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REPRESENTATIONS OF FINITE LATTICES 
BY ORDERS ON FINITE SETS 

BOHUSLAV SIVAK 

1. Introduction 

We are going to characterize finite lattices which can be represented by orders on 
some finite sets. This problem was put forward by Sche in [2], where the following 
representation theorem was proved. 

Theorem 1.1. Every algebra of the form (F, o, n ) , where F is a set of orders 
(reflexive, antisymmetric and transitive binary relations) on some set closed under 
the relative product o and the set-theoretical intersection n is a lattice, and every 
lattice is isomorphic to a lattice of this form. 

The construction used by Schein in the proof of Theorem 1.1 gives for finite 
lattices representations by orders on infinite countable sets. 

Lemma 1.1. Let (A, T) be an ordered set (it means, A is a set and x is an order 
on A) and let S(A, T) be the set of all orders nonA such that r\ c r ordered by the 
set-theoretical inclusion. Then S(A, r) is a lattice with the operations v (transitive 
span of the union) and n (intersection). 

Definition 1.1. Let L be a lattice and let ( A , T ) be an ordered set. Any 
monomorphism of lattices L -* S(A, T) will be called a representation of the lattice 
L on the set A. This representation is said to be finite ifL and A are finite, and it is 
said to be commutative if the images of any two elements ofL commute (under the 
operation o). 

The lattice L will be called finitely (commutatively, finitely commutatively) 
representable if it has a finite (commutative, finite commutative) representation. 
The class of all finitely (finitely commutatively) representable lattices will be 
denoted by FR (FCR). 

By Theorem 1.1, every lattice has some commutative representation. Schein's 
problem can be formulated in the following way: Which finite lattices are finitely 
commutatively representable? 
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Lemma 1.2. The classes FR, FCR are closed under isomorphisms and formation 
of sublattices. 

Lemma 1.3. The classes FR, FCR are closed under finite direct products. 
Proof. Let Lx, L2 be finitely representable lattices. Then there exist representa­

tions r, of Li on some finite sets At. We can assume A, to be disjoint. Then the 
assignment 

(xx, x2)i-+rx(xx)ur2(x2), xt eL, 

defines a finite representation of the lattice LxxL2 on the set A!uA 2 . This 
representation is commutative if r, are commutative. 

2. Small congruences on lattices 

The notion of small congruence will allow us to characterize the class FR. 

Definition 2.1. Let G be a congruence on a lattice L. We call 0 small if there 
exists a homomorphism ofsemilatticescp: (L, A)—> {0,1} such that its restriction to 
each class of the congruence 0 is injective. 

Lemma 2.1. Lef 0 be a small congruence on a lattice, A its class and cp the 
homomorphism of semilattices corresponding to 0. Then either A is a singleton, or 
A ={a0 , ax), where ax>a0, (p(ao) = 0, cp(ax) = 1. 

Lemma 2.2. Let 0 be a non-trivial (not equal to the diagonal co) small 
congruence on a finite lattice L, q the corresponding homomorphism of semilatti­
ces, D, the set of all elements x eL such that q(x) = 1 and the class [x]0 has two 
elements. Then: 

(i) <p-1(l) is a filter in L. 
(ii) D, is a subsemilattice of q~l(l). 

(Hi) q~\l)= (dx, 1), where dx is the least element of Dx and 1 is the greatest 
element of L. 

(iv) For all xeDx, (dx,x)^Dx. 
(v) 0 is an atom in Con(L), the lattice of all congruences on L. 

Proof. As q is a homomorphism of semilattices, (i) and (ii) trivially hold. 
Choose xeq~l(l). Then q(x) = l and 1 = <p(JC) = q(x)Aq(dx) = q(xAdx). If 
[d i]0 = {di, do}, then <p(do) = 0, (D(jCAdo) = 0, therefore {jcAd0, JCAd!} is 
a two-element class of 0 and x/\dxeDx. As di is the least element of D, , 
JCAd, = d, and JC e (dx, 1). We proved <p_1(l)c (dx, 1). 

