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REPRESENTATIONS OF FINITE LATTICES
BY ORDERS ON FINITE SETS

BOHUSLAV SIVAK

1. Introduction

We are going to characterize finite lattices which can be represented by orders on
some finite sets. This problem was put forward by Schein [2], where the following
representation theorem was proved.

Theorem 1.1. Every algebra of the form (F, ., n), where F is a set of orders
(reflexive, antisymmetric and transitive binary relations) on some set closed under
the relative product - and the set-theoretical intersection N is a lattice, and every
lattice is isomorphic to a lattice of this form.

The construction used by Schein in the proof of Theorem 1.1 gives for finite
lattices representations by orders on infinite countable sets.

Lemma 1.1. Let (A, t) be an ordered set (it means, A is a set and 7 is an order
on A) and let S(A, 1) be the set of all orders 1 on A such that n c T ordered by the
set-theoretical inclusion. Then S(A, t) is a lattice with the operations v (transitive
span of the union) and N (intersection).

Definition 1.1. Let L be a lattice and let (A, 1) be an ordered set. Any
monomorphism of lattices L— S(A, t) will be called a representation of the lattice
L on the set A. This representation is said to be finite if L and A are finite, and it is
said to be commutative if the images of any two elements of L commute (under the
operation o).

The lattice L will be called finitely (commutatively, finitely commutatively)
representable if it has a finite (commutative, finite commutative) representation.
The class of all finitely (finitely commutatively) representable lattices will be
denoted by FR (FCR).

By Theorem 1.1, every lattice has some commutative representation. Schein’s
problem can be formulated in the following way: Which finite lattices are finitely
commutatively representable ?
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Lemma 1.2. The classes FR, FCR are closed under isomorphisms and formation
of sublattices.

Lemma 1.3. The classes FR, FCR are closed under finite direct products.

Proof. Let L,, L, be finitely representable lattices. Then there exist representa-
tions r; of L, on some finite sets A;. We can assume A; to be disjoint. Then the
assignment

(x1, x2)> ri(x)ur(x,), x €L,

defines a finite representation of the lattice L, XL, on the set A,UA,. This
representation is commutative if r, are commutative.

2. Small congruences on lattices

The notion of small congruence will allow us to characterize the class FR.

Definition 2.1. Let © be a congruence on a lattice L. We call @ small if there
exists a homomorphism of semilattices ¢: (L, A)— {0,1} such that its restriction to
each class of the congruence @ is injective.

Lemma 2.1. Let © be a small congruence on a lattice, A its class and @ the
homomorphism of semilattices corresponding to ©. Then either A is a singleton, or
A ={ao, a,}, where a,>ao, ¢(a0)=0, @(a,)=1.

Lemma 2.2. Let © be a non-trivial (not equal to the diagonal w) small
congruence on a finite lattice L, ¢ the corresponding homomorphism of semilatti-
ces, D, the set of all elements x € L such that ¢(x)=1 and the class [x]© has two
elements. Then:

(i) @7 '(1) is a filter in L.

(ii) D, is a subsemilattice of ¢~'(1).

(iii)) @ '(1)=(d,, 1), where d, is the least element of D, and 1 is the greatest
element of L. '

(iv) For all xeD,, (d,,x)cD,.

(v) O is an atom in Con(L), the lattice of all congruences on L.

Proof. As @ is a homomorphism of semilattices, (i) and (ii) trivially hold.
Choose x e '(1). Then @(x)=1 and 1 =¢@(x) = ex)Ae@(d,) = @(xAd). If
[d,]® = {d,, d,}, then @(dy)=0, @(xAd,)=0, therefore {xAd, xAd,} is
a two-element class of ©® and xAd,eD,. As d, is the least element of D,,
xAd,=d, and xe(d,, 1). We proved ¢ '(1)c(d,, 1).

Choose xe(d,, 1), then @(x) = @kx)Al = @ex)ap(d,) = @ad)
= @(d,)=1. We proved (d,,1)c @ '(1).

