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A COPULA TEST SPACE MODEL
HOW TO AVOID THE WRONG COPULA CHOICE

Frederik Michiels and Ann De Schepper

We introduce and discuss the test space problem as a part of the whole copula fitting
process. In particular, we explain how an efficient copula test space can be constructed by
taking into account information about the existing dependence, and we present a complete
overview of bivariate test spaces for all possible situations. The practical use will be illus-
trated by means of a numerical application based on an illustrative portfolio containing the
S&P500 Composite Index, the JP Morgan Government Bond Index and the NAREIT All
index.
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1. INTRODUCTION

In recent years copulas have been hailed in the literature as promising modeling tools
able to relax assumptions with regard to the distributional aspects of a multivariate
problem. They have been successfully applied in different fields of research such as
biostatistics, e. g. [5], geostatistics, e. g. [7], finance, e. g. [9], decision theory, e. g.
[11], insurance, e. g. [19] and hydrology, e. g. [20].

A ‘copula’ is a dependence function, a mathematical expression which allows
modeling the dependence structure between stochastic variables. As such, copulas
can be used to construct multivariate distribution functions. The main advantage
of the copula approach in this matter is that it is able to split the problem up
into a part containing the marginal distribution functions and a part containing the
dependence structure. These two parts can be studied and estimated separately and
can then be rejoined to form a multivariate distribution function.

However, the downside of the copula method is that it shifts the problem of
identifying the right multivariate distribution function from having a too restrictive
solution space to having a vast amount of possible solutions. Indeed, when tackling
a dependence modeling problem with copulas, one first has to identify an initial
copula space (test space problem) and secondly one has to compare the goodness-
of-fit of the elements of that space (goodness-of-fit problem). Although it is obvious
that these two sub problems are equally important, the first problem has not yet
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received the attention it deserves in the literature. As a consequence, usually only
a small number of recurring copulas is used in a fitting application.

This contribution aims to discuss the test space problem and to tackle a first step
in creating an efficient copula test space, by making a test space comparable. By this
we mean that the test space consists of comparable copulas families with respect to
their dependence range. When it comes to modeling data in a particular fitting ap-
plication, the final copula choice has to be based on more information than only the
degree of dependence. E. g. any knowledge related to tail dependence, symmetry, ex-
treme value behaviour or to the size of the zero set Z(C) = {(u, v) ∈ I|Cθ(u, v) = 0}
will be helpful to enlarge the possibility of a good fit. In this paper we restrict
ourselves to the dependence information as we want to create broad comparable
subsets of copula families from which we can choose in all possible situations. In
a forthcoming paper we come back to these issues in more detail as we report our
investigation of the particular characteristics of the different test spaces.

Although we explain our methodology for bivariate copulas, it can be extended to
fitting applications involving multivariate copula extensions like nested Archimedean
copula constructions or pair wise copula constructions. The subject of multivariate
extension, however, falls beyond the scope of this article. It will be treated in detail
in a forthcoming paper.

The paper is organized as follows. In Section 2 we recall basic concepts of copula
theory. Section 3 is the main part of this paper. We first encompass some important
aspects of the test space problem as well as the pitfalls related to them. Then we
elaborate the idea on how to make a test space comparable. In Section 4 we illustrate
our method by means of an application on financial data, and finally Section 5
concludes.

2. BASIC CONCEPTS

We start with the definition and the most important theorem for copulas. We use
the symbol I to denote the unit interval [0, 1].

Definition 1. A bivariate copula is a function C : I2 → I with the following
properties:

1. C is 2-increasing, or for all u1 ≤ u2, v1 ≤ v2 ∈ I it is true that C(u2, v2) −
C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0.

2. C is grounded, or C(u, 0) = C(0, v) = 0 for all (u, v) ∈ I2.

3. C has uniform [0, 1] margins, or C(u, 1) = u and C(1, v) = v for all (u, v) ∈ I2.

In fact a bivariate copula represents the link between the one dimensional marginal
distribution functions and their bivariate aggregate. This link can be formalized
through the theorem of Sklar [35]:
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Theorem 1. Let H be a bivariate joint distribution function with margins F and
G. Then there exists a copula C in such a way that H(x, y) = C(F (x), G(y)) for all
x, y ∈ R̄.

