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Math. Slovaca 28,1978, No. 4, 349—359 

ON SOME TYPES OF MAXIMAL /-SUBGROUPS 
OF A LATTICE ORDERED GROUP 

STEFAN CERNAK 

All lattice ordered groups dealt with in this paper are assumed to be commutati
ve. We consider the conditions (p), (q), (h) and (/?) for a lattice ordered group (for 
detailed definitions cf. § 1). The condition (q) is similar to a condition studied by 
E v e r e t t [5]. The condition (/?) has been considered by Ai l ing in [1] for the case 
of linearly ordered groups. 

For x e{p, q, h, /3} we denote by SX(G) the system of all convex /-subgroups of 
an /-group G that fulfil the condition (x). The system SX(G) is partially ordered 
under set inclusion. The class of all lattice ordered groups satisfying the condition 
(x) will be denoted by Tx. 

§ 2 contains some auxiliary results concerning the conditions (p), (q), (h) and 
(/?). In § 3 it is proved that for each x e {p, q, h, jS} the partially ordered system 
SX(G) has the greatest element. From this it follows that Tx is a radical class in the 
sence introduced by J a k u b i k [7]. 

§ 1. Preliminaries 

Let us recall some concepts, definitions and notations to be used throughout the 
paper. For the notations and basic concepts not introduced here, we refer to [2] and 
[6]. 

Let G be an abelian /-group. Denote by N the set of all positive integers. We say 
that a sequence (xn) is in G if xn e G for each n e N. A sequence (xn) in G is called 
descending if xn^xn+i for each n eN. The concept of an increasing sequence is 
defined dually. Let (xn) be a sequence in G and let x e G. Suppose that there exist 
sequences (un) and (vn) in G such that (un) is increasing, (vn) is descending, 
un ^ x n ^ v n for each n eN and VM„ = AU„--JI:. Then we shall write xn-*x ; we also 
say that (xn) o-converges to x, or that x is an o-limit of (xn). If (xn) is a descending 
sequence and if there exists Axn = x, then (xn) o-converges to x ; this situation will 
be denoted by xn[x. The meaning of xn]x is analogous. A sequence (xn) will be 
called a zero sequence if JC„ —> 0 (0 denotes the zero element of G). It is obvious that 
xn—>0 if and only if there exists a sequence tn|0 such that |xn |^r„ (neN). A 
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sequence (xn) satisfying 

\xn-xm\^tn (neN, m^n) 

for some (tn) with tn[0 is called fundamental. Denote by H(E) the set of all 
fundamental (zero) sequences in G. If (JC„) is o-convergent, then (jcn)eH. The 
converse does not hold in general. If every sequence (JC„) e H is o-convergent, then 
G is said to be o-complete. An interval [a, b] of G is called o-complete if (JC„) 
o-converges whenever xne[a,b] (neN) and (jc„)eH. Since each fundamental 
sequence is bounded, G is o -complete if and only if each interval of G is 
o -complete. 

Now we describe the construction of the Cantor extension C(G) of G. This 
construction is due to E v e r e t t [5]. Let (jcn), (yn)eH. We put (jc„) + (y„) 
= (JC„ + yn); further we set (JC„) ̂  (yn) if JC„ ^y„ for each neN. Then H turns out to 
be an abelian /-group and E is an /-ideal of H . The factor /-group HIE = C(G) is 
said to be the Cantor extension of G. 

The symbol (JC„)* will be used to denote the coset of C(G) containing (xn)eH. 
The mapping cp: JC»->(JC, JC, . . .)* from G into C(G) is an o-isomorphism. If JC and 
<p(jc) are identified, then every sequence (jc„)eH is o-convergent in C(G) and 
every element of C(G) is an o -limit of some sequence (jcn)eH. Both symbols 
0 and E will be used to denote the zero element of C(G). 

We say that an element y e G is an o-cluster point of a sequence (xn) if there are 
sequences (un) and (vn) in G such that 

(i) un]y, vn[y, 
(ii) for each n0eN there exists neN, n^n0 with the property un ^xn^vn. 
It is easy to prove that y e G is an o -cluster point of (JC„) if and only if y is an 

o -limit of a subsequence of (JC„). 

