Mathematic Slovaca

Beloslav Riečan

On the Carathéodory method of the extension of measures and integrals

Mathematica Slovaca, Vol. 27 (1977), No. 4, 365--374

Persistent URL: http://dml.cz/dmlcz/136156

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1977

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ON THE CARATHEODORY METHOD OF THE EXTENSION OF MEASURES AND INTEGRALS

BELOSLAV RIEČAN

Everybody knows the Carathéodory method of the extension of a measure by using the induced outer measure and its restriction to the family of all measurable sets. Sometimes the idea of the method is used also for the extension of the Daniell integral (see e.g. [7] and [13]). In [13] both processes (for the measure and for the integral) are presented, the latter following the former, so suggestively that we have tried to construct a general theory including these special cases. Here we present the result of our investigation: an extension theory resembling the Carathéodory method for real-valued functions $J: S \rightarrow R$ defined on a sublattice S of a given lattice.

Of course, Topsoe works with an inner measure (a lower integral on non-negative functions, resp.) instead of an outer one. Therefore we follow two ways: the first is "upper" and the second is "lower". Unfortunately, these two ways are not symmetric. So in the first part of the article we present a generalization of the usual Carathéodory method and in the second part a generalization of the Topsoe considerations.

Recall that similar extension theories unifying the measure theory and the integration theory were constructed in [1], [2], [4], [8], [9], [11] and [12]. A review of the field of investigations with references is contained in [10].

First some notations. If $\left(x_{n}\right)_{n=1}^{\infty}$ is a sequence of elements of a lattice H such that $x_{n} \leqq x_{n+1}(n=1,2, \ldots)$ and $x=\bigvee_{n=1}^{\infty} x_{n}$, then write $x_{n} \nearrow x$. If $x_{n} \geqq x_{n+1}(n=1,2, \ldots)$ and $x=\bigwedge_{n=1}^{\infty} x_{n}$, then we write $x_{n} \searrow x$.

Now the assumptions. There is given a distributive, relatively σ-complete, σ-continuous lattice H with the least element O. Here σ-continuity means that $x_{n} \nearrow x, y_{n} \nearrow y$ (or $x_{n} \searrow x, y_{n} \searrow y$, resp.) implies $x_{n} \wedge y_{n} \nearrow x \wedge y\left(x_{n} \vee y_{n} \searrow x \vee y\right.$, resp.)

Relative σ-completness means that every countable bounded subset of H has the least upper bound and the greatest lower bound.

On the lattice H there are given two binary operations + , satisfying the following conditions:

1) + is commutative.
2) If $x \leqq y$ and $z \in H$, then $x+z \leqq y+z, z \backslash x \geqq z \backslash y, y \backslash z \geqq x \backslash z$.
3) $x=(x \wedge y)+(x \backslash y)$ for all $x, y \in H$.
4) $(x \backslash y) \vee(x \backslash z)=x \backslash(y \wedge z)$ for all $x, y, z \in H$.
5) $(x \backslash y) \wedge(x \backslash z)=x \backslash(y \vee z)$ for all $x, y, z \in H$.
6) If $y_{n} \searrow y$ and $x \in H$, then $x \backslash y_{n} \nearrow x \backslash y$.

The basic examples of the presented structure are the following two: 1) A ring H of sets (or more general a Boolean algebra H) with + as the set-theoretic union and \backslash as the set-theoretic difference. 2) A positive cone H of real-valued functions (or more general the set of all positive elements of an Abelian lattice ordered group) with + as the sum of two functions and $f \backslash g=f-\min (f, g)(f \backslash g$ must be a positive function).

But let us go on. For constructing the Carathéodory measurability process we need an initial function. Denote it by J_{0} and its domain by B. Hence we have a sublattice B of the lattice H closed under the operation + . As regards B we assume further that to any $x \in H$ there is such a $b \in B$ that $b \geqq x$. Finally, we assume that there is given a mapping $J_{0}: B \rightarrow R \cup\{\infty\}$ satisfying the following conditions:
(i) $J_{0}(O)=0$.
(ii) If $x \leqq y, x, y \in B$, then $J_{0}(x) \leqq J_{0}(y)$.
(iii) $J_{0}(x)+J_{0}(y) \geqq J_{0}(x \vee y)+J_{0}(x \wedge y)$ for every $x, y \in B$.
(iv) If $x_{n} \nearrow x, x_{n} \in B, x \in H(n=1,2, \ldots)$, then $x \in B$ and $J_{0}(x)=\lim _{n \rightarrow \infty} J_{0}\left(x_{n}\right)$.
(v) $J_{0}(x+y) \leqq J_{0}(x)+J_{0}(y)$ for every $x, y \in B$.