Choose xe€D,, ye(d,, x). There exists x'e L such that @(x')=0, [x]O =
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{x,x'}. Then @(x'Ay)=0, xAy=y, @(y)=1, therefore x'Ay is the second
element of [y]® and y e D,. We proved (iv).

Choose (x, y)€ O such that x<y. As xAd, © yad,=d, and @(xAd,)=0,
xAd,=d, and x =d,. Similarly, xvd, © xvd,=x and @(xvd,)=1, therefore
xvd,=y. (See fig. 1) This holds for each (x, y) € @, x <y, therefore © is an atom.

Fig. 1

By Lemma 2.2, if © is a non-trivial small congruence on a finite lattice, then the
corresponding homomorphism of semilattices is uniquely determined. In fact, the
set D, can be defined without using @.

Lemma 23 Let L be a finite lattice, D c L a subsemilattice, d its least element
and {d,x)cD for all xe D. Form the following subset of L x {0,1}:

L'=[(d, 1) x{1}Ju[(L — ({4, 1) - D)) x {0}].

This set with a termwise order is a lattice with the following operations :
DV, D)= Dv(y,0)=(x,0v(y,1)=(xvy,1),
(x,0)v(y,0)=(xvy,1), if xvye(d,1)-D,
(x,0)v(y,0)=(xvy,0), if xvye(L—(d,1))uD,
(DAY, =(xAY,iAj).

The relation © ={((x,0), (x,1))|x e D}u{((x,1), (x,0))|x e D}vw,. is a small
congruence on L’, the corresponding homomorphism of semilattices is the projec-
tion (x,i)—i and the factor lattice L'/@® is isomorphic to L.

The proof is trivial. Note that if D is an interval in L, then the just described
construction is identical with the “interval construction” of A. Day [1].
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Lemma 2.4. Let L be a finite lattice, © a non-trivial small congruence on L. Then
the construction described in Lemma 2.3 used for the lattice L/© and its subsemi-
lattice {[x]@|x e D,} gives a lattice isomorphic to L.

Lemma 2.5. Let L be a finite lattice, © and A two different non-trivial small
congruences on L, ¢ the homomorphism of semilattices corresponding to ©. Then
@ is constant on each class of the congruence A.

Fig. 2

Proof. Let d,, d, be the same elements as in Lemma 2.2 and its proof, {a, b} a
class of the congruence A and a <b. If @ is not constant on the class {a, b}, then
@(a)=0, @(b)=1. The elements aAd,, aad, are in the same class of the
congruence @ and p(aad,) = @p(and,)=0,therefore ando,=anrd,. As p(b)=1,
bad,=d, and we have:

and,=and,<d,<d,=bnad,, (and,,brd,)ekr,
therefore (do, d,) €A, a contradiction, as by Lemma 2.2 (v), An® =w.

Lemma 2.6. Let L be a finite lattice, © a small and A any congruence on L. Let
{x0, x,} and {yo, y:} be classes of O, xo<xi, yo<y:. Then (xo,yo)€A iff
(x1, Y1) EA.

Proof. Let @ be the homomorphism of semilattices corresponding to @,
z=x;AYy;. Then {z,, z,} is a class of @, @(z;) =i. The intervals {zo, Xo) and {z,, x,)
are transposed, (2o, yo) and (z,, y;) too.

Assume (xo, ¥o) €A. Then (zo, Xo) €A, (2o, yo) €A, therefore (z1, x,) €A, (21, y1)
€A. (See fig.2) We proved that (x,, yo)eA implies (x,, y:)€A. Similarly,
(x1, y:) €A implies (xo, yo) €A.
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Lemma 2.7. Let ©, A be small congruences on a finite lattice L. Then
Ocdo®OcroBOoA.