In § 2 and § 3 we shall consider the following conditions for G: 
(p) If [an, bn] (n eN) is a system of intervals of G such that [an, bn] ^[an+l9 bn+l] 

for each neN, then n[an, bn] (n eN)i=0. 
(q) If (xn) is a fundamental sequence in G and AJC„ does exist in G, then (JC„) is 

o -convergent. 
(h) Every bounded sequence in G possesses an o-cluster point. 
(P) If a is an ordinal, A , B are nonempty linearly ordered subsets of G such that 

A<B, cardA + ca rdE<K a , then there exists geG with A <{#}<£* . Here 
A<B (A^B) means that a<b (a^b) for each aeA and each beB. If G is 
linearly ordered and if it fulfils (j8), then G is called an r^a-group (cf. Ailing [1]). 

We say that a sequence (JC„) in G converges to JC if for each 0<e e G there exists 
n0eN such that \xn—x\<e for each n^n0 (see [5]). An element JC e G is called 
a cluster point of a sequence (JC„) if for each 0 < e e G and each n0eN there exists 
n ^n0 such that \xn—x\<e. 

A sequence (xn) will be called almost constant if there is n0eN with JC„ =xno for 
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each n ^n0. If G is a linearly ordered group, the o -convergence is reduced to the 
convergence (see [5]) and it is easily seen that the concept of an o-cluster point 
coincides with the concept of a cluster point. If G is an /-group that fails to be 
linearly ordered and if a sequence (JC„) of elements of G converges to x, then (JC„) is 
almost constant (xn=x,n ^n0) (cf. [5]). Therefore * is a cluster point of (xn) if and 
only if for each meN there exists n(m)^m with xn(m) = x. 

Let us recall the definition of the direct (lexicographic) product of partially 
ordered groups (cf. [6]). Let A and B be partially ordered groups. The cartesian 
product G of A and B is made into a partially ordered group by putting (au bx) ^ 
(a2, b2) if and only if ax ^a2, bt^b2 (at<a2 or a,=-a2and bi^b2) for all au a2eA 
and all bu b2eB. Then G is said to be the direct (lexicographic) product of 
partially ordered groups A and B. We shall use the notation G = AxB 
(G = AoB). By x(A) (x(B)) we shall denote the component of JC e G in the factor 

MB). 
Since G is abelian, the notion of a convex /-subgroup of G coincides with the 

notion of an /-ideal of G. The additive groups of all integers, rational and real 
numbers (with the natural linear order) will be denoted by C, Q and R, 
respectively. 

§ 2. The conditions (p), (q) and (ft) 

This paragraph deals with the relation between the o -completeness of G and the 
conditions (p), (q) and (h). Further there are investigated some relations between 
G and the Cantor extension C(G) of G. 

If [xn, yn] (n eN) be a system of intervals of R such that [xn, yn] 3 [xn+i, yn+i] for 
each n eN, then n[xn, yn] (n eN)£0. The analogous statement need not hold in 
G. 

E x a m p l e 1. If 0 = CoC, then n[(0, n); (1, -n)] = 0. 
Let [un, vn] be a system of intervals of G with [un, vn]^[un+l, vn+l] for each 

n eN. Denote K = n[un, vn] (n eN). 
2.1. If K±0 and if 
(i) (un),(vn)eH, 

(ii) (Un)* = (vn)* 
hold true, then cardK==l. 

Proof. Assume that (i) and (ii) are fulfilled and let c a r d K > l . Since K is 
a sublattice of G, there exist x,y eG,x<y. From (ii) we get (un—vn)eE; hence 
there is a sequence t„|0 such that 0^vn— un^tn. Then 0<y—x ^ vn — un^tn 

(n eN). This is a contradiction, because At„ (n eN) = 0. 
2.2. If K = {x}, then Avn = vun=x (neN). 
Proof. We see that x^vn. Assume that ye G such t h a t x ^ y ^ t L , (n eN). Since 
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y^un (neN), we have yeK. The hypothesis implies x=y and so x = Avn 

(n eN). Similarly x = vun (neN). 
From 2.1 and 2.2 we obtain immediately: 
2.3. If K+0, then cardK = 1 if and only if the following conditions are fulfilled: 
(i) (un\ (vn)eH, 

(ii) (Un)* = (vn)*. 
2.4. For each sequence (xn)eH there exist sequences (un) and (vn) such that 

(un) is increasing and (vn) is descending with 
(i) un^xm^vn (neN, m^n), 

(ii) (Un)* = (vn)* = (xn)*. 
Proof. Suppose that (xn)eH. There exists a sequence (tn) in G such that tn|0 

and \xn—xm\^tn, i.e., — tn^xn — xm^tn (neN, m^n). Then 

(1) xn-tn^xm^xn+tn (neN, m^n). 