If F and G are continuous, then C is unique. If not, then C is unique on
imF× imG. Conversely, if C is a copula and F and G are distribution functions,
then a joint distribution function H can be defined as indicated above.

Sklar’s theorem withholds two important facts which are of great value to de-
pendence modeling. The first one includes the observation that copulas facilitate
the construction of joint distribution functions, in the sense that any combination
of margins can be chosen to build their joint aggregate. The second one entails the
observation that any joint distribution function can be split up into a part only con-
taining information related to the respective variables, the margins, and into a part
which captures the dependence structure inherent to the joint distribution function,
the copula.

An important issue when using copulas in a fitting application, is that a copula
family is characterized by usually one or more parameters, allowing it to model a
certain dependence range. In this respect, the following definition is noteworthy:

Definition 2. A family of copulas is called comprehensive if it includes the maxi-
mum copula M(u, v) = min(u, v), the minimum copula W (u, v) = max(u + v− 1, 0)
and the independence copula Π(u, v) = uv for all (u, v) ∈ I2.

To end this section we will discuss two important copula classes. The first class,
called Archimedean copulas, are characterized by a generator ϕ. This is a function
which facilitates the construction, parameter estimation and simulation of this cop-
ula class. Due to this property, Archimedean copulas form a rather popular copula
class and find a wide range of applications. The Archimedean copula, the copula
generator ϕ and its pseudo-inverse are defined in the following way:

Definition 3. A generator ϕ is a continuous, strictly decreasing convex function
defined on I and image [0, +∞). If ϕ(0) = +∞ then the generator is called strict.

The pseudo-inverse of ϕ is the function ϕ[−1] with support [0, +∞) and image I
given by

ϕ[−1] =

{
ϕ[−1](t), 0 ≤ t ≤ ϕ(0)

0, ϕ(0) ≤ t < +∞.

A bivariate Archimedean copula with generator ϕ is the function C : I2 → I defined
by

C(u, v) = ϕ[−1](ϕ(u) + ϕ(v)).

Archimedean copulas have some other interesting properties, which are useful in
the context of the construction of test spaces:

Property 1. Let C be an Archimedean copula with generator ϕ. Then it has the
following properties:

1. C is symmetric; i. e. C(u, v) = C(v, u) for all u, v in I.
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2. C is associative; i. e. C(C(u, v), w) = C(u,C(v, w)) for all u, v in I.
3. If c > 0 is any constant, then c · ϕ is also a generator of C.
Note that the set of Archimedean copulas is a “very large” set, in the sense that

it is easy to create a generator as in Definition 3, resulting in a new Archimedean
copula. See e. g. [33] for a list of 22 bivariate one-parameter Archimedean families.
However, most of these Archimedean copula families are not capable to describe
the whole dependence range. We will come back to this fact in Section 3, when
constructing our test space model.

A second important class is the class of meta-elliptical copulas. This class consists
of copula families derived from elliptically contoured distributions, such as symmetric
Kotz type distributions, symmetric Pearson VII type distributions and symmetric
Pearson II type distributions. Well known members are the Normal, Student’s t and
Cauchy copulas.

More detailed information about this class can be found e. g. in [17].
In the following section, these two large classes of copulas will be used as the

major part of our copula test space.

3. TEST SPACE MODEL

In this section, we will first identify (see subsection 3.1) what we believe are the
necessary aspects of a good test space. Secondly (subsection 3.2), we will explain
how in a specific fitting problem such a test space can be constructed.

Without defining an efficient test space, a fitting application can have an accept-
able result, but it is not sure at all that it will result in the best possible estimate
for the unknown underlying dependence structure. We are confident that with an
efficient test space, many modeling problems will end up with a better fit for the
applications at hand.

3.1. The test space problem

We first state the concept of a copula test space.

Definition 4. A copula test space C̃ is a finite subset of the set C consisting of
members of all possible copula families of which will be chosen from in a particular
fitting application.

Any fitting application typically consists of two fundamentally different inference
problems (see [23]). Firstly, for any parametric copula family in the test space, the
value of the parameter (vector) needs to be estimated. Secondly, one has to test
the goodness-of-fit of the different possible copulas. The fact that we need to tackle
both problems may restrict the final test space C̃ in its composition.