Choose xe(dx, 1), then q(x) = <P(JC)A1 = q(x)Aq(dx) = q(xAdx) 
= q(dx)=l. We proved (dx,l) czq~l(l). 

Choose JCGD, , y e ( d , , j c ) . There exists JC 'GL such that q(x') = 0, [x]0 = 
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{JC,JC'}. Then cp(jc'Ay) = 0, JCAy=y, qp(y) = l, therefore je'Ay is the second 
element of [y]6> and y eDx. We proved (iv). 

Choose (x, y)e& such that j c<y . As JCAd! 0 y/\dx = dx and q)(x/\dx) = 0, 
xAdx = d0 and jc^d 0 . Similarly, jcvd! 0 xvd0 = x and q>(xvdx) = l, therefore 
JC v dx = y. (See fig. 1) This holds for each ( j c , y ) e©, j c<y , therefore 0 is an atom. 

Fig.l 

By Lemma 2.2, if 0 is a non-trivial small congruence on a finite lattice, then the 
corresponding homomorphism of semilattices is uniquely determined. In fact, the 
set Dx can be defined without using <p. 

Lemma 2.3. Let L be a finite lattice, D c L a subsemilattice, d its least element 
and (d,x) c D for all xeD. Form the following subset of L x {0,1} : 

L ' = [ ( d , l > x { l } ] u [ ( L - ( ( d , l > - D ) ) x { 0 } ] . 

This set with a termwise order is a lattice with the following operations: 

( jc , l )v(y , l ) = (jc, l)v(y,0) = (jc,0)v(y,l) = ( jcvy , l ) , 

(jc,0)v(y,0) = ( jcvy , l ) , if jcvy e ( d , l > - D , 

(jc,0)v(y,0) = (jcvy,0), if JCvy e (L - < d , l » u D , 

(*,0A(y,/) = (*Ay,/A/). 

The relation 0 = {((JC,O), (JC,1))|JC eD}u{(( jc , l ) , (JC,0))|JC eD}u<yL. is a small 
congruence on U, the corresponding homomorphism of semilattices is the projec­
tion (JC,i)»->i and the factor lattice L' 10 is isomorphic to L. 

The proof is trivial. Note that if D is an interval in L, then the just described 
construction is identical with the "interval construction" of A. Day [1]. 
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Lemma 2.4. Let Lbea finite lattice, 0 a non-trivial small congruence on L. Then 
the construction described in Lemma 2.3 used for the lattice L/0 and its subsemi-
lattice {[x]0\x G D , } gives a lattice isomorphic to L. 

Lemma 2.5. Let L be a finite lattice, O and A two different non-trivial small 
congruences on L, <p the homomorphism of semilattices corresponding to 0. Then 
<p is constant on each class of the congruence A. 

Fig.2 

Proof. Let du d0 be the same elements as in Lemma 2.2 and its proof, {a, b} a 
class of the congruence A and a <b. If <p is not constant on the class {a, b}, then 
<p(a) = 0, cp(b) = \. The elements ar\d0, a/\dx are in the same class of the 
congruence 0 and <p(a Ad0) = <p (a A di) = 0, therefore a Ad0 = a Adu As q>(b)=\, 
b/\dx = dx and we have: 

a Adx = a Ad0^d0<di = b Adi, (a Adi, b Adi)eA , 

therefore (d0, di)eA, a contradiction, as by Lemma 2.2 (v), An6> = c0. 

Lemma 2.6. Let L be a finite lattice, 0 a small and A any congruence on L. Let 
{x0, j c j and {y0, y j be classes of 0, x0<xu y0<yu Then (x0,y0)eX iff 
(xuyx)ek. 

Proof. Let <p be the homomorphism of semilattices corresponding to 0, 
Zi =Xir Ay,. Then {z0, Zi} is a class of 0, <p(z() = /. The intervals (z0, x0) and (zu xx) 
are transposed, (z0, y0) and (z i ,y i ) too. 

Assume (x0, yo)eA. Then (z0,x0)ek, (z0,y0)ek, therefore (zi,xx)ek, (zuyi) 
eA. (See fig. 2) We proved that (x0,y0)eX implies (xuyi)ek. Similarly, 
(JCI, yx)ek implies (x0,y0)ek. 
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Lemma 2.7. Let 0, A be small congruences on a finite lattice L. Then 
OokoG cAo@oA. 