Construct sequences (un) and (vn) as follows: 

ux=xx-tx, un = (xn-tn)vun-x (neN, n>\), 
vx=xx + tx, vn = (xn+tn)Avn-x (neN, n>\). 

From (1) it follows that (i) is valid. Tlie sequence (un) is increasing and (vn) is 
a descending one. Hence [ux, vx] ^ [u2, v2] ^ . . . . The definition of elements un and 
vn implies 

(2) xn-tn^un^xm^vn^xn + tn (neN, m^n). 

From (2) we obtain 0^um — un^xm — un ^2tn (neN, m^n). Since 2 t n |0 , we 
have (un)eH. In the same way we get (vn)eH. According to (2) we have 
0^vn — un^2tn (n eN), 0^xn — un^2tn (n e N ) . Therefore un —vn—>0, xn — un—> 
0. Thus (un)* = (vn)*, (xn)* = (un)* and so (ii) is valid. 

2.5. I/ G fulfils (p), then G is o-complete. 
Proof. Suppose that G fulfils (p). Let (xn)eH. Let the sequences (un) and (vn) 

be as in 2.4. By the assumption K = n[un, vn] (n eN)=£0, hence because of 2.3 
cardK = 1. If we denote K={x}, from 2.2 it follows x = A vn = v un (neN); hence 
vn[x, un\x. Since un^xn^vn (neN), we have xn-^x. 

Example 1 shows that if G is o-complete, then G need not fulfil (p). 
2.6. G is o-complete if and only if condition (q) holds. 
Proof. Suppose that condition (q) is satisfied and let (xn)eH. According to 2.4 

we can find an increasing sequence (un)eH and a descending sequence (vn)eH 
such that un ^xn ^vn. Since Aun = ux does exist in G, the assumption implies that 
the sequence (un) is o-convergent. Consequently, un]u = vun (n eN). By using (2) 
we obtain vn — un^2tn; hence 0^t>n — u^2tn[0 (neN). Then vn — u[0, which 
means that vn[u. We infer that xn^>u; thus G is o -complete. The converse is 
obvious. 
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The condition (q) is similar to the condition 
(qf) If (jcn)eH, then AJC„ does exist in G. 
Everett [5] has shown that condition (q') holds in G if and only if G is 

o -complete. 
2.7. / / (xn)*eC(G), E<(xn)*, then there exists geG, E<g^(xn)*. 
Proof. Let E<(jcn )*eC(G). We may suppose that jcn^0 (n EN). By 2.4 we 

can find an increasing sequence (un)eH, un^xn (neN), (un)* = (xn)*. Hence 
wn = wnv0^jcn (neN). Since (wn)* = (jcn)*, there exists n0eN with u'no = g>0. 
From 0<g^un^xn (n^n0) we obtain E<g^(xn)*. 

2.8. If A£ {E} is a convex l-subgroup of C(G), then AnGi- {E}. 
Proof. I f A c G , the assertion is obvious. Suppose that A£G. Then there exists 

£< ( j c n )*eA, (xn)*£G. In fact, because G is an /-subgroup of C(G), we infer 
A cz G, if each positive element from A belongs to G. With respect to 2.7 there is 
g e G,E<g^(xn)*. The convexity A in C(G) implies g eA and thus g eAnG. 

