ,
where γ r is the rth iteration of γ, that is the composition of γ with itself r times,
and k any constant. And by a similar argument as in Frank’s Theorem, we have that
if C is an Archimedean m-copula whose diagonal δ satisfies δ ′(1−) = m then it is
uniquely determined by its diagonal. This is the case, for example, of the product
m-copula, which in the context of a m-dimensional random vector of continuous
random variables represents independence.
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We will now analyze analogous properties of the empirical diagonal as done in
the previous section, for the case m = 3 , hoping that this suffices to convince the
reader that analogous results may be obtained for higher dimensions.

Let S := {(X1, Y1, Z1), . . . , (Xn, Yn, Zn)} denote a random sample of size n from
a random vector of continuous random variables (X,Y, Z) . As defined by Deheuvels
[9], the trivariate empirical copula is the function Cn given by

Cn

(
i

n
,
j

n
,
k

n

)
=

1
n

∑

(X,Y,Z)∈S

1]−∞ , X(i) ]× ]−∞ , Y(j) ]× ]−∞ , Z(k) ](X,Y, Z) ,

where X(i) , Y(j) and Z(k) denote the order statistics of the sample, for i, j and k in
{1, . . . , n} , and Cn(x, y, z) = 0 , whenever any of x, y or z equals 0.

Definition 3.1. The trivariate empirical diagonal is the function δn given by

δn

(
j

n

)
:= Cn

(
j

n
,
j

n
,
j

n

)
j = 0, 1, . . . , n .

Without loss of generality we may assume that the Xk values in S are ordered, then

δn

(
j

n

)
=

1
n

j∑

k=1

1]−∞ , Y(j) ]× ]−∞ , Z(j) ](Yk, Zk) ,

where j = 1, . . . , n− 1 , and δn(0) = 0 , δn(1) = 1 .
It is clear from above that δn is a nondecreasing function of j . Moreover, by

Fréchet–Hoeffding bounds:

max
(

3j

n
− 2, 0

)
≤ δn

(
j

n

)
≤ j

n
. (10)

Proposition 3.2.

δn

(
j + 1

n

)
− δn

(
j

n

)
∈

{
0,

1
n

,
2
n

,
3
n

}
.

P r o o f . Define the random set A(j) := ]−∞, Y(j) ]× ]−∞, Z(j) ] . Then

n

[
δn

(
j + 1

n

)
− δn

(
j

n

)]
=

j+1∑

k=1

1A(j+1)(Yk, Zk) −
j∑

k=1

1A(j)(Yk, Zk) ,

= 1A(j+1)(Yj+1, Zj+1)

+
j∑

k=1

[
1A(j+1)(Yk, Zk) − 1A(j)(Yk, Zk)

]
,

= 1A(j+1)(Yj+1, Zj+1) +
j∑

k=1

1A(j+1) \A(j)(Yk, Zk) .
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Since the last two indicator functions may take values 0 or 1 independently, and
since the set A(j + 1) \A(j) may contain 0, 1 or 2 points, the result follows. ¤

This means that all the possible paths {δn( j
n ) : j = 0, 1, . . . , n} are between the

paths {max( 3j
n −2, 0) : j = 0, 1, . . . , n} and { j

n : j = 0, 1, . . . , n} with jumps of size
0, 1

n , 2
n or 3

n between consecutive steps.

Definition 3.3. Let (X1, Y1, Z1), . . . , (Xn, Yn, Zn) be a random sample of the ran-
dom vector (X,Y, Z) of continuous random variables, where X1 < X2 < · · · < Xn .
Let us define the trivariate diagonal random path by the vector

T =
(

δn

(
0
n

)
, δn

(
1
n

)
, . . . , δn

(n

n

))

where
δn

(
j

n

)
:=

1
n

j∑

k=1

1A(j)(Yk, Zk) , j = 1, . . . , n− 1 ,

with δn(0) = 0 , δn(1) = 1 .
Associated to the diagonal random path we may define the diagonal random incre-

ments by the vector I :=
(
δn

(
1
n

)
− δn

(
0
n

)
, δn

(
2
n

)
− δn

(
1
n

)
, . . . , δn

(
n
n

)
− δn

(
n−1

n

))

so that knowledge of T = (t0 = 0, t1, . . . , tn−1, tn = 1) is equivalent to knowledge of
I = (i1, . . . , in) , where ij = tj − tj−1 and tj =

∑j
k=1 ik .