Indeed, the estimation of the parameter(s) can be done e. g. by using asymptotic
maximum likelihood estimation, where the practitioner can choose among other
things between exact maximum likelihood estimation, the IFM method (see [26]) or
the canonical likelihood estimation. These three methods assume that the density
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of the copula exists and as such only absolutely continuous copula families can enter
the test space. Another parameter estimation technique is the one based on bivariate
sample concordance measures such as Kendall’s τ (see [21]) and Spearman’s ρ (see
[33]). When this parameter estimation technique is used, also copulas with singular
components can be taken into account for the creation of the test space. In a
similar way, the type of goodness-of-fit statistic that is used to choose between the
copulas in the test space may restrict the test space. As an example, we mention
the goodness-of-fit statistic based on Rosenblatt’s transform (see e. g. [15]); this
test again requires the existence of the copula density, and hence, only absolutely
continuous copula families can be used. When on the other hand the goodness-
of-fit test is based on the cumulative distribution function, like tests based on the
empirical copula or Kendall’s transform (see e. g. [21]), also copula families with
singular components are allowed.

Any attempt to construct a test space can be regarded as the test space problem.
Apart from the methodological issues with respect to the inference problems stated
above, the following three aspects should be taken into account when creating a test
space:

• size (the number of copula families entering the test space),

• diversity (the various copula properties present in the test space),

• relevance (only comparable copulas entering the test space).

The first and second objective, a sufficiently large and diverse test space, are some-
what related. They are both of great importance as they will increase the possibility
of a good fit and therefore also improve the understanding of the true underlying
dependence structure. Using a large test space is usually not done in the literature,
and as far as we know, there are only a few examples dealing with copula selection
from a large test space. See for example [12] for an application with Archimedean
copulas and [20] for an application with various copula classes.

Especially in the financial literature small test spaces are used, usually containing
three to five copula families. Although many papers contain very nice results, we
strongly believe that the results would be even better if the fitting would have started
from a larger and more diverse test space. In particular, the Gumbel–Hougaard,
Frank and Clayton family1 and the Gaussian and Student’s t family are frequently
used in examples or in fitting applications (see e. g. [1, 3, 6, 7, 10, 14] or [28]).
The motivation for the particular selection of copula families, however, is not always
clear. Most of the time, the choice is based on their wide usage in the literature,
but it also happens that no motivation is given at all.

Closely related to what precedes, but yet different, the third aspect of the test
space problem concerns efficient copula testing, where the goal is to select the rele-
vant copulas from a copula space. With relevant copulas we mean copulas that are
effective to describe a given dependence structure, in terms of their parameter range.
One option of course is to use only comprehensive copulas, which can describe the
whole dependence space, but as this approach limits the modelers’ possibilities this

1The names are used as in [33].
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will also reduce the likelihood of a good fit, as the first and second objective cannot
be met. The opposite is to test a large copula sample without taking into account
any a priori information. This, however, may lead to inefficiencies, since not all
copulas cover the same dependence range. A third possibility, which we prefer, is to
include some information concerning the dependence structure into the construction
of the copula test space. In this way, only really relevant copulas are selected. Al-
though this approach in the literature is often used as a criterion for choosing within
a test space, it has never been used as a strategy for constructing it.

Indeed, generally the copula test space is constructed before the dependence struc-
ture is examined. When e. g. the test space includes the Gumbel–Hougaard or Joe
family, it is implicitly assumed that the data to be modeled are positive dependent,
since both copulas are only able to describe this kind of dependence. A test on
positive quadrant dependency, see e. g. [13], or any a priori knowledge of the depen-
dence structure of the data could ascertain this assumption. When the assumption
does not hold, the choice of the subset can lead to fitting an inadequate copula.
For example in [36], the fit could have been better when another copula than the
Joe family was used, as there was negative dependence in the data of the fitting
application.

The above shows that some a priori knowledge concerning the true dependence
structure can be a first and important step towards an efficient test space, by elimi-
nating copulas with an unappropriate dependence range. In the next subsection, we
will present a possible way of creating universal comparable test spaces which can
be used for fitting applications in different fields of research.

3.2. Creating a large comparable test space

We first focus on the size of C̃. Clearly C is unknown and we have to rely on
existing classes and families in the literature (especially those described in [33] and
[26]). In order to keep our analysis synoptical, at this moment we limit ourselves to
one parameter copula families. This is not too restrictive, as there exists a rather
wide variety in these copula families. We gather 29 of such families from different
classes.