Definition 1.1 For every $x \in H$ we put

$$
J^{*}(x)=\inf \left\{J_{0}(b) ; b \geqq x, b \in B\right\} .
$$

What is the meaning of J^{*} in our classical examples? In the measure theory J^{*} is essentially the induced outer measure. If μ is a non-negative measure defined on a ring A, then the induced outer measure is given by the equality

$$
\mu^{*}(x)=\inf \left\{\sum_{i=1}^{\infty} \mu\left(a_{i}\right) ; x \subset \bigcup_{i=1}^{\infty} a_{i}, a_{i} \in A\right\} .
$$

The same effect can be obtained if we put first $B=\left\{b ; \exists a_{n} \in A, a_{n} \nearrow b\right\}$ and $J_{0}(b)=\lim _{n \rightarrow \infty} \mu\left(a_{n}\right)$ and then $\mu^{*}(x)=\inf \left\{J_{0}(b) ; b \supset x, b \in B\right\}$. By the way, the
modification of the Carathéodory method is used in the known book [6] by Neveu on the probability theory.

In our second example J^{*} can be called an upper integral. This construction (from an elementary integral $J: A \rightarrow R$ through B, J_{0} to H, J^{*}) was used in many papers and books, e.g. in [1], [8], [9] or in Krickeberg's well-known book [5] on the probability theory.

Here we are not interested in the construction of B and J_{0}, we determine them axiomatically.

Now some results.
Lemma 1.1 J^{*} is an extension of J_{0}, J^{*} is non decreasing and $J^{*}(x+y) \leqq$ $J^{*}(x)+J^{*}(y), J^{*}(x)+J^{*}(y) \geqq J^{*}(x \vee y)+J^{*}(x \wedge y), J^{*}(y) \leqq J^{*}(x \wedge y)+J^{*}(y \backslash x)$ for e $v-$ ery $x, y \in H$.

Proof. The two first assertions are obvious. The third assertion follows from Axioms 2 and (v), the fourth assertion follows from (iii) and the last from 2,3 and (v).

Definition 1.2. Denote by M the set of all $x \in H$ satisfying the following condition:

$$
J^{*}(y)=J^{*}(y \wedge x)+J^{*}(y \backslash x)
$$

for every $y \in H$.
Lemma 1.2. An element x belongs to M if and only if

$$
J^{*}(a) \geqq J^{*}(x \wedge a)+J^{*}(a \backslash x)
$$

for every $a \in B$.
Proof. It follows from the inequality $J^{*}(y) \leqq J^{*}(x \wedge y)+J^{*}(y \backslash x)$ and Axiom 2.
Theorem 1.1. M is a sublattice of the lattice H.
Proof. Let $x, y \in M, a \in B$. By the second inequality in Lemma 1.1 and the distributive law we have

$$
\begin{gathered}
J^{*}(a \wedge x \wedge y)=J^{*}((a \wedge x) \wedge(a \wedge y)) \leqq \\
\leqq J^{*}(a \wedge x)+J^{*}(a \wedge y)-J^{*}(a \wedge(x \vee y))
\end{gathered}
$$

By the same inequality, Axioms 4 and 5 we obtain

$$
\begin{aligned}
& J^{*}(a \backslash(x \wedge y))=J^{*}((a \backslash x) \vee(a \backslash y)) \leqq \\
& \leqq J^{*}(a \backslash x)+J^{*}(a \backslash y)-J^{*}(a \backslash(x \vee y)),
\end{aligned}
$$

hence

$$
J^{*}(a \wedge(x \wedge y))+J^{*}(a \backslash(x \wedge y)) \leqq
$$

$$
\begin{gathered}
\leqq J^{*}(a \wedge x)+J^{*}(a \backslash x)+J^{*}(a \wedge y)+J^{*}(a \backslash y)- \\
-J^{*}(a \wedge(x \vee y))-J^{*}(a \backslash(x \vee y)) .
\end{gathered}
$$