Alternatively, we may write I = (i1, . . . , in) = 1
n (b 1, . . . , bn) where the b j ∈

{0, 1, 2, 3} . Moreover, in = 1−tn−1 = 1−∑n−1
k=1 ik so knowledge of B := (b 1, . . . , bn−1)

completely specifies any path. Different values of B can be labeled as vectors of
base-4 numbers. For example, with n = 7 the Fréchet–Hoeffding lower bound path
{max( 3j

n − 2, 0) : j = 0, 1, . . . , n} is specified by the vector (0, 0, 0, 0, 1, 3), while the
Fréchet–Hoeffding upper bound path { j

n : j = 0, 1, . . . , n} is specified by the vector
(1, 1, 1, 1, 1, 1).

But not every base-4 representation will generate a valid path. For example, for
n = 7 we have that (0, 3, 0, 0, 2, 0) is a base-4 number between (0, 0, 0, 0, 1, 3) and
(1, 1, 1, 1, 1, 1), but it represents a path that is out of Fréchet–Hoeffding bounds. In
general, we just have to check which of the base-4 representations satisfy

max
(

3j

n
− 2, 0

)
≤ tj ≤

j

n
, j = 1, . . . , n− 1 , (11)

which is equivalent to satisfy

max(3j − 2n, 0) ≤
j∑

k=1

bk ≤ j , j = 1, . . . , n− 1 . (12)

We will call an admissible diagonal path any vector of base-4 numbers satisfying
the Fréchet–Hoeffding conditions (10), or equivalently, conditions (12). In the the
following result we find the exact number of admissible paths for any n ≥ 3.
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Proposition 3.4. Let Pn denote the number of admissible paths for the trivariate
empirical diagonal δn of n points in [ 0, 1 ] 3 and n ≥ 3. Then

Pn =
[[ 2n/3 ]]∑

r0=0

∑

r2+2r3 = r0

(
n
r0

)(
n− r0

r3

)(
n− r0− r3

r2

)

r0 + 1
=

[[ 2n/3 ]]∑

r0 = 0

[[ r0/2 ]]∑

r3 = 0

(
n
r0

)(
n− r0

r3

)(
n− r0− r3

r0−2r3

)

r0 + 1
,

where [[ x ]] denotes the greatest integer less than or equal to x.

P r o o f . Let (x1, y1, z1), . . . , (xn, yn, zn) ∈ [ 0, 1 ] 3 be n points and let δn be their
empirical diagonal. Let r0, r1, r2 and r3 denote the number of zeros, ones, twos,
and threes, respectively, in the empirical diagonal nδn. Then r0 + r1 + r2 + r3 = n
and r1 + 2r2 + 3r3 = n, so r2 + 2r3 = r0 . Hence, any nonnegative integers r1, r0, r3

satisfying
r1 + 2r0 − r3 = n ,

r0 ≥ 2r3 , (13)

could provide an admissible path for the empirical diagonal whenever the Fréchet–
Hoeffding bounds are satisfied. Observe that r0 ≤ [[ 2n/3 ]] , by (12), and that (13)
is a consequence of the fact that 0 ≤ r2 = r0 − 2r3.

If δn = 1
n (b 1, b 2, . . . , bn) is an admissible path, then b 1 ∈ {0, 1}, b 2 ∈ {0, 1, 2},

and b i ∈ {0, 1, 2, 3} for 3 ≤ i ≤ n. We observe that the restrictions
∑n

i=1 b i = n

and
∑j

i=1 b i ≤ j must be fulfilled. Since r0 = r2 + 2r3 now the basic rule to find
admissible paths is “one zero before each two, two zeros before each three”. Namely,
if some b i = 2, then there exists 1 ≤ j < i such that b j = 0, and if some b i = 3,
then there exist 1 ≤ j < k < i such that b j = 0 = b k. Therefore, given the number
of zeros and threes among the b i

′s, we only have to see where can they be located
in the vector (b 1, . . . , bn), following the basic rule, with r2 = r0− 2r3. Observe that
the ones can be located in any place.