• Archimedean class: 22 Archimedean families (including the popular Clayton,
Frank, Gumbel–Hougaard, Joe and Ali–Mikhail–Haq families);

• Extreme value families: Galambos and Hüsler and Reiss family (also Gumbel–
Hougaard family);

• Meta-elliptical class: Normal, Student’s t family (with as special case the
Cauchy family if df= 1);

• Other families: Farlie–Gumbel–Morgenstern family, Plackett family and Raftery
family.

Based on the 29 families described above we can extend our copula space by
adding for each bivariate family the three associated copula families, defined as
follows (see [26]):
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Definition 5. For any bivariate copula C, we can define the following associated
copulas:

• C ′(u, v) = u− C(u, 1− v),

• C ′′(u, v) = v − C(1− u, v),

• Ĉ(u, v) = u + v − 1 + C(1− u, 1− v).

The first two transformations allow to create positive quadrant dependent (PQD)
families from negative quadrant dependent (NQD) families and vice versa. The third
associated copula is called the ‘survival’ copula as it is the function which is related
to the joint distribution of (1−U , 1− V ), where (U, V ) is a pair of rv’s with copula
C. By including these associated copulas into the test space, a more diverse and
richer test space is obtained.

Noteworthy is the property of some copula families to stay invariant under the
aformentionned transformations. Examples from the 29 families introduced above
are the Frank family, the Farlie–Gumbel–Morgenstern family, the Plackett family
and the families from the meta-elliptical class. We refer to [31, 33], where the in-
variance with respect to these specific transformations is discussed in the light of
symmetry and to [5, 27], where the invariance is investigated in the light of joint
associativity. As a final remark we mention the fact that the first two associated
copulas are often asymmetric, i. e. C(u, v) 6= C(v, u). As a consequence, the trans-
formed families based on Archimedean families do not always hold the Archimedean
property (except e. g. the Frank family and the independence copula Π).

There exist of course other methods to obtain larger families of copulas starting
from the ones described above. Indeed, we can take e. g. a convex linear combination
of a positive quadrant dependent family and a negative dependent family. However,
the resulting family is no longer one-parametric and thus beyond the scope of this
article, and it is therefore left out in our discussions.

The next step consists of making the test space comparable by choosing the
relevant copulas. This is essential in order to know which copulas can be compared
and which copulas can not be compared. We suggest to do this by means of a
powerfull and well-known measure of concordance, namely Kendall’s τ .

In general, the relationship between τ and a copula C can be written as:

τ = 4
∫ 1

0

∫ 1

0

C(u, v) dC(u, v)− 1 = 1− 4
∫ 1

0

∫ 1

0

∂C

∂u
(u, v)

∂C

∂v
(u, v) dudv. (1)

For Archimedean copulas, this can be rewritten in terms of the copula generator
ϕ(t) and its first derivative ϕ′(t), or (see [22])

τ = 1 + 4
∫ 1

0

ϕ(t)
ϕ′(t)

dt ;

for Meta-elliptical families, expression (1) can be reduced to (see [17, 29])

τ =
2
π

arcsin(ρ) ,
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with ρ the correlation coefficient. Associated copula families have tau-values with
the same magnitude as the original family. This is summarized in the following
lemma.

Lemma 1. For any bivariate copula (family) C, with the associated families de-
fined as in Definition 5, we have τC′ = τC′′ = −τC and τĈ = τC .

P r o o f . From (1) we know that τC′ = 1 − 4
∫ 1

0

∫ 1

0
∂C′

∂u (u, v)∂C′

∂v (u, v) dudv. To-
gether with Definition 5, it easily follows that

τC′ = 1− 4
∫ 1

0

∫ 1

0

(
1− ∂C

∂u
(u, 1− v)

)
∂C

∂v
(u, 1− v) dudv

= 1− 4
∫ 1

0

∫ 1

0

∂C

∂v
(u, 1− v) dudv + 4

∫ 1

0

∫ 1

0

∂C

∂u
(u, 1− v)

∂C

∂v
(u, 1− v) dudv.