Proof. Assume (a, b)e0oko0 -Ao0oA. Then 0 is not trivial. Let cp be the 
corresponding homomorphism of semilattices. There exist elements c, deL such 
that (a,c)e0, (c,d)ek, (d,b)e0. Trivially, a^c, b + d, so cp(c) = 1 -cp(a), 
cp(d) = \-cp(b). By Lemma 2.5, cp(c) = cp(d), therefore cp(a) = cp(b). The sets 
{a,c} and {b, d} are classes of 0 and either a<c, b<d, or a>c, b>d. By 
Lemma 2.6, (a, b)ek, a contradiction. 

Lemma 2.8. Let 0, A be small congruences on a finite lattice L. Then 0vk 
= ^u[Xo(0-(O)oX,]. 

Lemma 2.9. Let 0, A be small congruences on a finite lattice L. Then (0vk)l0 
is a small congruence on L/0. 

Proof. Recall the notion of factor congruence. If ®!cz©2 are congruences on 
a lattice L, we can define the projection L/0l-+L/02, [*]©!»-» [JC]©2. Its kernel is 
the factor congruence 0 2 / 0 ! = {([a]©i, [b]0x)\(a, b)e©2} e Con(LI0x). 

The lemma trivially holds if © or A is trivial and if © = A. Assume 0 , A to be 
different and non-trivial. There exist a homomorphism of semilattices cp: L—> {0,1} 
injective on each class of A. Define the mapping 

e: L / 0 - > { O , l } , [x]0^>cp(x). 

By Lemma 2.5, this definition is correct. Trivially, £ is a homomorphism of 
semilattices. There suffices to prove that it is injective on each class of ( 0 v A ) / 0 . 
Assume (a, b)e0vk, [a]0±[b]0, but e([a]0) = e([b]0). Then cp(a) = cp(b). 
As (a, b)e0vk, by Lemma 2.8, (a, b)e ©o(A — co)o0, so there exist c, deL 
such that (a,c)e0, (c,d)ek—a>, (d,b)e0. By Lemma 2.5, cp(c) = cp(a), 
cp(d) = cp(b), a contradiction, as (c,d)ek—co implies cp(c)^cp(d). 

3. Finitely representable lattices 

In this paragraph we give several characterizations of the class FR. 

Lemma 3.1. Let r: x*-^rx be a representation of a lattice L with the greatest 
element 1 on a set A. Assume that A has an rx-least element a, B = (b0,bx) is 
some ri-interval in A, B' is a set disjoint with A and there exists a bijection B-*B', 
b>-*b'. Define the orders fx on the set AuB' in the following way: 

fx=rxv(rx\B)'v{(b[,a)}, xeL, 

where v is the transitive span of the union and rx \B is the restriction of rx to B. The 
assignment x*-^rx defines a representation of L on the set AuB'. 
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Proof. Trivially, fx are orders and x^>fx is monotone, therefore fxwy-^fxvfy 

and fx^y<^fxr\fy. We shall prove the inverse inclusions. 
First assume (u, v) e r,vy, we want to prove (u, v) e fx vfy. It trivially holds if u, 

v are in the same of the sets A, B'. The case ueA, v eB' gives a contradiction. 

k-1 

Fig.З 

There remains only the case u eB', v eA. (See fig. 3.) Then (u, b')e(rx^y\B)' 
= (rxvry\B)', but as B is ^-convex, rxvry\B = (rx\B)v(ry\B), therefore 
(u, b[)e(rx\B)'v(ry\B)'. As (a, v)erxwy = rxvry, we have: 

(u,v)e(rx\B)'v(ry\B)'v{(b[,a)}vrxvry=fxvfy. 
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Now assume (u,v)efxnry. There suffices to consider the case ueB', veA 
again. In this case we have (u,b[)e(rx\B)'n(ry\B)' = (rxnry\B)' = (rXAy|2.?)', 
(a,v)erxnry = rXAy, therefore 

(u, v)e(rx„y\B)'v{(b[, a)}vrx„y = rXAy. 