Proof. Assume (a, b)) €O oAl o® —AoO.A. Then O is not trivial. Let ¢ be the
corresponding homomorphism of semilattices. There exist elements ¢, d € L such
that (a,c)€®, (c,d)ek, (d,b)e®. Trivially, a¥c, b#d, so p(c)=1—-¢(a),
@(d)=1-@(b). By Lemma 2.5, ¢(c)=@(d), therefore @(a)=q@(b). The sets
{a,c} and {b, d} are classes of @ and either a <c, b<d, or a>c, b>d. By
Lemma 2.6, (a, b) e A, a contradiction.

Lemma 2.8. Let O, A be small congruences on a finite lattice L. Then Ov A
= AU[Ao(O® — w)oA].

Lemma 2.9. Let ©, A be small congruences on a finite lattice L. Then (O vA.)/©
is a small congruence on L/O. _

Proof. Recall the notion of factor congruence, If ®, < ©, are congruences on
a lattice L, we can define the projection L/@,— L/©,, [x]®,—[x]©,. Its kernel is
the factor congruence ©,/0, = {([a]®,, [h]O,)|(a, b) e ®,} € Con(L/O,).

The lemma trivially holds if @ or A is trivial and if @ =1. Assume @, A to be
different and non-trivial. There exist a homomorphism of semilattices ¢: L — {0,1}
injective on each class of A. Define the mapping

£:L/I0—>{0,1}, [x]®@—>@(x).

By Lemma 2.5, this definition is correct, Trivially, € is a homomorphism of
semilattices. There suffices to prove that it is injective on each class of (@ v1)/6.
Assume (a,b)e OvA, [a]@#[b]O, but £([a]@) = £([b]®). Then @(a)=q(d).
As (a,b)e®vA, by Lemma 2.8, (a,b)e@o(A —w)-0O, so there exist ¢, deL
such that (a,c)e®, (c,d)er—w, (d,b)e®. By Lemma 2.5, ¢(c)=¢(a),
@(d)=@(b), a contradiction, as (¢, d) €A —w implies @(c)# @(d).

3. Finitely representable lattices

In this paragraph we give several characterizations of the class FR.

Lemma 3.1. Let r: x+>r, be a representation of a lattice L with the greatest
element 1 on a set A. Assume that A has an r,-least element a, B = (b,, b,) is
some r,-interval in A, B’ is a set disjoint with A and there exists a bijection B— B’,
b b’'. Define the orders r, on the set AUB' in the following way:

Fe=r.v(r.|B) v{(bi,a)}, xeL,

where v is the transitive span of the union and r, |B is the restriction of r, to B. The
assignment x — . defines a representation of L on the set AUB'.
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Proof. Trivially, 7, are orders and x+ 7, is monotone, therefore 7,,, 27, V7,
and 7., € F.nF,. We shall prove the inverse inclusions.

First assume (u, v) € 7., We want to prove (u, v) € 7, VF,. It trivially holds if u,
v are in the same of the sets A, B'. The case u € A, v € B' gives a contradiction.

1—
u, =Gy

Fig. 3 Fig. 4

There remains only the case u € B, ve A. (See fig. 3.) Then (u, b')e (r..,|B)’
= (r.vr,|B)’, but as B is r,-convex, r,vr,|B = (r.|B)v(r,|B), therefore
(u, b)) e(r.|B) v(r,|B)'. As (a,v)er.,, = r.vr,, we have:

(u,v)e(r.|B)' v(r,|B) v{(bi,a)}vr.vr,=F. VF,.
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Now assume (u, v) € 7.N7,. There suffices to consider the case ueB', ve A
again, In this case we have (u, bi)e(r.|B)'n(r,|B) = (r.nr,|B) = (r..,|B)’,
(a,v)er.nr, = r,,,, therefore -

(u, V)E(Freny|B) V{(b1, @)} VTeny =Frny.

Lemma 3.2. Let L be a finitely representable lattice, f € L. Then there exists
a finite representation r of L on some set A and elements c,, ¢, € A such that

(i) co is the r,-least element of A, where 1 is the greatest element of L,

(ii) for all x e L, (co, c1) €T, iff X =f.