But (by 3)

$$
a=(a \wedge(x \vee y))+(a \backslash(x \vee y)) .
$$

hence (by Lemma 1.1)

$$
J^{*}(a) \leqq J^{*}(a \wedge(x \vee y))+J^{*}(a \backslash(x \vee y))
$$

and therefore

$$
\begin{aligned}
& J^{*}(a \wedge(x \wedge y))+J^{*}(a \backslash(x \wedge y)) \leqq \\
& \leqq J^{*}(a)+J^{*}(a)-J^{*}(a)=J^{*}(a)
\end{aligned}
$$

The last inequality and Lemma 1.2 imply $x \wedge y \in M$. The relation $x \vee y \in M$ can be proved similarly.

Lemma 1.3. Let $x_{1}, \ldots, x_{n} \in H, x_{1} \leqq x_{2} \leqq \ldots \leqq x_{n}, x_{i} \leqq a_{i}, a_{i} \in B, J^{*}\left(x_{i}\right)+\frac{\varepsilon}{2^{\star}}>J_{0}\left(a_{i}\right)$ $(i=1, \ldots, n)$. Then

$$
J_{0}\left(\bigvee_{i=1}^{n} a_{i}\right) \leqq J_{0}\left(a_{n}\right)+\sum_{i=1}^{n-1} \frac{\varepsilon}{2^{i}} .
$$

Proof. The assertion can be easily proved by induction.
The following lemma is a generalization of a theorem due to Choquet ([3]).
Lemma 1.4. If $x_{n} \nearrow x, x_{n} \in H(n=1,2, \ldots), x \in H$, then $J^{*}\left(x_{n}\right) \not J^{*}(x)$.
Proof. Evidently $\lim _{n \rightarrow \infty} J^{*}\left(x_{n}\right) \leqq J^{*}(x)$ and the equality holds if $\lim _{n \rightarrow \infty} J^{*}\left(x_{n}\right)=\infty$. If $\lim _{n \rightarrow \infty} J^{*}\left(x_{n}\right)<\infty$, then $J^{*}\left(x_{n}\right)<\infty(n=1,2, \ldots)$. Take $\varepsilon>0, b \geqq x$ and a_{n} such that

$$
J^{*}\left(x_{n}\right)+\frac{\varepsilon}{2^{n}}>J_{0}\left(a_{n}\right), x_{n} \leqq a_{n} \leqq b
$$

By Lemma 1.3 we have

$$
J^{*}\left(x_{n}\right)+\sum_{i=1}^{n} \frac{\varepsilon}{2^{i}} \geqq J_{0}\left(\bigvee_{i=1}^{n} a_{i}\right) .
$$

Since $\bigvee_{i=1}^{n} a_{i} \leqq b(n=1,2, \ldots)$, there exists $\bigvee_{i=1}^{\infty} a_{i}, x \leqq \bigvee_{i=1}^{\infty} a_{i}$ and by Axiom (iv)

$$
J_{0}\left(\bigvee_{i=1}^{\infty} a_{i}\right)=\lim _{n \rightarrow \infty} J_{0}\left(\bigvee_{i=1}^{n} a_{i}\right),
$$

hence

$$
J^{*}(x) \leqq J_{0}\left(\bigvee_{i=1}^{\infty} a_{i}\right) \leqq \lim _{n \rightarrow \infty} J^{*}\left(x_{n}\right)+\varepsilon
$$

and therefore

$$
J^{*}(x) \leqq \lim _{n \rightarrow \infty} J^{*}\left(x_{n}\right) .
$$

Theorem 1.2. If $y_{n} \in M(n=1,2, \ldots), y_{n} \nearrow y \in H$, then $y \in M$. (Of course, $J^{*}(y)=\lim _{n \rightarrow \infty} J^{*}\left(y_{n}\right)$ by Lemma 1.4.)