First assume that r0 = 0, then (13) implies r3 = 0, and r2 = r0 − 2r3 = 0, so the
only possibility is r1 = n, that is, the admissible path (1, 1, . . . , 1), which is Fréchet–
Hoeffding upper bound path. Then, by an analogous argument as in Proposition
2.3, for any r0 positive integer such that r0 ≤ [[ 2n/3 ]] , and any nonnegative integer
r3 such that r2 + 2r3 = r0, the number of admissible paths with r0 zeros and r3

threes is given by
(

n
r0

)(
n− r0

r3

)(
n− r0− r3

r2

)

r0 + 1
=

1
r0 + 1

(
n

r0, r1, r2, r3

)
, (14)

where the right side of this last equation is justified by analogous arguments as in
the Remark of Proposition 2.3. The result now follows summing over all possible
values of r0 and r3 , subject to the constraint r2 + 2r3 = r0, which is equivalent to
sum (

n
r0

)(
n− r0

r3

)(
n− r0− r3

r0−2r3

)

r0 + 1
,

over all possible values of r0 ≤ [[ 2n/3 ]] , and r3 ≤ [[ r0/2 ]] , by (13). ¤
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Remark. A thorough justification for (14) may be given in terms of Riordan Group
enumeration techniques, as in Cameron [6].

Now we will calculate the probability of any given (admissible) path, under the
hypothesis of independence.

Theorem 3.5. Let S = {(X1, Y1, Z1), . . . , (Xn, Yn, Zn)} be a random sample from
the random vector of continuous random variables (X,Y, Z) . If X, Y and Z are
independent and if T = (t0 = 0, t1, . . . , tn−1, tn = 1) is an admissible diagonal path,
then

Pr
[
T = (t0 = 0, t1, . . . , tn−1, tn = 1)

]
=

1
(n!)2

n∏

j = 1

f(j) ,

where f(j) is obtained in terms of the following formula, for j = 1, . . . , n :

f(j) =





1 if n(tj − tj−1) = 0 ,
3(j − ntj−1)(j − 1− ntj−1) + 1 if n(tj − tj−1) = 1 ,

3(j − 1− ntj−1)4 if n(tj − tj−1) = 2 ,
(j − 1− ntj−1)3(j − 2− ntj−1)3 if n(tj − tj−1) = 3 .

P r o o f . From the continuity assumption we know that, with probability one,
there are no ties among the Xi

′s , the Yi
′s or the Zi

′s. By independence of X ,Y
and Z, the probability of the random sample {(X1, Y1, Z1), . . . , (Xn, Yn, Zn))} equals
that of {(X(1), Yσ(1), Zτ(1)), . . . , (X(n), Yσ(n), Zτ(n))} where (σ(1), τ(1)), . . . , (σ(n),
τ(n)) is any bivariate permutation of In := {1, . . . , n} , and every permutation has
probability (n!)−2.

By rescaling we can assume that X(i) = i, Yσ(i) =σ(i), and Zτ(i) =τ(i), for i∈In ,
that is to consider the one-to-one rank-mapping (Xi, Yj , Zk) 7→ (rank(Xi), σ(i), τ(i)).
Hence the rank-mapped sample S becomes a subset of the (three-dimensional)
grid {1, 2, . . . , n}3 := I 3

n . In fact, for every i ∈ In there exists a unique (j, k) =
(σ(i), τ(i)) ∈ I 2

n such that (i, j, k) = (i, σ(i), τ(i)) ∈ S. That is, for any horizontal or
vertical segment in the three bivariate grids {i} × I 2

n , In × {j} × In , and I 2
n × {k} ,

there is exactly one point that belongs to the sample S.
In order to calculate Pr

[
T = (0, t1, . . . , tn−1, 1)

]
we just need to count the num-

ber of orderings of {Y1, . . . , Yn} and {Z1, . . . , Zn} that would lead to the admissible
path (t0 = 0, t1, . . . , tn−1, tn = 1) . We will show that this probability is given by
(n!)−2

∏n
j = 1 f(j) .