2.9. If G is a linearly ordered group and (xn) is a sequence in G, the following 
conditions are equivalent: 

(i) For each 0<eeG there exists n0eN such that \xn— xm\<e (neN, 
m^n^n0), 

(ii) (xn)eH. 
Proof. Suppose that (ii) is valid. There exists a sequence (tn) with tnJ,0 and 

\xn — xm\ ^tn (neN, m ^n). In view of [5] a sequence (an) in a linearly ordered 
group o-converges to a if and only if (an) converges to a. Thus for each 0<e eG 
there exists n0eN such that tn<e (n ^n0) and so (i) is true. Conversely, let (i) 
hold true. If (JC„) is an almost constant sequence, it is easily seen that (ii) is valid. 
Let (JC„) be a sequence which is not almost constant. Then for each neN there 
exists m^n with |JC„ —xm\j=0.H0<eleG, then according to (i) there exists the 
least number nxeN such that |jcn - jcm| <e x (neN, m^n^nx). Let p eN be the 
least number with the properties p>nx and |jcni— JCP| =£0. For e2=\xnx — xp\<ex 

there exists the least n2eN such that \xn—xm\<e2 (neN, m^n^n2). In the same 
way we can find n3, and so on. Clearly, nx<n2<n3<.... Let us form a sequence 
(un) by putting: ux = u2= ... =uni.x = ex, uni = uni+x= ... =un2-x = ex,un2 = un2+x = 
... =un3-x = e2, .... The sequence (un) is descending and un^0 (n eN). Now we 
show that Aun =0. If JC e G, x ^un (n eN), then JC ^ 0 . Assume that JC > 0 . By (i) 
there exists n0eN such that |JC„ — jcm| <JC (neN, m^n ^n0). Further, there are r, 
s eN r^s^n0 such that ur = \xr — xs\ <x, a contradiction. Hence wn|0 and 
|jcn — Jcm|^wn (neN, m^n^nx). Therefore (xn)eH. 

2.10. Let (i) and (ii) be as in 2.9. Assume that an l-group G contains at least one 
o-convergent sequence which is not almost constant. If (ii) implies (i), then G is 
a linearly ordered group. 

Proof. Suppose that G is an /-group such that condition (ii) implies (i). Assume 
that G is not linearly ordered. Then there are 0<a,b eG, aAb=0. According to 
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the assumption there exists a sequence (xn) in G such that xn—>x and for each 
n0eN we can find n>n0, with xn + x. Then there exists a sequence / n | 0 , tn>0 
(neN) satisfying \xn— x\<tn (neN). We have (tn)eH, hence (tn) fulfils (i). 
Therefore there is mxeN such that tn—tm<a, whenever m^n^mx. Similarly 
there is m2eN such that tn—tm<b, whenever m^n^m2. If ra3 = max{ra1, m2}, 
then 0^ t n — tm^a/\b = 0 for each pair n, m with m^n^m2. Since (**„) is not 
almost constant, we have a contradiction. 

If (ii) implies (i), but each o-convergent sequence in an /-group G is almost 
constant, the assertion need not hold (example: G = CxC). 

From 2.9 and 2.10 it follows 

Theorem 2.1. Assume that an l-group G contains at least one o-convergent 
sequence which is not almost constant. G is linearly ordered if and only if the 
conditions (i) and (ii) from 2.9 are equivalent. 

2.11. If an interval [0, a] is a chain in G, then [E, a] is a chain in C(G). 
Proof. Assume that there exist (xn)*, (yn)*e[E, a], (xn)*\\(yn)*. According to 

2.7 there are g and h from G such that E<g^(xn)*, E<h^(yn)*. If 
(xn)*A(yn)* = E, then g\\h which is impossible because [0, a] is a chain. Now let 
(Xn)*A(yn)* = (zn)*>E. Introduce the notations (un)* = (xn)* - (zn)*>E, 
(vn)* = (yn)* — (zn)*>E. Hence (un)*A(vn)*=E. In a similar way as above we 
obtain a contradiction. 

Theorem 2.2. C(G) is a linearly ordered group if and only if G is a linearly 
ordered group. 

Proof. Let G be a linearly ordered group. C(G) being an /-group, it suffices to 
verify that [E, (xn)*] is a chain for each (JC„)* e C(G), (xn)*>E. Every fundamen
tal sequence in G is bounded. To get this result it suffices to put n = 1 in (i) from 
2.4. Hence an element a ^ (xn)* does exist in G. By the assumption and 2.11 [0, a] 
is a chain in C(G) and so [E, (xn)*] is a chain as well. The converse is obvious. 