Proof. Choose a representation r' of L on some finite set A’. We can assume
that A’ has an ri-least element a. Let F be the set of all ordered pairs
(u,v)e A’ X A’ such that u is ri-covered by v. If F =4, f is the least element of L
and the representation r’ with ¢, =c, =a satisfies the conditions (i), (ii). Assume
F={(u,, vy), ..., (U, v:)}. Let (u;, v;) be ri-intervals in A’. For each i we find
a set B and a bijection (u;, v;) —» B‘, w—w', in such a way that A’ and B' are
pairwise disjoint. Then we define the orders r. on the set A’'UB'uU...UB* in the
following way:

re=riv(ri{uy, vi)' v v (e, v )< v
V{(U:’ ui), (‘U%, ug)v ceey (U::}, u'l:)’ (U‘l:’ a)} .

(See fig. 4.) By Lemma 3.1 used k-times, r is a finite representation of L. The
conditions (i), (ii) are satisfied for co=ui, ¢, =a.

Lemma 3.3. Let the assumptions of Lemma 2.3 be satisfied and L € FR. Then
L'eFR.

Proof. Let F be the set of all minimal elements of the set (d, 1) —D.If F=4,
L' is isomorphic to a sublattice of L X {0,1}, and by Lemma 1.1 and Lemma 1.2,
L'eFR. Assume F={f", ..., f*}. Then for all xeL, xe{(d, 1) —D iff x=f for
some i. By Lemma 3.2, we can find for each i a representation r' on a finite set A’
and elements cg, ci € A’ such that

(i) co is the ri-least element of A',

(ii) for all xeL, (c§, ci)erl iff x=f'.

We can assume A’ to be pairwise disjoint. Let a, a’ be two different elements not
inA', A=A'v ... UA*U{a, a'}. We define the orders r, on A in the following
way:

r.=[riv...vriv({a} x{cs, ..., c§})Vv
v({ci, ..., et} x{a'PD]u{(a, a’)}.

(See fig. 5.) It can be simply proved that r is a finite representation of L. Let us
define the mapping s: L'—>S(A, r,), (x, 0)—r.—{(a,a’)}, (x,1)—r..
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This definition is correct: if (x, 0)eL’, x cannot be in the set (d, 1) — D, so
(¢, ci)er; forno i and r. — {(a, a')} is transitive. Trivially, s is a monomorphism
of semilattices. Therefore s((x, {) v (y,j)) = s(x, i) v s(y, j). It suffices to prove
that in this inclusion equality holds.

Fig. 5

Assume s((x,i) v (y,j)) > s(x,i) v s(y,j). Then the difference has to be
exactly {(a,a’)},andsoi=j=0, (x,0) v (y,0) = (xvy, 1), (a,a’) ¢ s(x,0) v
s(y,0). As xvye(d,1)—D, for some i we have xvy=f', (ci,ci)er.,, =
= rivry c (r.—{(a,a")}) v (r,—{(a,a’")}) = s(x,0) v s(y,0). Therefore

(a,a’) € s(x,0) v s(y, 0), a contradiction.

Theorem 3.1. Let L be an at least two-element finite lattice. Then L € FR iff (a)
or (b) holds:

a) There exist non-trivial congruences ©,, ©, on L such that ©®,nO,=w and
L/©,, L/OG,eFR.

b) There exists a non-trivial small congruence © on L such that L/© € FR.

Proof. First assume L € FR. Choose any finite representation r of L on some
finite set A with a minimal possible cardinality. As L has at least two elements, we
can choose on r;-minimal element a, € A and one r,-maximal element a, € A such
that a, # a,. The assignments x—r, |[(A —{a;}), i =1, 2, define homomorphisms of
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lattices since the sets A —{a;} are r,-convex. As A has a minimal possible
cardinality, these homomorphisms are not injective. Let ©; be their kernels, then
L/6O, e FR. The congruence © =©@,nO, is small, the corresponding homomorp-
hism of semilattices is the following one:

e(x)=0, if (a,,a)ér,,
px)=1, if (a,a))er,.