Let B = (b 1, b 2, . . . , bn) be the vector of base-4 numbers which is equivalent
to the admissible diagonal path T = (t0 = 0, t1, . . . , tn−1, tn = 1) , that is b i =
n(ti − ti−1) for i = 1, 2, . . . , n.

If b k = 0 = n(tk − tk−1) then there is only one possibility: no sample point of S
is rank-mapped to {1, . . . , k}3 \ {1, . . . , k − 1}3.

Define
K := min{i ∈ {1, . . . , n} | b i > 0}.
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Since B represents an admissible diagonal path, we have that all the b i
′s are equal

to 0, 1, 2 or 3, except for b 1 which equals 0 or 1 , and b 2 which equals 0, 1 or 2, and∑n
i=1 b i = n. Then K ≤ [[ 2n/3 ]] by (11).
If K = 1 it means that b 1 = 1, and then (1, 1, 1) ∈ S, and there is only one

possibility for σ(1) and τ(1), that is (σ(1), τ(1)) = (1, 1).

Define D1 := {(1, 1, 1)} and for r = 2, 3, . . . let Dr := {1, 2, . . . , r}3 \∪r−1
w = 1Dw .

Then card(Dr) = r3− (r− 1)3 = 3 r(r− 1)+1 , where card( · ) stands for cardinality
of a set. Geometrically, Dr may be interpreted as a grid on three faces of a cube of
volume r3, with one vertex, 3(r−1) points on the three edges (excluding the vertex),
which we will call edge points, and therefore

r3 − (r − 1)3 − 3(r − 1)− 1
3

= (r − 1)2

points on each face (without edges), which we will call face points. So in Dr we
have 3(r − 1)2 face points, 3(r − 1) edge points, and exactly 1 vertex. All points
(i, j, k) ∈ Dr must have at least one entry equal to r. If a point in Dr has only one
entry equal to r then it is a face point; if it has 2 entries equal to r and the other
one different from r then it is an edge point; and if it has its 3 entries equal to r it
is obviously the vertex of Dr.

If K = 2 it means that b 1 = 0 = nt1, that is (1, 1, 1) /∈ S, and b 2 ∈ {1, 2}. In
case b 2 = 1, there is only one point (Xi, Yj , Zk) ∈ S which is rank-mapped to one
of the elements of D2 , that is, there are card(D2) = 23 − 13 = 7 possibilities for
such point. In case b 2 = 2, there are exactly two points (Xi, Yj , Zk) ∈ S which are
rank-mapped to 2 different elements of D2 , and the number of possibilities depends
on whether one of the points belongs to one of the 3(2 − 1) + 1 = 4 points that lie
on the 3 edges of D2 . First of all, we have to discard the vertex (2, 2, 2) since this
point belongs to the three edges of D2 , and this would eliminate the possibility of
using any other point in the three faces of D2 , and we need to allocate two points.
If one of the points is an edge point, then it automatically eliminates the possibility
of choosing the other point from 2 faces and the 3 edges of D2 , that is, the other
point has to be a face point, so at least one of the two points has to be a face point.
So first we count the number of ways in which we can choose the face point, which
is 3 : (1, 1, 2), (1, 2, 1), (2, 1, 1); then, its selection eliminates 2 2 points on the face
where it is located (the vertex included) plus (2− 1) = 1 face points on each of the
other two faces, and so there is left 7− 2 2− 2(1) = 1 possibility for the other point,
for a total of 3(1) = 3 different ways of choosing the two points.