Proof. Let $a \in B$. Then

$$
J^{*}(a)=J^{*}\left(a \wedge y_{n}\right)+J^{*}\left(a \backslash y_{n}\right) \geqq J^{*}\left(a \wedge y_{n}\right)+J^{*}(a \backslash y) .
$$

Since H is σ-continuous,

$$
a \wedge y_{n} \nearrow a \wedge y
$$

hence by Lemma 1.4

$$
J^{*}(a) \geqq \lim _{n \rightarrow \infty} J^{*}\left(a \wedge y_{n}\right)+J^{*}(a \backslash y)=J^{*}(a \wedge y)+J^{*}(a \backslash y) .
$$

i.e. $y \in M$.

Theorem 1.3. If $z_{n} \in M(n=1,2, \ldots), z_{n} \backslash z \in H$, then $z \in M$. If $\lim _{n \rightarrow \infty} J^{*}\left(z_{n}\right)<\infty$, then $J^{*}(z)=\lim _{n \rightarrow \infty} J^{*}\left(z_{n}\right)$.

Proof. Let $a \in B$. Then

$$
J^{*}(a)=J^{*}\left(a \wedge z_{n}\right)+J^{*}\left(a \backslash z_{n}\right) \geqq J^{*}(a \wedge z)+J^{*}\left(a \backslash z_{n}\right)
$$

By Axiom 6 we have $a \backslash z_{n} \nearrow a \backslash z$, hence by Lemma 1.4

$$
J^{*}(a \backslash z)=\lim _{n \rightarrow \infty} J^{*}\left(a \backslash z_{n}\right) .
$$

Therefore

$$
\begin{gathered}
J^{*}(a) \geqq J^{*}(a \wedge z)+\lim _{n \rightarrow \infty} J^{*}\left(a \backslash z_{n}\right)= \\
=J^{*}(a \wedge z)+J^{*}(a \backslash z) \geqq J^{*}(a),
\end{gathered}
$$

i.e. $z \in M$. Simultaneously

$$
\begin{aligned}
J^{*}(a) & =\lim _{n \rightarrow \infty} J^{*}\left(a \wedge z_{n}\right)+\lim _{n \rightarrow \infty} J^{*}\left(a \backslash z_{n}\right)= \\
& =\lim _{n \rightarrow \infty} J^{*}\left(a \wedge z_{n}\right)+J^{*}(a \backslash z),
\end{aligned}
$$

hence

$$
\lim _{n \rightarrow \infty} J^{*}\left(a \wedge z_{n}\right)+J^{*}(a \backslash z)=J^{*}(a \wedge z)+J^{*}(a \backslash z)
$$

If $J^{*}\left(z_{k}\right)<\infty$ for some k, then there is $a_{0} \in B, a_{0} \geqq z_{k}$ such that $J^{*}\left(a_{0}\right)<\infty$. Then also $J^{*}\left(a_{0} \backslash z\right)<\infty$ and

$$
\lim _{n \rightarrow \infty} J^{*}\left(z_{n}\right)=\lim _{n \rightarrow \infty} J^{*}\left(a_{0} \wedge z_{n}\right)=J^{*}\left(a_{0} \wedge z\right)=J^{*}(z)
$$

Remark. Does there hold $B \subset M$? Yes, if $J_{0}(a)=J_{0}(a \wedge b)+J_{0}(a \backslash b)$ for all a, $b \in B$. Namely, $b \in B$ and

$$
J_{0}(a)=J_{0}(a \wedge b)+J_{0}(a \backslash b)=J^{*}(a \wedge b)+J^{*}(a \backslash b)
$$

imply $b \in M$.

2

First the new axioms. H is a relatively σ-complete lattice with the least element O. There are two binary operations,$+ \backslash$ on H satisfying the conditions $1,2,3,4$, 5 and
$2^{\prime} .(x+y) \backslash x \leqq y, x+y \geqq y$ for every $x, y \in H$; if $x, y \in H, x \leqq y$, then $x \backslash y=O$.
6^{\prime}. If $y_{n} \nearrow y, y_{n}, y \in H(n=1,2, \ldots)$, then $x \backslash y_{n} \searrow x \backslash y$. Further, there is a sublattice C of H closed under the operation + , containing O and such that $a_{n} \in C(n=1,2, \ldots)$ implies $\bigwedge_{n=1}^{\infty} a_{n} \in C$. (C plays here a similar role as the family of compact sets in the measure theory.)