If ® = w, (a) holds. Assume © to be non-trivial. Then there exists a monomorp-
hism of lattices L/©@—L/@,XL/O, and by Lemma 1.2 and Lemma 1.3,
L/O e FR and (b) holds.

Now assume that (a) holds. As there exists a monomorphism of lattices L —
L/©,x L/O,, there suffices to use Lemma 1.2 and Lemma 1.3.

More interesting is the case (b). Let © be a nontrivial small congruence on L and
L/© e FR.By Lemma 2.4, L is isomorphic to some lattice arising from L/® by the
construction described in Lemma 2.3. By Lemma 3.3 and Lemma 1.2, L € FR.

Lemma 3.4. Let L be a finitely representable lattice, @ € Con(L) an atom. Then
O is small.

Proof. Induction on the cardinality of L. Assume that lemma holds for all
lattices with cardinality less than n and choose a lattice L € FR with the cardinality
n and an atom @ € Con(L). First we prove the following statement:

(x) Let A e Con (L) be not comparable with @ and L/A € FR. Then © is small.

As Con(L) is distributive, ® vA covers A, and so (@vA)/A is an atom in
Con(L/A). By the induction assumption @vA/A is small, so there exists
a homomorphism of semilattices ¢: L/A — {0,1} injective on each class of @ vAi/A.
Define the mapping £: L—{0,1}, x—>@([x]A). Then € is a homomorphism of
semilattices, we want to prove it is injective on each class of @. Choose (x, y)e @
such that e(x) =€(y). As ([x]A) = @([y]A) and [x]A, [y]A are in the same class of
the congruence @ vA/A, (x,y)eA. Therefore (x, y)e Oni =w.

Let us continue the proof of the lemma. By Theorem 3.1 there are two
possibilities :

a) There exist non-trivial congruences @,, ©, on L such that @,n©,=w® and
L/@®, e FR. As © is an atom, some of ©, is not comparable with © and it suffices to
use (x).

b) There exists a non-trivial small congruence A on L such that L/A € FR. The
case @ =4 is trivial. If @+ A, © and A are not comparable and it suffices to use ().

Lemma 3.5. Let L be a finitely representable lattice, ® € Con(L) an atom. Then
L/© eFR.

Proof. Induction on the cardinality of L again. By Theorem 3.1 there are two
possibilities :
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a) There exist non-trivial congruences @,, @, on L such that ®,nO®,=w and
L/@®, € FR. Each of the congruences @ v ©,/0; is either trivial or an atom. By the
induction assumption, (L/©,)/(© v ©,/0;) e FR. By the definition of factor con-
gruences, these factor lattices are isomorphic to L/© v ©,. As Con(L) is distributi-
ve,(OvO,) N (OvO,) = Ov(O,nO,)= 0O, therefore there exists a monomorp-
hism of lattices L/@ —-(L/@v ©,) X (L/O v ©,) and it suffices to use Lemma 1.2
and Lemma 1.3.

b) There exists a non-trivial small congruence A on L such that L/A e FR. We
can assume @+ A. As O is an atom, @vA/A is also one and by the induction
assumption, (L/A)/(©vA/A)e FR. This factor lattice is isomorphic to L/© v A. By
Lemma 3.4, © is small, and by Lemma 2.9, ©® vA/O is small. As L/@vA is
isomorphic to (L/©)/(©vA/®), by Theorem 3.1, L/© € FR.

Theorem 3.2. The class FR is closed under factorisation.
Proof. Simple induction on the cardinality of the lattice on the base of
Lemma 3.5.

Theorem 3.3. Let L be a finite lattice. The following three statements are
equivalent:

(i) LeFR;

(iil) ©.>06, in Con(L)=>6O,/0, is small;

(i) (O,,1)={6O,}u(O,, 1) in Con(L)=>©O,/O, is small, where 1 is the
greatest element of Con(L).