Lemma 3.2. Let L be a finitely representable lattice, feL. Then there exists 
a finite representation r of L on some set A and elements c0, cx e A such that 

(i) c0 is the rx-least element of A, where 1 is the greatest element of L, 
(ii) for all x eL, (c0, Ci) e rx iff x 2*f. 
Proof. Choose a representation r' of L on some finite set A'. We can assume 

that A' has an rj-least element a. Let F be the set of all ordered pairs 
(u, v) e A' X A' such that u is recovered by v. If F = 0, / is the least element of L 
and the representation r' with c0 = Ci = a satisfies the conditions (i), (ii). Assume 
F= {(uu vt), ..., (uk, vk)}. Let (ut, i\) be rj-intervals in A'. For each / we find 
a set -B' and a bijection (ut, t \)-»B f , w»->wf, in such a way that A' and Bi are 
pairwise disjoint. Then we define the orders rx on the set A'u-B1u...u.Bk in the 
following way: 

rx=r'xv(r'x\(ul,vl)yv...v(r'k\(uk,vk))
kv 

v{(v\, ul), (vl, ul), ..., (vk
kZ\9 u

k), (vk
k, a)}. 

(See fig. 4.) By Lemma 3.1 used A:-times, r is a finite representation of L. The 
conditions (i), (ii) are satisfied for c0 = u\, cx = a. 

Lemma 3.3. Let the assumptions of Lemma 2.3 be satisfied and L eFR. Then 
L'eFR. 

Proof. Let F be the set of all minimal elements of the set (d, 1) - D . If F = 0, 
L' is isomorphic to a sublattice of L x {0,1}, and by Lemma 1.1 and Lemma 1.2, 
L'eFR. Assume F= {/\ . . . , / * } . Then for all x eL, x e (d, 1> - D iff x^f for 
some i. By Lemma 3.2, we can find for each i a representation rl on a finite set A' 
and elements c0, c[ eAi such that 

(i) c0 is the rj-least element of A1, 
(ii) for all xeL, (c0, c[)erx iff x&f. 

We can assume A1 to be pairwise disjoint. Let a, a' be two different elements not 
in A', A = A*u ... uAku{a, a'}. We define the orders rx on A in the following 
way: 

rx =[rxv...vrx v({a} X {c0, ..., cS})v 

v({c\,...,ck}x{a'})]u{(a,a')}. 

(See fig. 5.) It can be simply proved that r is a finite representation of L. Let us 
define the mappings: L'^>S(A, rx), (x, 0)»-»rx — {(a, a')}, (x, l)»-»rx. 
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This definition is correct: if (x, 0)eL', x cannot be in the set (d, 1) - D , so 
(c0, c\)erx for no i and rx — {(a, a')} is transitive. Trivially, s is a monomorphism 
of semilattices. Therefore s((x, i) v (y, /')) ^ s(x, i) v s(y, j). It suffices to prove 
that in this inclusion equality holds. 

Assume s((x, i) v (y , / ) ) > s(x,i) v s(y,j). Then the difference has to be 
exactly {(a, a')}, and so / = / ' = 0, (x, 0) v (y, 0) = (jcvy, 1), (a, a') £ s(x, 0) v 
s(y, 0). As xvy e(d,\) -D, for some i we have xvy^f, (cl

0, c\)erx^y = 
= rxvry c (rx-{(a,a')}) v (ry - {(a, a')}) = s(x, 0) v s(y,0). Therefore 
(a, a') e s(x, 0) v s(y, 0), a contradiction. 