The system {at: ieM} of elements from G will be called disjoint if M=£ 0, a, > 0 
for all ieM and a, Aa, = 0 , whenever /, jeM, iJ=j. Let a be a cardinal. Assume 
that the following condition is fulfilled in G: 

(F(a)) If {at: ieM} is a disjoint system in G, then cardM < a . 
In Conrad's paper [3] there is studied the condition F(K0). The condition (F(a)) 

was considered by J a k u b i k [8]. 
2.12. The condition (F(a)) holds in C(G) if and only if it holds in G. 
Proof. Let G satisfy the condition (F(a)) and let S = {at: i eM} be a disjoint 

system in C(G). With respect to 2.7 for each ieM there is gt eG with E<gt^a,. 
Hence {#,: ieM} is a disjoint system in G and therefore c a r d M < a . The converse 
is obvious. 

A subset A of G is said to be a basis for G (cf. C o n r a d [3]) if 
(J) an interval [0, a] is a chain for each 0<aeA, 
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(ii) A is a disjoint set, 
(Hi) if O^o eG such that b AA = 0 for each aeA, then b = 0 . 
2.13. A basis A = (a,: / e M } for G is a basis for C(G). 
Proof. Let A be a basis for G. In view of 2.11 we obtain that [E, a,] is a chain in 

C(G); and thus (i) is fulfilled in C(G). It is clear that (ii) holds in C(G) as well. It 
remains to verify only (Hi). Let E ^ (jcn)* e C(G), (xn)*Aa=E for each aeA. We 
have to show that (xn)* = E. Assume that E < ( J C „ ) * . According to 2.7 there exists 
g eG,E<g^ (xn)*. Since A is a basis for G, from g /\a = 0 it follows that g = 0, a 
contradiction. 

2.14. If JC„—>JC, then x is the only o-cluster point of (xn). 
Proof. If JC„-»JC, then there are sequences (un) and (vn) such that un\x, vn{x 

and * 

(3) un^xn^vn (neN). 

Then JC is an o-cluster point of (jcn). Let also JC' e G be an o-cluster point of (xn). 
Hence for"each n0eN there exists n^n0 with the property 

(4) u'n^xn^v'n, 

where u'n\x', vnjjc'. Let us form a sequence (jcn(m)) (n eN) such that for each meN 
we find n(m)eN with the property u'n(m) ^ jcn(m) ^ v'n(m). If mx<m2, we can 
choose n(ml)<n(m2). By using (3) and (4) we get un(m) + u'n(m) ^ 2xn(m) ^ 
vn(m) + v'n(m) (meN). Therefore 2jcn(m)-»jc+jc'. The assumption implies 2jcn(m)—> 
2JC, hence JC+JC'=2JC, JC=JC'. 

2.15. if JC is an o-cluster point of (xn)eH, then JC„—»JC. 

Proof. Let (un) and (vn) be as in 2.4. By the assumption there exists 
a subsequence (jcn(m)) of (JC„) such that jcn(m)-»jc. With respect to (2) we have 
un^xn(m)^vn (neN, m^n). Therefore un^x^vn (neN). Thus (un)*^(x, JC, 
...)*^(vn)* and 2.4. implies (un)* = (vn)* = (JC, JC, . . . )*. Hence un\x, vn[x and 
by using (2) we obtain the assertion. Since every fundamental sequence is bounded, 
with respect to 2.15 we conclude 

2.16. If G fulfils (h), then G is o-complete. 
The converse does not hold in general. 
E x a m p l e 3. G = QoR is an o-complete /-group (see [4]). The sequence 

(JC„) = ((—, o) ) in G is bounded but it possesses no o-cluster point. Assume that 

(JC, y) e G is an o-cluster point of (JC„). Hence there are sequences (un) and (vn) 
such that un\(x,y), vnl(x,y) and for each n0eN there exists n^n0 with the 
property un^xn^vn. There exists nxeN with the property un(Q) = vn(Q) = x 

(n^nx) (see [4]). If J C > 0 , then J C > — for some n2eN. Hence wn>JCn (n^n3 

n2 
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= max{fli, n2}), a contradiction. If x = 0 , then xn >vn (n ^ n , ) , again a contradic
tion. 

2.17. If G satisfies (h), then it satisfies (p) as well. 
Proof. Let [un, vn] (n eN) be a system of intervals of G such that [un, vn] ^ 

[un+u vn+i] for each neN. The sequence (vn) is bounded and hence by the 
assumption it has an o-cluster point x. There exists a subsequence (vp) of (vn) with 
vp{x. Therefore, vn{x and un^x^vn (neN). This shows that x en[un,vn] 
(n eN) and (p) holds true. 