The first integral is equal to 1/2, and with a substitution v∗ = 1 − v in the second
integral, it follows that τC′ = −τC . The same applies for C ′′. The proof for Ĉ is
completely analogous, resulting now in a τ -value with the same size and the same
sign. ¤

As a consequence, the dependence intervals of the first two associated families
are the reversed version of the dependence intervals of the original families. For the
survival versions of the copula families, the τ ranges remain identical.

Tables 1 to 4 show the results for the range for Kendall’s τ that were obtained for
the 29 one parameter families mentioned earlier. The parameter values for the 29
families are displayed with a 4 digit accuracy. The ranges marked with an asterisk
are obtained by numerical integration of the ratio ϕ(t)

ϕ′(t) , with ϕ the generator of the
corresponding Archimedean copula.

Two remarks should be made with respect to these results. First of all, some
parameter ranges include τ = 0 but cannot describe the independence case (i. e. for
copulas C#2, C#8, C#15, C#16, C#21 and C#26 for df ≤ 2). Secondly, one should
take into account the fact that not all copulas are positively ordered. Some of them,
like copula C#9, C#10 and C#11, are negatively ordered, which means that a positive
increase in their parameter value implies a negative increase in the tau value. In our
analysis we start from a commonly (positively) ordered τ range which we then use
to calculate the respective copula parameters.

Based on the outcomes as presented in Tables 1 to 4, we are now able to reorga-
nize the initial copula space into intervals according to specific dependence ranges,
marked out in terms of Kendall’s τ values. The results are summarized in Table 5.
The table shows a restructuring of the copula space into 13 dependence intervals,
each entry containing 10 to 25 different copulas, with the feasible copula families
marked in grey. If e. g. the data reveal an estimate for Kendall’s τ of about −0.5,
we have to look at the third test space, which we will denote as TS[−0.5649 ; −0.4674).
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Table 1. Parameter ranges in terms of Kendall’s τ for Archimedean families.

# Cθ(u, v) θ ∈ τ ∈
1 (Clayton) max([u−θ + v−θ − 1], 0)−1/θ [−1,∞) \ {0} [-1,1]

2 max
`
1 −

ˆ
(1 − u)θ + (1 − v)θ˜1/θ, 0) [1,∞

´
[−1, 1]

3 (Ali– uv
1−θ(1−u)(1−v) [−1, 1] [ 13 (5 − 8 ln 2), 1

3 ]

Mikhail–Haq)
4 (Gumbel– exp(−[(− ln u)θ + (− ln v)θ ]1/θ) [1,∞) [0, 1]
Hougaard)

5 (Frank) − 1
θ

ln
“
1 + (e−uθ−1)(e−vθ−1)

e−θ−1

”
(−∞,∞) \ {0} [−1, 1]∗

6 (Joe) 1 −
ˆ
(1− u)θ + (1 − v)θ − (1 − u)θ(1− v)θ˜1/θ [1,∞) [0, 1]∗

7 max(θuv + (1 − θ)(u + v − 1), 0) (0, 1] [−1, 0]∗

8 max
h

θ2uv−(1−u)(1−v)
θ2−(θ−1)2(1−u)(1−v)

, 0
i

[1,∞) [−1, 1
3 ]

9 (Gumbel
–Barnett) uv exp(−θ ln u ln v) (0, 1] [−0.3613, 0]∗

10 uv

[1+(1−uθ)(1−vθ)]1/θ
(0, 1] [−0.1817, 0]∗

11 max
`ˆ

uθvθ − 2(1 − uθ)(1 − vθ´˜1/θ, 0) (0, 1/2] [−0.5649, 1]∗

12
`
1 +

ˆ
(u−1 − 1)θ + (v−1 − 1)θ˜1/θ´−1 [1,∞) [ 13 , 1]

13 exp
`
1 −

ˆ
(1 − ln u)θ + (1 − ln v)θ − 1

˜1/θ´ (0,∞) [−0.3613, 1]∗

14
`
1 +

ˆ
(u−1/θ − 1)θ + (v−1/θ − 1)θ˜1/θ´−θ [1,∞) [ 13 , 1]

15 (Genest max
`
1 −

ˆ
(1− u1/θ)θ + (1 − v1/θ)θ˜1/θ, 0

´θ
[1,∞) [−1, 1]

–Ghoudi)

16 1
2
`
S +

q
S2 + 4θ

´
, S = u + v − 1 − θ

“
1
u

+ 1
v

− 1
”