Theorem 3.1. Let L be an at least two-element finite lattice. Then L e FR iff (a) 
or (b) holds: 

a) There exist non-trivial congruences 0l9 G2 on L such that GlnG2 = co and 
LIGX, L/G2eFR. 

b) There exists a non-trivial small congruence G on L such that L/G eFR. 
Proof. First assume L eFR. Choose any finite representation r of L on some 

finite set A with a minimal possible cardinality. As L has at least two elements, we 
can choose on rvminimal element a. 6 A and one ^-maximal element a2 e A such 
that ax + a2. The assignmentsx^>rx\(A - {at}), i = 1, 2, define homomorphisms of 
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lattices since the sets A — {a(} are ^-convex. As A has a minimal possible 
cardinality, these homomorphisms are not injective. Let 0 , be their kernels, then 
L/Oi eFR. The congruence 0 = GxnG2 is small, the corresponding homomorp-
hism of semilattices is the following one: 

cp(x) = 0, if (aua2)£rx, 

cp(x)=l, if (aua2)erx. 

If 0 = a), (a) holds. Assume 0 to be non-trivial. Then there exists a monomorp-
hism of lattices L/G —>L/GX xL/G2 and by Lemma 1.2 and Lemma 1.3, 
LIQ eFR and (b) holds. 

Now assume that (a) holds. As there exists a monomorphism of lattices L—> 
L/GxxL/G2, there suffices to use Lemma 1.2 and Lemma 1.3. 

More interesting is the case (b). Let G be a nontrivial small congruence on L and 
L/G eFR. By Lemma 2.4, L is isomorphic to some lattice arising from L/G by the 
construction described in Lemma 2.3. By Lemma 3.3 and Lemma 1.2, L eFR. 

Lemma 3.4. Let Lbe a finitely representable lattice, G e Con(L) an atom. Then 
G is small. 

Proof. Induction on the cardinality of L. Assume that lemma holds for all 
lattices with cardinality less than n and choose a lattice L e FR with the cardinality 
n and an atom 0 e C o n ( L ) . First we prove the following statement: 

(*) Let A e Con(L) be not comparable with G and L/A e FR. Then G is small. 
As Con(L) is distributive, 0 v A covers A, and so (0vA)/A is an atom in 

Con (L/A). By the induction assumption Gvk/k is small, so there exists 
a homomorphism of semilattices cp: L/A —> {0,1} injective on each class of 0 vA/A. 
Define the mapping e: L—»{0,1}, x*-+q)([x]k). Then £ is a homomorphism of 
semilattices, we want to prove it is injective on each class of G. Choose (x,y)e& 
such that e(x) = e(y). As (p([x]k) = q)([y]k) and [x]k, [y]k are in the same class of 
the congruence Gvk/k, (x,y)ek. Therefore (x,y)eGnk=co. 

Let us continue the proof of the lemma. By Theorem 3.1 there are two 
possibilities: 

a) There exist non-trivial congruences 0 - , 0 2 on L such that GlnG2 = (o and 
LIGi e FR. As 0 is an atom, some of 0, is not comparable with 0 and it suffices to 
use (*). 

b) There exists a non-trivial small congruence A on L such that L/A eFR. The 
case 0 = A is trivial. If 0=£ A, 0 and A are not comparable and it suffices to use (*). 

Lemma 3.5. Let L be a finitely representable lattice, & e Con(L) an atom. Then 
L/GeFR. 

Proof. Induction on the cardinality of L again. By Theorem 3.1 there are two 
possibilities: 
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a) There exist non-trivial congruences 0 , , 0 2 on L such that 0 i n 0 2 = a> and 
L / 0 , eFR. Each of the congruences 0 v 0 , / 0 , is either trivial or an atom. By the 
induction assumption, ( L / 0 , ) / ( 0 v0 ,70 , ) e F R . By the definition of factor con­
gruences, these factor lattices are isomorphic to L / 0 v 0, . As Con(L) is distributi­
ve, ( 0 v 0 i ) n ( 0 v 0 2 ) = 0 v ( 0 i n 0 2 ) = 0 , therefore there exists a monomorp-
hism of lattices L / 0 - > ( L / 0 v 0 , ) x ( L / 0 v 0 2 ) and it suffices to use Lemma 1.2 
and Lemma 1.3. 

b) There exists a non-trivial small congruence A on L such that L/A eFR. We 
can assume 0 ^ A . As 0 is an atom, 0vA/A is also one and by the induction 
assumption, (L/A)/(0 V A / A ) G F R . This factor lattice is isomorphic to L / 0 vA. By 
Lemma 3.4, 0 is small, and by Lemma 2.9, 0 v A / 0 is small. As L / 0 v A is 
isomorphic to ( L / 0 ) / ( 0 v A / 0 ) , by Theorem 3.1, L / 0 eFR. 