Proof. Theorem 3.2 and Lemma 3.4 imply (i) = (ii). The implication (ii) = (iii)
is trivial. The implication (iii) = (i) will be proved by induction on the cardinality of
L. Assume that it holds for all lattices with cardinality less than n >1 and choose
a lattice L with the cardinality n satisfying (iii). If there exist two different atoms
©@,, O, in Con(L), then by the induction assumption L/©, € FR, and it suffices to
use Theorem 3.1. If Con (L) has exactly one atom @, then (w, 1) ={w}u(O, 1),
thus by (iii) © is small. By the induction assumption, L/® € FR. It suffices to use
Theorem 3.1 again.

Fig. 6

Corollary. A finite modular lattice is finitely representable iff it is distributive.
Proof. The lattice M, (see fig. 6) is not finitely representable since it has no
small congruence # w, therefore each modular finitely representable lattice is
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distributive. Conversely, if L is a finite distributive lattice and ©,, ©, satisfy the
assumptions of (iii), then either @, =0, or L/O, is subdirectly irreducible and
©./0, is the atom of its congruence lattice, therefore L/, is the two-element
chain and ©,/@, is small.

4. A characterization of finitely commutatively representable lattices
: (Schein’s problem)

We know that FCR c FR and FCR is closed under isomorphisms, formation of
sublattices and finite direct products. In this paragraph we shall prove FCR =FR.

For any natural number n let C, be the set {0, 1, ..., n} and < the natural order
on C,.

Theorem 4.1. For each n, S(C,,; <)eFCR.

Proof. Form the set D,={X|0eXcC,}. Let us define the mapping j:
S(C,, <)—>S(D., <) in the following way: for any a € S(C,, <) and A, Be D,,
(A, B)€j(a) iff

B=AU(ry, 5,)U(rs, 52)U...0(re, sk )

for some finite number of pairs (r;, s;) € a, where U is the symbol for the disjoint
union and (r,, s;) are half-closed intervals in (C,, <).

The definition of j is correct, as j(a) are orders and (A, B) € j(a) implies A = B.
Moreover, j is monotone, hence j(avf) = j(a)vj(B), j(anB) < j(a)nj(B) for
any a, 8.

Lemma 4.1. For any a, B €S(C,, <), j(avB)cj(@)vi(B).
Proof. Assume that (A, B)ej(avB); then

B=AU("1, sl)U...U(rk, sk),
where (r,, 5;) € a v 8, therefore there exist finite chains r, = t;_(;s t. , <..< iy =Si s
(tip-1s i, )eauB for p=1,...,m, i=1, ..., k. Then
(ri, si) = (ti.o, ti.1>0---0(ti,m(—19 ti.m,) ’

therefore we can assume (r;, s;) € auUf.

Let us define A¢=A, A, =AU, 51), A=A,0(r282), ..., A=
Aw1U(r, s ) = B. By the definition of j, (Ai_1, A:) € j(a)uj(B) fori=1,2, ..., k.
As A,=A and A, =B, we have (A, B)ej(a)Vvj(B).

Lemma 4.2. For any a, B eS(C;., é), j(ahﬁ)_:_:j(a)nj(ﬁ’).
Proof. By the definition, (A, B) €j(y) iff

B=AU(ry, s;)U...0(r, s )
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where (r;, 5;) € y. We can assume s, <s,<...<S$,. As the written union is disjoint, it
is

NSO SHhSSHSOSHsS.
If r,=s;, (r,, s;) =0 and this interval can be omitted. If s, =r.,,, (ri, s )U(ris,
Siv1) = (r, 8:.,) and the two intervals can be replaced by one interval (r;, s:..),
where (r,, s;,,) €y since v is transitive. Therefore we can assume

< <r<s<..<rn<s..