[0,∞) [−1, 0.3333]

17
“
1 + [(1+u)−θ−1][(1+v)−θ−1]

2−θ−1

”−1/θ − 1 (−∞,∞) \ {0} [−0.6109, 1]∗

18 max
`
1 + θ/ ln

ˆ
eθ/(u−1) + eθ/(v−1)˜, 0

´
[2,∞) [ 13 , 1]

19 θ/ ln
`
eθ/u + eθ/v − eθ´ (0,∞) [−0.3333, 1]∗

20
ˆ
ln
`
exp(u−θ) + exp(v−θ) − e

´˜−1/θ (0,∞) [0, 1]∗

21 1 −
`
1 −max

`
[1 − (1 − u)θ ]1/θ + [1 − (1 − v)θ ]1/θ − 1, 0

´θ´1/θ [1,∞) [−1, 1]∗

22 max
“h

1 − (1 − uθ)
q

1 − (1 − vθ)2 − (1 − vθ)
q

1 − (1 − uθ)2
i1/θ

, 0
”

(0, 1] [−0.4674, 0]∗

Table 2. Parameter ranges in terms of Kendall’s τ for extreme value families.

# Cθ(u, v) θ ∈ τ ∈

23 (Galambos) uv exp
“
(− log u)−θ + (− log v)−θ

”− 1
θ

[0,∞) [0, 1]

24 (Hüsler and Reiss) exp
“
log(u)Φ

`
1
θ

+ 1
2
θ log log u

log v

´
+ log(v)Φ

`
1
θ

+ 1
2
θ log log v

log u

´”
[0,∞) [0, 1]∗

Table 3. Parameter ranges in terms of Kendall’s τ for meta-elliptical families.

# Cθ(u, v) ρ ∈ τ ∈
25 (Normal) Φρ(Φ(u)−1, Φ(v)−1) [−1, 1] [−1, 1]

26 (Student’s t) tρ,v(t−1
v (u), t−1

v (v)) [−1, 1] [−1, 1]

Table 4. Parameter ranges in terms of Kendall’s τ for other families.

# Cθ(u, v) θ ∈ τ ∈
27 (Farlie–Gumbel

–Morgenstern) uv + uvθ(1− u)(1− v) [−1, 1] [−2/9, 2/9]

28 (Plackett)
(1+(θ−1)(u+v))−

√
(1+(θ−1)(u+v))2−4uvθ(θ−1)

2(θ−1)
(0,∞) [−1, 1]

29 (Raftery) min(u, v) + 1−θ
1+θ

(uv)1/(1−θ)(1− [max(u, v)]−(1+θ)/(1−θ)) [0, 1] [0, 1]∗
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This comparable copula test space consists of Archimedean copulas C#1, C#2,
C#5, C#7, C#8, C#11, C#15, C#16, C#17 and C#21, and of the meta-elliptical
copulas, but from the extreme value copulas and other copulas, none is qualified for
fitting purposes since extreme value copulas always correspond to situations with a
non-negative value for τ .

The test spaces in Table 5 allow us to solve fitting problems in a more efficient
way, since we now have a clear overview of which copula families can be compared
for a given degree of dependence. In the bivariate case the practical use of Table 5 is
straightforward. After the dependence in the data is examined by means of Kendall’s
τ , it is possible to choose from the table a comparable test space corresponding to the
estimated degree of dependence. Acting in this way, fitting errors will be minimized.

4. EXAMPLE — APPLICATION

In this section, we show how the results of Table 5 can be used in a concrete bivariate
fitting application. We have chosen to work with the same data as used in [28], or
1499 total returns of the S&P500 Composite Index, the JP Morgan Government
Bond Index and the NAREIT All index, over the period from January 4 2002 until
March 13 20082. In particular, our aim is to model all the bivariate margins, i. e.
the dependence structures of three pairs of financial data.

As explained earlier, before the actual construction of the test spaces, it is nec-
essary to make decisions with respect to the inference methods for the parameter
estimation and for the goodness-of-fit tests. For the present example, we have chosen
to use first the sample Kendall’s τ for the estimation of the copula parameters, and
afterwards the Cramér–von Mises goodness-of-fit statistic based on the empirical
copula. For an overview of goodness-of-fit tests, see [18] or [23]. This allows us to
use all the copula families of Table 5, without restriction.

