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Math. Slovaca 28,1978, No. 4, 361—378 

A CONCEPT OF MEASURABILITY 
FOR THE DANIELL INTEGRÁL 

IVAN DOBRAKOV 

Introduction 

The m in purpose of this paper is to give a new concept of measurability for the 
Daniell scheme of integration. This concept seems to be more natural and effective 
than the commonly used Stone concept (for the latter see [6], [4], point 13., and [7, 
sections 6—5 and 6—7]). Moreover, this concept will be needed in the non additive 
generalization of the Daniell integral, see [2]. 

To explain the main ideas, let (T, 3*, I) be an elementary Daniell integral and let 
££* denote the class of all summable functions / : T-^R* = ( -oo ? +oo). A 
function / : T^>R* is measurable in the sense of Stone iff g V ( / A / Z ) eJ£* for every 
choice of g, h eJ£* such that g^O^h, see [7, section 6—5]. Thus to decide a given 
function / is measurable, we must first determine ££* and then prove the 
summability of all g V ( / A / Z ) , — g, h eJ£*+. Roughly speaking, the measurability 
depends on and comes after summability, and this strongly reduces its importances 
for the theory. 

For our concept of measurability we first determine the class N of all /-null sets, 
i.e., those sets IV cz T for which I(XN) = 0. Then we define the class S 8 N ( ^ ) of R' — 
valued measurable functions (JR' = JR or R*) as the smallest class of R' — valued 
functions on T which contains & and which is closed under the formation of 
pointwise limits a.e. N of sequences. In this way our measurability depends only on 
^ and N, and is before summability. Moreover, using our concept of measurability, 
in Theorem 24 we give many necessary and sufficient conditions for 5£* =^£*(T, 
a(P), ft), where (T, cr(P), JU) is the measure space induced by I. Out of them let us 
mention the fo l lowing : \ ) fge®*(&) V/, ge&,2) f+n e3fiN(&) Vfe&,n=2, 3, 
..., 3) l A ^ c S N ( r J ) , 4) l A i T c z i ? , and 5) 1 A ^ + c = i?. In Stone's concept only 
condition 4) was known, see [7, section 6—7]. 

The material of the paper is divided into four parts. § 0 contains the basic 
notations. In § 1 3 8 N ( ^ ) and the measurable sets B N ( ^ ) = {E:E<=T, 
XE€$&k(2F)} are investigated for abstract and concrete 2F and N. Particularly, 
measurability with respect to a a-ring and Baire measurability are obtained as 
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special cases. The main Theorem 18 in § 2 give five necessary and sufficient 
conditions when there are enough measurable sets. Its proof essentially uses the 
Stone—Weierstrass theorem. In § 3 we apply the results of §§ 1 and 2 to the 
Daniell integral. 

§ 0. Basic notations 

Throughout this paper R = (-<*>, +oo) will denote the set of real numbers with 
the well-known topological, lattice and algebraic structure. R* = ( — oo, +oo) will 
be the set of extended real numbers. We shall use R' and R" to denote either R or 
R*, and we always suppose that R' czR". From the topological point of view R* 
will be considered as the two-point compactification of R. Particularly the sets 
(c, + °°), and ( - °°, c), ceR, will form a base of neighbourhoods of the points 
{ + 00} and { - 0 0 } , respectively. Thus, R* will be a separable compact metric 
space. 

B'0 will denote the a-algebra of all Borel ( = Baire) measurable subsets of R', i.e., 
the smallest a-ring containing all compact ( = compact Gs) subsets of R'. It is well 
known that B0 (B*,) is the smallest a-ring containing all sets of form (c, + 00), ceR 
«C, +00), ceR*). 

R * with the usual lattice operations and order relations is a complete lattice and 
a totally ordered space, respectively. Further, cn —>c, cn, c eR', n = 1, 2, ... if and 

only if lim inf c„ = lim sup c„. 
n n 

Multiplication, addition and subtraction in R* define as in [7, section 4—1]. 
Particularly, 0 c = c 0 = 0 for each ceR *, and (+00) + ( -00) = (— oo) + ( + 00) = 
0. In this way the addition in R* is commutative, however, it is not always 
associative ([(-00) + ( + 00)] + (+00)= + oo? and ( -00) + [(+00) + ( + 00)] = 
0). 

In what follows T will denote a non empty set, 2T the collection of all subsets of T 
and .R'T the class of all R' — valued functions defined on T. Convergence, order, 
lattice and algebraic operations in R'T are defined pointwise. For feR'T and 
ceR' we define (cv/)( t ) = cv / ( t ) and ( c A / ) ( 0 = cAf(t), teT.FoTfeR'T we 
p u t / + = / v 0 a n d / " = ( - / ) v 0 . 

If &aR'T, then ^ + = {f:fe&, / ^ 0 } , &~ = {f:fe&, / ^ 0 } , &° = {f:feR*T, 
there are /„ erj , n = 1, 2, ..., such that / „ / * / } , &u = {f:feR*T, there are fne&, 
n = l,2, ..., such t h a t / „ \ / } , and &= {f:feR*T

y there are g e&u and he&° such 
that g^f^h}. 