Let us have a pair (A, B)ej(a)nj(B). As we have just proved
B=AU(r, s;)U...0(r, s« ) =
=AU(r{,s{)U...L'J(r,’;,, LR

where r, <s, < ... <. <8, ri<s;< ... <re<sp, (r,s;)ea,(ri,si)eB, but then
k=k', ri=ri, s;=s; and therefore each (r,s;))eanf, which gives
(A, B)ej(anp).

Lemma 4.3. j is injective.

Proof. Choose two different orders a, € S(C,, <), then there exists say
(p, q)€p such that (p,q)¢ a. Let us denote A ={0,1,...,p}, B={0,1,...,q9}.
Then B=AU(p, q) and by the definition of j there is (A, B)€j(8). We shall
prove (p, q) éj(a).

Assume (A, B)ej(a); then B=AU(ry, $;)U...0(r, S ), where (1., s;,)ea. As
in the proof of Lemma 4.2, we can’assume that r, <s, < ... <r, <s,, but then the
convexity of B— A givesk=1,r,=p,s,=q,(p, q)=(r1, 5,) € a, a contradiction.

Let us continue the proof of Theorem 4.1. By the preceding lemmas, j is a finite
representation of S(C,, <). We shall prove this representation to be commutative.
Take any pair (A, B)€j(a).j(f), then there exists a set Ue D, such that
(A, U)ej(a), (U, B)€j(B). Form the set V=A u(B — U). A simple set-theoreti-
cal calculation gives (A, V)ej(B), (V, B)€j(a), therefore (A, B)€j(B)oj(a).

Corollary. FCR = FR.

Proof. Choose a lattice L € FR, L is isomorphic to a sublattice of some S(A, 1)
with A finite. There exists an order ¥ on A such that tcy and (A, v) is a chain.
Then S(A, t) is anideal in S(A, y) and S(A, v) is isomorphic to S(C,, <), where
n + 1 is the cardinality of A.
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NPENCTABJIEHHWSI KOHEYHBIX CTPYKTYP YIIOPAJOYEHUSAIMU
’ HA KOHEYHBIX MHOXECTBAX

BorycnaB LluBak
Pesome

st mo60ro ynopsigo4eHHoro MHOXecTBa (A, T) MoXeT GbITh MOCTPOEH: CTPYKTYpa S(A, T) Bcex
YNOpsII0YEHHI 1) Ha MHOXECTBE A, /ISl KOTOPBIX 1) < T. U30MOPdhH3M cTPYKTYpbI L Ha MOACTPYKTYPY
CTPYKTYpbl S(A, T) Ha3bIBAETCA MPEACTABIEHHEM CTPYKTYPbI L ynmopsnoueHUsiMU Ha MHOXECTBE A .
H3BECTHO, YTO KaXfas CTPYKTypa o6J1afaeT NPEACTABIEHNEM B3aUMHO NPE/ICTAHOBOYHBIMU YNOPSLO-
yeHUsIMU. KOHEUHbIE CTPYKTYpbI NPEACTABISAIOTCSA YNOPSAAOYEHUAMH Ha GECKOHEYHBbIX CUETHBIX MHO-
KECTBiX. _

KoHeuHble CTPYKTYpbl 00Jafaloue NpeacTaBlIeHUsIMU IPH MOMOLUM YNOPS/A0YEHHH HA KOHEYHBIX
MHOKECTBAX 3[1€Cb XapaKTEPHU3YIOTCS CBOWCTBAMHU MX CTPYKTYP KOHrpyaHuuii. OKa3bIBaeTcsl, YTO TaKue
NPEACTaBJICHUS CYIIECTBYIOT HaNpUMEP AJSA BCEX KOHEUHbIX AUCTPMOYTMBHbIX CTPYkTyp. HakoHen
AOKa3aHO, YTO €CIM KOHEYHas CTPYKTypa o0NajaeT TakuM MNpEACTAaBIEHHEM, TO OHa o0GnajaeT
M NpENCTaBIEHUEM B3aUMHO NEPECTAHOBOYHBIMH YNOPSAOYEHUAMH HA KOHEYHOM MHOXECTBE.
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