Finaly, we shall list some properties of an initial mapping $J_{0}: C \rightarrow R$. But first one more notion: Two elements $a, b \in H$ are called disjoint if there are such $x, y \in H$ that $a \leqq x$ and $b \leqq y \backslash x$.

The mapping $J_{0}: C \rightarrow R$ satisfies the following conditions: (i), (ii),
(iii') $J_{0}(x)+J_{0}(y) \leqq J_{0}(x \vee y)+J_{0}(x \wedge y)$ for every $x, y \in B$.
(iv') If $a_{n} \searrow a, a_{n} \in C(n=1,2, \ldots)$, then $J_{0}(a)=\lim _{n \rightarrow \infty} J_{0}\left(a_{n}\right)$.
(v^{\prime}) If a, b are disjoint, $a, b \in C$, then $J_{0}(a+b)=J_{0}(a)+J_{0}(b)$.
Definition 2.1. For every $x \in H$ we define

$$
J_{*}(x)=\sup \left\{J_{0}(a) ; a \leqq x, a \in C\right\} .
$$

Lemma 2.1. J_{*} is an extension of $J_{0}, J *$ is non decreasing and for every $x, y \in H$ $J *(x)+J *(y) \leqq J *(x \vee y)+J *(x \wedge y)$ and $J *(x+y) \geqq J *(x)+J *(y)$ for every two disjoint elements $\boldsymbol{x}, \boldsymbol{y}$.

Proof. We prove only the last assertion, the three first being trivial. If $J *(x+y)=\infty$, then the claimed inequality holds. Let $J *(x+y)<\infty$. Then by Axiom 2' also $J *(x)<\infty$ and $J *(y)<\infty$. Hence to every $\varepsilon>0$ there are $a, b \in C$ such that $a \leqq x, b \leqq y$ and

$$
J_{*}(x)-\varepsilon<J_{0}(a), \quad J_{*}(y)-\varepsilon<J_{0}(b) .
$$

The elements a, b are disjoint, since x, y are disjoint. Therefore

$$
J_{*}(x+y) \geqq J_{0}(a+b)=J_{0}(a)+J_{0}(b)>J_{*}(x)+J_{*}(y)-2 \varepsilon
$$

by Axioms 2 and $\left(\mathrm{v}^{\prime}\right)$, hence the assertion follows.
Definition 2.2. By M we denote the set of elements $x \in H$ with the following property:

$$
J_{0}(a)=J_{*}(a \wedge x)+J_{*}(a \backslash x)
$$

for arbitrary $a \in C$.
Lemma 2.2. If $x \in M$, then for every $y \in H$ there holds

$$
J *(y)=J *(x \wedge y)+J *(y \backslash x)
$$

Proof. The elements $y \wedge x$ and $y \backslash x$ are evidently disjoint. Hence by Axiom 3 and Lemma 2.1

$$
J *(y)=J *((y \wedge x)+(y \backslash x)) \geqq J_{*}(y \wedge x)+J *(y \backslash x) .
$$

On the orther hand, for every $a \in C, a \leqq y$ we have

$$
J_{0}(a)=J_{*}(a \wedge x)+J *(a \backslash x) \leqq J_{*}(y \wedge x)+J *(y \backslash x),
$$

hence

$$
J_{*}(y)=\sup \left\{J_{0}(a) ; a \in C, a \leqq y\right\} \leqq J_{*}(y \wedge x)+J_{*}(y \backslash x) .
$$

Lemma 2.3. If $x \in M$, then for every $y \in H$ there holds

$$
J *(x+y) \leqq J *(x)+J *(y)
$$

Proof. By Lemma 2.2 we obtain

$$
J *(x+y)=J *((x+y) \wedge x)+J *((x+y) \backslash x) .
$$

But Axiom 2' implies $x+y \geqq x$, hence $(x+y) \wedge x=x$ and also $(x+y) \backslash x \leqq y$. Therefore $J *(x+y) \leqq J *(x)+J *(y)$.