Definition 1. We say that &czR'T is an R' — linear function lattice (on T) if 
fvg, f A0 and af-\-bg e3^ for each f, g e^ and each a, b eR. 

362 



Clearly R — linear function lattices are real vector lattices, however, R* — 
linear function lattices are not, since the addition in I?* is not always associative. 

The next theorem follows immediately from the definitions (for the proof of 4. 
see the proof of Theorem 6-2III in [7]). 

Theorem 1. Let 3^czR'T be an R' — linear function lattice. Then: 
1. 3F° and ?FU are lattices closed under multiplication by c e (0, + o°), and 3F°+ and 

9*~ are closed under addition. If R' = R, then SF° and 5FU are closed under 
addition, 

2.fe&°o-fe&u, 
3.fe&° =->/+ e &° and f~ e f „ . If R'=R, then the converse is also true. 
4. Iffne&°, n = l,2, ..., andfn/f, then there are un e&, n = 1, 2, ..., such that 

un ^fn for each n and un/f. Thus fe3F°. 
5. If fne&u, n = l,2, ..., and/„\/, then there are une&,n = \, 2, ..., such that 

un ^ / „ for each n and un\f. Thus fe2Fu, 
6. 3F={f:feR*T, there exists / i e f ° + such that | / | -§ /*} , and 
1. cF is a o-complete R* — linear function lattice closed under the formation of 

pointwise limits of sequences. If fe2F, geR* and {t:teT, g(t)i=0} CZ 

{t:teT,f(t)£0}, then gc&. 
In the sequel R, D and S will be used to denote a ring, a 8 -ring (a ring closed 

under the formation of countable intersections) and a a-ring of subsets of T, 
respectively. If Ec=2T, then g(E), 8(E) and a(E) will denote the smallest ring, 
8 -ring and a-ring containing E, respectively. 

We shall say that a class Ecz2T is hereditary if A n B e E for each Ae2T and 
each E e E. If A e 2T, then XA denotes its characteristic function on T. For a ring 
R cz 2T 5^(R) will denote the R — linear function lattice of all R — simple functions 

r 

on T, i.e., the class of all functions / of form / = ^a,rXA(, where ateR, At e R and 
i = i 

AinAi = 0 for i±j, i, j = \, ..., r< + 00. if Ecz2T , then clearly &>(g(E)) is the 
smallest R — linear function lattice containing all XE, EeE. 

If T is a locally compact Hausdorff topological space, then F, C and C0 will 
denote the class of all closed, compact and compact G6 subsets of T, respectively. 
Further, U denotes the class of all open subsets of T and U0 = Una (C 0 ) . We shall 
say that a(F) = a(U), a(C) and a(C0) are the weakly Borel (see [1, p. 181]), Borel 
and Baire subsets of T, respectively. CQQ(T) denotes the R — linear function lattice 
of all 1? — valued continuous functions on T with compact supports, and C0(T) is 
its closure in the sup norm in the Banach space of all bounded functions on T. 
Clearly C0(T) is again an .R — linear function lattice. 

If 3FU &^2czR'T and o is an algebraic or lattice operation, then %Fxo3<2 = {/:/ 
= U °f2, /1 e cFx and f2 e &*2}. Similarly we define E, g E2, when E1? E2 cz 2T and o is 
a set operation. 
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§ 1. (£F, N) — measurable functions and sets 

Definition 2. Let Ncz 2T. We say that a property P defined on Tis valid almost 
everywhere N, shortly a.e. N, if {t:t eT, P(t) is not true) eN. 

It is clear that under suitable assumptions on N the analogs of the results of §§ 18 
and 19 in [1] are valid for R' — valued functions and the a.e. N concept. 

Definition 3. Let N cz 2T and let &czR'T. By S9N(^) we denote the smallest class 
of R" — valued functions on T which contains & and which is closed under the 
formation ofpointwise limits a e N of its sequences. Elements ofS^'^(^) are called 
R"— valued (?F, N) — measurable functions. By BN(^) we denote the class of all 
subsets E cz T such that XE e 33N(^) . Elements of BN(:^) are called R" — (&, N) 
— measurable sets. If N = 0 , then we write simply 0b"(¥F) and B"(^). 

Let Ncz2T and let &cRT. Then clearly ^ N ( ^ ) c z ^ * ( ^ ) n # T , hence BN(^)cz 
B N (^ ) . Further S9N(S8N(^)) = 33N(^). If MczNcz2T and &aR'T, then S B J ^ c 
33N(^) and B^(^)czB N (^) . Particularly, ^"(^)czS8 N (^) and B"(^)czBN(^) for 
any Ncz2T and any &aR'T. 