Now assume that K ≥ 3 , and therefore bK ∈ {1, 2, 3}. This implies that b 1 =
· · · = bK−1 = 0 , which is equivalent to t1 = · · · = tK−1 = 0 , that is, there are no
points in the sample S which are rank-mapped to the set

∪K−1
w = 1Dw = {1, . . . ,K −

1}3. From the definition of the trivariate empirical copula it is clear that

nti = nCn

(
i

n
,

i

n
,

i

n

)
= card(S ∩ {1, . . . , i}3) ,

that is, nti is the number of (rank-mapped) sample points in S that belong to
{1, . . . , i}3.
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If bK = 1, or equivalently ntK = 1, and since ntK−1 = 0 implies that there are not
any points in S rank-mapped to {1, . . . ,K − 1}3, we have that there is exactly one
point of S which is rank-mapped to DK , and there are card(DK) = K3− (K−1)3 =
3K(K−1)+1 different possibilities to choose this point. It is important to mention
that the corresponding rank-mapped point, say (i∗, j∗, k∗), automatically cancels
the possibility that any other point of the sample S is rank-mapped to a point
(i, j, k) ∈ {1, . . . , n}3 such that i = i∗ or j = j∗ or k = k∗.

If bK = 2 then there are exactly 2 sample points of S which are rank-mapped to
2 different elements of DK , and the number of possibilities depends on whether one
of the points belongs to one of the 3(K−1)+1 points that lie on the 3 edges of DK .
First of all, we have to discard the vertex (K,K,K) since this point belongs to the
three edges of DK , and this would eliminate the possibility of using any other point
in the three faces of DK , and we need to allocate two points. If one of the points is
an edge point then it automatically eliminates the possibility of choosing the other
point from 2 faces and the 3 edges of DK , that is, the other point has to be a face
point, so at least one of the two points has to be a face point. So first we count
the number of ways in which we can choose the face point, which is

(
3
1

)
(K − 1)2 ;

then, its selection eliminates K 2 points on the face where it is located, and so it
eliminates 2K − 1 points of the K 2 points on each of the other two faces, that is,
K 2 − (2K − 1) = (K − 1)2 points are left on each of the other two faces; we may
choose one out of the two faces left and so we have

(
2
1

)
(K−1)2 different possibilities

for the second point, and so we have a total of
(
3
1

)
(K − 1)2

(
2
1

)
(K − 1)2

2!
= 3(K − 1)4

different ways of choosing the two points (we divided by 2! since the order of the
two points chosen is not important).

If bK = 3 then there are exactly 3 sample points of S which are rank-mapped to
3 different elements of DK , which necessarily have to be face points (one on each
of the three faces of DK) since the presence of one edge point would just leave one
(or zero in the case of the vertex) faces for choosing the other two points, which
is impossible since it is only possible to have one point per face. Then, we have(
3
1

)
(K − 1)2 different ways of choosing the first point, which just leaves available

(K − 1)2 −(K − 1) = (K − 1)(K − 2) points on each of the other two faces, so we
may choose the second point in

(
2
1

)
(K − 1)(K − 2) different ways, which in turn will

eliminate (K−2) points of the remaining face, leaving
(
1
1

)
[(K−1)(K−2) −(K−2)]

=
(
1
1

)
(K − 2)2 ways of choosing the third point, for a total of

(
3
1

)
(K − 1)2

(
2
1

)
(K − 1)(K − 2)

(
1
1

)
(K − 2)2

3!
= [(K − 1)(K − 2)] 3

different ways for choosing the 3 points (we divided by 3! since the order of the three
points chosen is not important).

For b J
′s with J > K we have that b J ∈ {0, 1, 2, 3} and we proceed in an analo-

gous way, but eliminating the points (i, j, k) ∈ DJ for which there exists (i∗, j∗, k∗) ∈
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∪J−1
w=1Dw = {1, . . . , J−1}3 such that i = i∗ or j = j∗ or k = k∗. For the calculations

we proceed in an analogous ways as for j = K by just eliminating for each of the
three dimensions ntJ−1 points since ntJ−1 is the number of (rank-mapped) sample
points in S that belong to {1, . . . , J − 1}3, and so we arrive to the same formulas by
just replacing K with J − ntJ−1 and the result follows. ¤

4.FINAL REMARKS

In the present work, for m = 2 and m = 3, we have proved that it is possible to:

• label the different paths that a m-variate empirical diagonal may follow by
using base-(m + 1) number representation,

• count the number of admissible diagonal paths, given a sample size n (Propo-
sitions 2.3 and 3.4),

• obtain the exact distribution of the empirical diagonal under the hypothesis of
independence of a vector of continuous random variables (Theorems 2.4 and
3.5),

with the possibility of obtaining analogous results for higher dimensions.