If G fulfils (p), then G fails to satisfy (h); it suffices to put G = RoR. The 

sequence (xn) = l( —, Oil has no o-cluster point. 

2.18. *If G fulfils the condition (h), then G is archimedean. 
Proof. Assume (by way of contradiction) that G satisfies (h) and it fails to be 

archimedean. Then there exist a, b eG,a>0, b > 0 with na<b (n eN). We wish 
to show that the bounded sequence (na) has no o-cluster point. Suppose that x is 
an o-cluster point of (na). Then we can find sequence (un) and (vn) with un\x, 
vn [x. For each n0eN there is n ^ n0 such that un^na^vn. We obtain vn >ka (n, 
k eN). Hence na < Avn =x (n eN) and thus (n + 1) a <x, na <x —a. For each 
meN there exists n ^ r a such that um^un^na < x — a. Hence x = vum (m eN) 
=̂  x — a, a contradiction. 

If G is archimedean then the condition (h) need not hold in G, for example if 
G = Q. 

§ 3. The greatest /-ideals of G 

In this paragraph it will be shown that for each x e{p, q, h, (3} the partially 
ordered system SX(G) possesses the greatest element Mx. 

It is easy to verify that G fulfils the condition (x) if and only if each interval of G 
fulfils the condition (x). Let us form the set 

Mx = {g eG: the interval [0, \g\] fulfils the condition (x)}. 
Let x, y, c e G, x ^c ^y. 
3.1. If the intervals [x, c] and [c, y] satisfy condition (p) then the interval [x, y] 

fulfils condition (p) as well. 
Proof. Let [an, bn] (n e N ) be a system of intervals in G such that [an, 6n]cz 

[JC, y] (n eN) and [au bx] ^ [a2, b2]^.... Denote dn =anvc, bnbnvc, dn =anAc, 
bn=bnAc. Therefore [an, bn] c [c, y] (neN), [dn, Bn] c [x, c] (neN), [au 6,] 3 
[d2, b2]^..., [du Bi] 3 [a2, 52]^ . . . . Hence, from the assumption it follows that 
there exist i e n[an, bn] (n eN) and i e n[an, bn] (n eN). Let n be a fixed positive 
integer. From an—an = dn - c we get an = an + (dn — c). Since dn^i and dn — c ^ 
i - c, we have an^i + i — c = z. In a similar way obtain bn^z. Then z e n[an, bn] 
(n e N) and the proof is finished. 
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3.2. Mp is an I-ideal of G. 
Proof. Let g, h eMp. By the assumption the intervals [0, \g\] and [0, \h\] satisfy 

condition (p). Because of [0, \h\]~[\g\, \g\ + \h\], according to 3.1 the interval 
[0, |ff| + |/i|] fulfils (p). From 0^\g + h\ ^ \g\ + \h\ (see [6]) it follows that 
[0, \g + h |] satisfies (p) and so g + h eMp. Since \g\ = \ - g|, Mp is a subgroup of 
G. From \gvh\ ^ \g | v \h \ ^ \g\ + \h\ we conclude that Mp is a sublattice of G. It 
is easily seen that Mp is a convex subset of G and the proof is complete. 

Theorem 3.1. Mp is the greatest I-ideal of G satisfying condition (p). 
Proof. First, we prove that Mp fulfils (p). It suffices to show that every interval 

of Mp fulfils (p). Let [a, b] we any interval of Mp . Since 0^b —a eM p , by the 
definition of the set Mp we obtain that [0, b —a] fulfils (p) and [0, b —a] — [a, b] 
implies that (p) holds true in Mp . Now let M' be any /-ideal of G satisfying (p) and 
let geM'. Then [0, |# | ]czM' and thus [0, \g\] fulfils the condition (P), hence 
g eMp. This shows that M'czM p . 