Theorem 3.2. The class FR is closed under factorisation. 
Proof. Simple induction on the cardinality of the lattice on the base of 

Lemma 3.5. 

Theorem 3.3. Let L be a finite lattice. The following three statements are 
equivalent: 

(i) LeFR; 
(ii) 0 2 > 0 , in Con(L)=>0 2 / 0 , is small; 

(hi) ( 0 „ 1 ) = { 0 , } U ( 0 2 , 1) in Con(L)-4>02 /0, is small, where 1 is the 
greatest element of Con(L). 

Proof. Theorem 3.2 and Lemma 3.4 imply (i)=>(ii). The implication (ii)=>(iii) 
is trivial. The implication (iii)-->(i) will be proved by induction on the cardinality of 
L. Assume that it holds for all lattices with cardinality less than n > 1 and choose 
a lattice L with the cardinality n satisfying (iii). If there exist two different atoms 
0 i , 0 2 in Con(L), then by the induction assumption L / 0 , eFR, and it suffices to 
use Theorem 3.1. If Con(L) has exactly one atom 0 , then (<o, 1) = {c0}u(0 , 1), 
thus by (iii) 0 is small. By the induction assumption, L / 0 eFR. It suffices to use 
Theorem 3.1 again. 

Fig. 6 

Corollary. A finite modular lattice is finitely representable iff it is distributive. 
Proof. The lattice M3 (see fig. 6) is not finitely representable since it has no 

small congruence +(x), therefore each modular finitely representable lattice is 
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distributive. Conversely, if L is a finite distributive lattice and 0U 02 satisfy the 
assumptions of (iii), then either 0X = 02 or LI0x is subdirectly irreducible and 
02I0X is the atom of its congruence lattice, therefore LI0x is the two-element 
chain and 02I0X is small. 

4. A characterization of finitely commutatively representable lattices 
(Schein's problem) 

We know that FCR c FR and FCR is closed under isomorphisms, formation of 
sublattices and finite direct products. In this paragraph we shall prove FCR = FR. 

For any natural number n let Cn be the set {0, 1, ..., n} and ^ the natural order 
on Cn. 

Theorem 4.1. For each n, S(Cn, ^)eFCR. 
Proof. Form the set Dn = { X | 0 _ X c C n } . Let us define the mapping y: 

S(Cn, *£)-+S(Dn, c ) in the following way: for any a eS(Cn, ^ ) and A , B eDn, 
(A, B)ej(a) iff 

B=AO(ru 8i)0(r2, s2)u...O(r*, sk) 

for some finite number of pairs (r,, s() e a, where 0 is the symbol for the disjoint 
union and (r,, st) are half-closed intervals in (Cn, ^ ) . 

The definition of y is correct, as j(a) are orders and (A, B)ej(a) implies A c B . 
Moreover, y is monotone, hence j(a vj3) 3 y(a)vy(j3), / (anjS) c j(a)nj(/3) for 
any a, j8. 

Lemma 4 .1 . For any a, (3eS(Cn, ^ ) , j(a v/3)cy(a)vy(j8). 
Proof. Assume that (A, B)ej(av(3); then 

B = AO(ru s^O.^Ofa, sk) , 

where (r,, 5,) e a v f$, therefore there exist finite chains r, = ti%0^t«,i^ ... ^timm. = s,, 
(t<.p-i- tiiP)eauf5 for p = 1, ..., m„ 1 = 1, ..., k. Then 

(r„ sf) =(t,,0, ft.i>u...O(r,.mi_1, t.,m,), 

therefore we can assume (r,, s,)eau/3. 
Let us define A 0 = A , A1 = A 00(r 1 , 5-), A2 = A10(r2,s2), ..., Ak = 

Ak-iO(rk, sk)=B. By the definition of y, (A,-u A,) e y(a)uy(j3) for 1 = 1,2,..., A:. 
As A0 = A and A k = B , we have (A, B)ej(a)vj((}). 