The results in the present work are useful to give solution to an open problem
proposed in Alsina, Frank and Schweizer [2]:

Can one design a test of statistical independence based on the assump-
tions that the copula in question is Archimedean and that its diagonal
section is δ(u) = u2 ?

If we are interested in analyzing independence of two continuous random variables,
the results stated in the Introduction suggest to measure some kind of closeness
between the empirical diagonal and the diagonal section of the product copula.
Moreover, a nonparametric test of independence can be carried out, as suggested by
Sungur and Yang [27], using the diagonal. Let (X,Y ) be a random vector of contin-
uous random variables with Archimedean copula C , then the following hypothesis
are equivalent:

H0 : X and Y are independent ⇔ H∗
0 : C = Π ⇔ H∗∗

0 : δC(u) = u2 . (15)

Using the results of the previous sections, we may propose a statistical test based
on the empirical diagonal because under H0 we know the exact distribution of the
empirical diagonal (Theorem 2.4) and so we can obtain the exact distribution of any
test statistic based on it, and therefore such a test will be also useful under small
samples, in contrast with other nonparametric tests which rely on the asymptotic
behavior of their proposed statistics. For example, a first idea would be to work
with a Cramér–von Mises-type test statistic based on the empirical diagonal:

CvMn :=
1

n− 1

n−1∑

j=1

(
δn

( j

n

)
− j2

n2

)2

, (16)
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rejecting H0 whenever CvMn is “too large,” that is, if CvMn ≥ kα for 0 < α < 1 a
given test size, where kα = min{x : Pr [CvMn ≥ x |H0 ] ≤ α }. An analogous test
may be carried out for a random vector of continuous random variables (X,Y, Z)
with Archimedean copula C , using Theorem 3.5 in this work.

Any other statistic based on the empirical diagonal behavior, could be defined
and its exact distribution could be found using Theorems 2.4 and 3.5. The study of
the power of any test based on such statistics are beyond the scope of this paper.

Some of these results appeared in Erdely [11].
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[1] I. Aguiló, J. Suñer, and J. Torrens: Matrix representation of discrete quasi-copulas.
Fuzzy Sets and Systems 159 (2008), 1658–1672.

[2] C. Alsina, M. J. Frank, and B. Schweizer: Associative Functions: Triangular Norms
and Copulas. World Scientific Publishing Co., Singapore 2006.

[3] D. F. Bailey: Counting arrangements of 1’s and −1’s. Math. Mag. 69 (1996), 128–131.

[4] E. Barcucci and M.C. Verri: Some more properties of Catalan numbers. Discrete
Math. 102 (1992), 229–237.

[5] D. Callan: Some bijections and identities for the Catalan and Fine numbers. Séminaire
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[22] A. J. McNeil and J. Nešlehová: Multivariate Archimedean copulas, D-monotone func-
tions and `1-norm symmetric distributions. Ann. Statist, to appear.

[23] R. Mesiar: Discrete copulas – what they are. In: Joint EUSFLAT-LFA 2005, Confer-
ence Proc. (E. Montsenyand P. Sobrevilla, eds.) Universitat Politecnica de Catalunya,
Barcelona 2005, pp. 927–930.

[24] R.B. Nelsen: An Introduction to Copulas. Second edition. Springer, New York 2006.

[25] B. Schweizer and A. Sklar: Probabilistic Metric Spaces. North-Holland, New York
1983.
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México.

e-mails: aerdely@anahuac.mx , gonzaba@sigma.iimas.unam.mx


		webmaster@dml.cz
	2013-09-21T15:07:54+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