Lemma 2.4. An element $x \in H$ belongs to M if and only if for every $a \in C$ we have

$$
J *(a) \leqq J *(a \wedge x)+J *(a \backslash x)
$$

Proof. The part "only if" is clear. Let $J_{*}(a) \leqq J_{*}(a \wedge x)+J_{*}(a \backslash x)$ for every $a \in C$. The elements $a \wedge x, a \backslash x$ are disjoint, hence by Lemma $2.1 J *(a)=$ $J *((a \wedge x)+(a \backslash x)) \geqq J *(a \wedge x)+J *(a \backslash x)$.

Theorem 2.1. M is a sublattice of the lattice H.
Proof. Let $x, y \in M, a \in C$. By Lemma 2.1, the distributive law and Axioms 4 and 5 we obtain

$$
\begin{gathered}
J *(a \wedge x \wedge y) \geqq J *(a \wedge x)+J *(a \wedge y)-J *(a \wedge(x \vee y)), \\
J *(a \backslash(x \wedge y)) \geqq J *(a \backslash x)+J *(a \backslash y)-J *(a \backslash(x \vee y)) .
\end{gathered}
$$

Since the elements $a \wedge(x \vee y), a \backslash(x \vee y)$ are disjoint, we have by Lemma 2.1 and Axiom 3

$$
J *(a) \geqq J *(a \wedge(x \vee y))+J *(a \backslash(x \vee y)),
$$

hence

$$
J_{*}(a \wedge x \wedge y)+J_{*}(a \backslash(x \wedge y)) \geqq J_{*}(a)
$$

Lemma 2.4 then implies that $x \wedge y \in M$. The relation $x \vee y \in M$ can be proved similarly.

The following lemma is analogous to Lemma 1.4 and therefore we omit its proof.
Lemma 2.5. Let $x_{n} \searrow x, x_{n} \in H \quad(n=1,2, \ldots), x \in H, \lim _{n \rightarrow \infty} J *\left(x_{n}\right)<\infty$. Then $J *\left(x_{n}\right) \backslash J *(x)$.

Theorem 2.2. If $y_{n} \in M(n=1,2, \ldots), y_{n} \nearrow y \in H$, then $y \in M$ and $J *(y)=$ $\lim _{n \rightarrow \infty} J *\left(y_{n}\right)$.

Proof. Let $a \in C$. Then

$$
J *(a)=J *\left(a \wedge y_{n}\right)+J *\left(a \backslash y_{n}\right) \leqq J *(a \wedge y)+J *\left(a \backslash y_{n}\right) .
$$

Since $J_{*}(a)=J_{0}(a) \in R$, also $J *\left(a \backslash y_{n}\right)<\infty$. Then by Lemma 2.5 and the relation $a \backslash y_{n} \searrow a \backslash y$ we obtain

$$
\lim _{n \rightarrow \infty} J *\left(a \backslash y_{n}\right)=J *(a \backslash y)
$$

Therefore

$$
J *(a) \leqq J *(a \wedge y)+\lim _{n \rightarrow \infty} J *\left(a \backslash y_{n}\right)=J *(a \wedge y)+J *(a \backslash y)
$$

hence $y \in M$ by Lemma 2.4. Evidently $J *(y) \geqq \lim _{n \rightarrow \infty} J *\left(y_{n}\right)$. Take $a \leqq y, a \in C$. Then $a \backslash y_{n} \searrow a \backslash y=O$ by Axiom 2'. Therefore

$$
\begin{gathered}
J *(a)=\lim _{n \rightarrow \infty} J *\left(y_{n} \wedge a\right)+\lim _{n \rightarrow \infty} J *\left(a \backslash y_{n}\right)= \\
=\lim _{n \rightarrow \infty} J *\left(y_{n} \wedge a\right)+0 \leqq \lim _{n \rightarrow \infty} J *\left(y_{n}\right),
\end{gathered}
$$

hence

$$
J *(y)=\sup \left\{J_{0}(a) ; a \leqq y\right\}=\lim _{n \rightarrow \infty} J *\left(y_{n}\right)
$$