3.3. If the intervals [x, c] and [c, y] are o-complete, then the interval [x, y] is 
o-complete. 

Proof. Suppose that (xn)eHandxne[x, y](n eN). We have to prove that (xn) 
is an o -convergent sequence. By [6], Chapt. V we have \xnvc—xmvc\ ^ \xn —xm\ 
and |x„Ac-J t m Ac| ^ |*n — xm\. Hence (xn)eH implies (xnvc)eH and 
(xnAc)eH. By hypothesis xnvc-*i and xnAC—»f~. Since 

Xn = (XnVC) + (Xn AC) - C 

for any neN (see [6], Chapt. V), it is easy to prove that xn-*i+t-c. 
Let us denote 
M={g eG: the interval [0, \g\] is o-complete}. 
In a similar manner as in 3.2 the following assertion can be proved: 

Theorem 3.2. M is the greatest o-complete I-ideal of G. 
Since M = Mq, we have 
Coro l l a ry . Mq is the greatest l-ideal of G satisfying the condition (q). 
3.4. If the intervals [x, c] and [c, y] satisfy condition (h), then the interval [x, y] 

fulfils (h) as well. 
Proof. We intend to show that every sequence (xn) with xne[x,y](n eN) has 

an o-cluster point. By the assumption there exist a subsequence (xn{i)) of (xnvc) 
and a subsequence (xnU)) of (xn AC) such that xn(0—»r" and Jcn(/)—>?. Let (n(k)) be 
a subsequence of (n(i)) and of (n(j)). Evidently xn(k)-+i and xn(k)-*t. Since 
xn = (xnvc) + (xnAc) — c for any n eN, we obtain xn(k)-+i+F-c. Thus (xn) has 
an o-cluster point. Therefore the following assertion holds: 

Theorem 3.3. Mh is the greatest l-ideal of G fulfilling the condition (h). 
3.5. If the intervals [x, c] and [c, y] satisfy condition (P), then the interval [x, y] 

fulfils (p) as well. 
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Proof. Let A and B be arbitrary nonempty linearly ordered sets such that 
A cz[x, y], B cz[x, y], A <B, cardA + cardB <K a . We have to prove that there 
exists z e [ ; t , y ] , A<{z}<B. Denote avc = a, aAc = a, bvc = b, b/\c = b for 
each aeA and each beB; further, denote A = {a: aeA}, B = {b: beB}, 
A = {i: aeA} and B = {b: beB}. We have card (A nB) ^ 1 and card ( A n £ ) ^ 
1. From card A, card A ^ card A and cardB, cardB ^ cardB we obtain 
card A + cardB<K a and card A + ca rdB<K a . First we shall show that if 
ca rd (AnB) = 1, then A <B. Let there exist a eA and beB with a AC = b AC. 
We have avc < bvc. This follows immediately from A<B and from the 
distributivity of G. Le ta iGA, bieB^i^a.ltb^b, t hena ivc ^ avc<bvc ^ 
bxvc, hence aivc < bxvc. If bx<b, then a1vc<b1vc. In fact, if axvc < avc, 
then ajvc<6ivc because of avc ^ bxvc. If axvc = avc and aivc = bxvc, 
from bxAc = bAC = aAC it follows bx = a, a contradiction. The proof is 
analogous to that of ax >a. In a similar way we show that if A n B is a one-element 
set, then A<B. 

Let a be an arbitrary element of A . If A <B, then the assumption implies that 
there exists z e [c, y], A < {z} <B. From A ^ B we infer that there is z e [x, c], 
A ^{z}^B. Since a — a =a — c, we obtain a =a + (a — c). From a ^ z , a — c < 
z — c it follows z=z + (z — c)>a. In a similar manner we obtain z<b for each 
beB. We conclude that A<{z}<B. Under the assumption A <B the situation is 
analogous. 

By the same method as in 3.2 we can prove the following statement: 

Theorem 3.4. Mp is the greatest l-ideal of G fulfilling condition (/3). 
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НЕКОТОРЫЕ ТИПЫ МАКСИМАЛЬНЫХ /-ПОЛУГРУПП СТРУКТУРНО 
УПОРЯДОЧЕННОЙ ГРУППЫ 

ШтефанЧернак 

Резюме 

Пусть С коммутативная структурно упорядоченная группа. В этой статье рассматриваются 
условия для С кассающиеся последовательностей в О. Доказано, что существуют максимальные 
/-идеалы в О, удовлетворяющие одному из этих условий. Подобные условия исследовали 
Эверетт и Аллинг. 
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