Lemma 4.2. For any a , peS(Cn, ^), j(anf})^j(a)nj(p). 
Proof. By the definition, (A, B)ej(y) iff 

B=AO(ru Si)v...O(rk9sk), 
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where (r£, s.)ey. We can assume sx <s2< ...<sk. As the written union is disjoint, it 

r 1 ^ s 1 ^ r 2 ^ s 2 ^ . . . ^ r f c ^ s f c . 

If rt=Si, (r£, s,)=0 and this interval can be omitted. If s£=r£ + 1, (r£, s£)0(r£ + 1, 
s i + \ ) = ( r £ , s£ + 1) and the two intervals can be replaced by one interval (r£, s£ + 1 ) , 
where (r£, si+l)ey since y is transitive. Therefore we can assume 

rl<Si<r2<s2<...<rk<sk. 

Let us have a pair (A, B)ej(a)nj(P). As we have just proved 

B = AO(ru s^O...0(rk, sk) = 

= Au(r[,s[)0...u(rk.,s'k.), 

v/here rx<sx< ... <rk<sk, r[<s[< ... <rk.<s'k., (r£, st)e a, (r\, s\)eP, but then 
k = k', ri = r,

i, Si=s\ and therefore each (r£, s,)eanj3, which gives 
(A,B)ej(an(3). 

Lemma 4.3. j is injective. 
Proof. Choose two different orders a, /3eS(Cn, ^ ) , then there exists say 

(p, q)efi such that (p, q)£a. Let us denote A = {0, 1, . . . , / ?} , B = {0, 1, ..., q}. 
Then B =AO(p, q) and by the definition of / there is (A, B)ej(/3). We shall 
prove (p,q)£j(a). 

Assume (A, B)ej(a); then £ = A u ( r b s1)u...u(rjt, sk), where (r£, s£)ea. As 
in the proof of Lemma 4.2, we can'assume that rx<Si< ... <rk <sk, but then the 
convexity of B —A gives k = l,ri=p,sl = q,(p, q) = (ru s{)ea, a contradiction. 

Let us continue the proof of Theorem 4.1. By the preceding lemmas, y is a finite 
representation of S(Cn, ^ ) . We shall prove this representation to be commutative. 
Take any pair (A, B)ej(a)oj(/3), then there exists a set UeDn such that 
(A, U)ej(a), (U, B)ej(fi). Form the set V = Au(B - U). A simple set-theoreti­
cal calculation gives (A, V)ej(P), (V,B)ej(a), therefore (A, B)ej(p)oj(a). 

Corollary. FCR=FR. 
Proof. Choose a lattice L eFR, L is isomorphic to a sublattice of some 5(A, r ) 

with A finite. There exists an order y on A such that r c y and (A, y) is a chain. 
Then S(A, r) is an ideal in S(A, y) and S(A, y) is isomorphic to S(Cn, ^), where 
n + 1 is the cardinality of A. 
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ПРЕДСТАВЛЕНИЯ КОНЕЧНЫХ СТРУКТУР УПОРЯДОЧЕНИЯМИ 
НА КОНЕЧНЫХ МНОЖЕСТВАХ 

Богуслав Цивак 

Резюме 

Для любого упорядоченного множества (А, т) может быть построена структура 5(А, т) всех 
упорядочений ц на множестве А, для которых ?7 ст . Изоморфизм структуры Ь на подструктуру 
структуры 5(А, т) называется представлением структуры Ь упорядочениями на множестве А. 
Известно, что каждая структура обладает представлением взаимно предстановочными упорядо­
чениями. Конечные структуры представляются упорядочениями на бесконечных счетных мно­
жествах. 

Конечные структуры обладающие представлениями при помощи упорядочений на конечных 
множествах здесь характеризуются свойствами их структур конгруэнции. Оказывается, что такие 
представления существуют например для всех конечных дистрибутивных структур. Наконец 
доказано, что если конечная структура обладает таким представлением, то она обладает 
и представлением взаимно перестановочными упорядочениями на конечном множестве. 
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