Theorem 2.3. If $z_{n} \in M(n=1,2, \ldots), z_{n} \searrow z, z \in H$, then $z \in M$.
Proof. Take $a \in C$. Then

$$
J *(a)=J *\left(a \wedge z_{n}\right)+J *\left(a \backslash z_{n}\right) \leqq J *\left(a \wedge z_{n}\right)+J *(a \backslash z) .
$$

Since $J *\left(a \wedge z_{n}\right)<\infty$ and $a \wedge z_{n} \searrow a \wedge z$, we have by Lemma 2.5

$$
J *(a) \leqq \lim _{n \rightarrow \infty} J *\left(a \wedge z_{n}\right)+J *(a \backslash z)=J *(a \wedge z)+J *(a \backslash z) .
$$

i.e. $z \in M$ by Lemma 2.4.

Remark. We present two sufficient conditions for the inclusion $C \subset M$. The first: J_{0} is tight if for every $a, b \in C, a \leqq b$ there holds

$$
J_{0}(b)-J_{0}(a)=J_{*}(b \backslash a)
$$

Hence for every $c \in C$ we have

$$
J_{0}(a)-J_{0}(a \wedge c)=J_{*}(a \backslash(a \wedge c))
$$

or

$$
J_{0}(a)=J_{*}(a \wedge c)+J_{*}(a \backslash c)
$$

(Of course, we used moreover the equality $a \backslash(a \wedge c)=a \backslash c$ holding in both special cases, rings of sets as well as cones of real-valued functions.)

The second condition is more simple, but it is not valid in the case where C is the family of all compact sets: the closeness of C with respect to \backslash. Under the assumption ($a \wedge c, a \backslash c$ are disjoint)

$$
J_{0}(a)=J_{0}((a \wedge c)+(a \backslash c))=J_{0}(a \wedge c)+J_{0}(a \backslash c)
$$

REFERENCES

[1] ALFSEN E. M.: Order theoretic foundations of integration, Math. Ann. 149, 1963, 419-461.
[2] BREHMER S.: Verbandtheoretische Charakterisierung des Mass- und Integralbegriffs von Carathéodory, Potsdam. Forsch. 1974, B, No 3, 88-91.
[3] CHOQUET G.: Theory of capacities, Annales Inst. Fourier 5, 1953-54, 131-295.
[4] FUTÁŠ E.: Extension of continuous functionals, Mat. Čas. 21, 1971, 191-198.
[5] KRICKEBERG K. : Probability theory, New York 1965.
[6] NEVEU J.: Bases mathématique du calcul des probabilités, Paris 1964.
[7] PUGLISI M.: Seminorme di Beppo Levi ed integrali di Daniel sopra uno spazio die Riesz astratto, Ricerche di Matematica 13, 1969, 181-214.
[8] RIEČAN B.: О непрерывном продолжении монотонных функционалов некоторого типа. Mat.-fyz. Čas. 15, 1965, 116-125.
[9] RIEČAN B.: О продолжении операторов с значениями в линейних полуупорядоченных пространствах Čas. pěst. mat. 93, 1968, 459-471
[10] RIEČAN B.: On the unified measure and integration theory, Acta fac. rer. nat. Univ. Comen.
[11] RIEČAN B.: Extension of measure and integral by the help of a pseudometric, Math. Slovaca 27, 1977, 143-152.
[12] ŚABO M.: On an extension of finite functional by the transfinite induction, Math. Slovaca 26, 1976, 193-200.
[13] TOPSOE F.: Topology and measure, Springer lecture notes 133, Berlin 1970, Matematika 16:4, 1972, 90-148.

Received March 2, 1976
Katedra numerickej matematiky a matematickej štatistiky PFUK Mlynská dolina
81631 Bratislava

О МЕТОДЕ КАРАТЭОДОРИ ПРОДОЛЖЕНИЯ МЕР И ИНТЕГРАЛОВ

Белослав Риечан
Резюме

Доказывается теорема о продолжении для вещественных функций определенных на некоторой подструктуре данной структуры. Теорема о продолжении меры и теорема о продолжении интәграла являются частными случаями этого результата.