We first obtain the empirical concordance matrix which is displayed in Table 6.

Table 6. Estimated values of Kendall’s τ for the data of the example.

τ stocks bonds real estate

stocks 1 −0.1721 0.4351

bonds −0.1721 1 −0.0599

real estate 0.4351 −0.0599 1

As can be seen in this table, two out of the three τ values indicate a clear negative
dependence, and thus ‘blindly’ creating a test space containing extreme value families
like the Gumbel–Hougaard family would be inefficient. When using the empirical τ
to construct three different, comparable and efficient test spaces, with the associated
copula families this leads to six comparable test spaces, as

[
C, Ĉ

]
and

[
C ′, C ′′]

respectively have the same τ range. In particular, from Table 5 it follows that for
2In the paper of [28], the period covered in the example ended on December 17 2004.
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the present application we have to use test spaces TS[−0.1820,0) (for C and Ĉ) and
TS[0,0.2222) (for C ′ and C ′′) for the stocks-bonds pair, TS[0.3333,1] (for C and Ĉ)
and TS(−0.3613,−0.4674] (for C ′ and C ′′) for the stocks-real estate pair, and finally
TS[−0.1820,0) (for C and Ĉ) and TS[0,0.2222) (for C ′ and C ′′) for the bonds-real estate
pair. The parameter estimation for the copula members in each test space can be
carried out by using their relationship with Kendall’s τ .

In order to assess the goodness-of-fit for each copula member we rely on the
Cramér–von Mises statistic:

Sn =
∫∫

I2
Cn(u)2dCn(u) (2)

where Cn =
√

n(Cn − Cθn). For more details about this technique, we refer to [23].
The next table displays for each data pair the top three best fit copula families

from the different test spaces3. The values between brackets are the p-values, based
on 10000 simulations.

Table 7. Results goodness-of-fit for 3 pairs of financial data

# C (stocks, bonds) C (bonds, real estate) C (stocks, real estate)

1 C′′
#4 0.0411 [0.159] C#26b 0.0127 [0.950] C#26b 0.0152 [0.734 ]

2 C′
#1 0.0510 [0.078] C′′

#4 0.0136 [0.918] C#25 0.0163 [ 0.665]

3 C′′
#6 0.0557 [0.064] C′

#13 0.0156 [ 0.842] C#26a 0.0275 [0.281]

From Table 7 the following remarks can be made:

• The method of comparable test spaces results in all three cases in statistically
significant best fit copulas.

• The method allows for a wide diversity of copulas; more than 50 percent of the
top 3 best fit correspond to copulas that probably would not be used without
including a priori dependence information as in our method.

• No Archimedean family is found in the top 3. Conversely, associated copulas
from Archimedean families do give a good fit when modeling for negative
dependence.

• The pair (stocks, bonds) is best modeled with asymmetric copulas, where the
associated Gumbel family C ′′

#4 provides the best fit.

• The pair (bonds, real estate) is best modeled with the Student’s t family with
10 degrees of freedom, although the asymmetric associated families C ′′

#4 and
C ′

#13 also provide a good fit. This can be due to the low degree of dependence
(τ = −0.0599).

• The strong positive dependence structure of the pair (stocks, real estate) is
clearly best modeled by means of families from the meta-elliptical class.

3The notation C′′
#4 e. g. means that we take the second associated copula for copula 4 or

for the Gumbel–Hougaard copula. The parameter values are estimated by means of the relation
between Kendall’s τ and the (Archimedean) copula as given in (1). For the Student’s t family, 26a
corresponds to a situation with 3 degrees of freedom, and 26b to 10 degrees of freedom.
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5. CONCLUSION

The use of copulas as models for dependence in multivariate data is a very popular
technique for many researchers nowadays. In the present contribution, it is shown
how the goodness-of-fit of this technique can be positively influenced by construct-
ing an adequate copula test space before carrying out the fitting question, and it is
illustrated through a numerical application. We present an overview of such ade-
quate test spaces in the bivariate case, for all possible dependence ranges in terms
of Kendall’s tau. The concept of comparable test spaces can be extended to a mul-
tivariate situation. This investigation is still ongoing, we hope to present the results
in a later paper.
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