Theorem 2. Let Ncz2T, &czR'T, let rc=U and let cp:R"n^R" be a separately 
continuous function. Suppose that cp(fu ..., / „ ) ^ ^ N ( ^ ) for each fu ..., fneZF. 
Then cp(fu ..., fn)e^(&) for each fu ..., fne%'^). 

Proof. Put ml = {fl:f^e^(^),(p(fuf2,...,fn)em^) for each f2, ..., fne&}. 
T h e n ^ c z ^ ! and if fuk eSSi, k = l , 2 , ..., and fhk-*feR"T a.e. N, then fe®x by 
the definition of 33N(^). Thus 38, = 33N(^). Put S#2 = { / 2 : / 2 eS N (^ ) , cp(fu f2, ..., 
fn)e9b'U&) for each / ^ S ^ ) and each /3, ...,/„ e&}. Then similarly as above 
382 = 38N(^). Continuing in this way we obtain that 2ftn = 33N(^), i.e., the assertion 
of the theorem. 

Corollary 1. Let Ncz2T and let &(^R'T be a lattice. Then: 
1. ^ N ( ^ ) is the smallest lattice of R"— valued functions on Tsatisfying both a): 

&a®"(&) cz 33 £(^) , and b): iffn e 33N(^), n = 1, 2 , . . . , is a monotone sequence 
andfn-^feR"T a.e. N, then f e®'^), 

2. BN (^) is a o-complete lattice of subsets of T, and 
3. If moreover 2F is an R' — linear function lattice, then \f\ eSft'^SF) for each 

/e3&N (^) and BN(^) is a o-ring. 
Proof. 1) Since (x, y)-+xvy, xAy are separately continuous functions from 

R"2 to R", 33N(^) is a lattice by the theorem. That 33N(^) is the smallest lattice 
satisfying both a) and b) follows from the definition of 39N(^) and from the fact 

that /„ —>/ a.e. N if and only if / = lim inf /„ a.e. N. 
n 

2) is a consequence of 1). 
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3) x—»|;t| is a continuous function from R" to R", and (x, y) -> IA(JCVO) 

— IA(JCVO) A (y vO) is a separately continuous function from R"2 to R". 

Corollary 2. Let N c= 2T and let3* aRT be anR — I/near function lattice. Then : 
1) 53N(:5F) is an R — linear function lattice, and 
2) BN(^)=3BN(^) are o-rings containing B(&) and N. 

Proof. 1). Since (x, y)—>*vy, x Ay, ax + by, a, b eR, are separately continu­
ous functions from R2 to R, 1) follows from the theorem. 

2) is a direct consequence of Corollary 1—3) and the fact that OeZF --> 
Nc=BN(^). 

Similarly as Theorem 2 one can prove 

Theorem 3. Let Nc=2T, let &aRT and let (p:RxR*-±R* be a separately 
continuous function. Suppose that (p(f, g)e2ft%(2F) for each f, ge3*. Then 
(p(f,g)e m*<(&) for each fe®„(&) and each g e S3N(^). 

Corollary. Let Nc= 2T, 1ef 9cRTandletf + gefflN(:^) for each f,ge&. Then 
&&(&) = S&„(&) + ®£(&). 

Theorem 4. Let Nc=2T, &c=R'T, n^l and let <PczC"s(R"n) = the set of all 
separately continuous R" — valued functions on R"n. Suppose that cp(fu ..., 
fn)e®'^(&) for each fu ..., fne3Fand each (pe<P. Then cp(fu ..., / „ ) € » £ ( * ) for 
each fu ..., fne<3l'U(&) and each (pe$"(&). 

Proof. Put m = {(p:(pem"(<P), (p(fu ..., fn)e®^(&) for each / „ ..., 
/ n e ^ N ( ^ ) } . Then ( P c i by Theorem 2. Let (pkeffl, k = \, 2, ..., and let 
q)k-xpeR"R"n, i.e., let (pk(xu :.., xn)-^xp(xu ..., xn)eR"for each (xu ..., xn)eR"n. 
Then (p(fu ...,fn) = \im(pk(fu ..., fn)e®'^(&) for each fu . . . , /„ e $ N ( ^ ) , hence 
(peffl. Thus Sft = 8ft"(<P), and the theorem is proved. 

Definition 4. For N c 2T put N'(N) = {f:feR'T, {t:te T, f(t) * 0} e N}, and for 
N'aR'Tput N(M') = {E:Ee2T,xEeX'}. 

Clearly feN'(N)<> -feN'(N) <-> \f\eJ{'(N) o a/e^'(N) for each 
a e R - {0}. If 9 c= R T, then 38N(^) ID 5 3 N ( ^ ) 4- .N'(N). Since E e N o %B e N' (N), 
N = N(J^f'(N)) for any Nc=2T. Further, f + g e ^ N ( ^ ) when / e ^ N ( ^ ) , g eJf"(N) 
and / g = 0 . If Nc=2 r is a hereditary class, then ^ N ( ^ ) = D ^ ^ ( ^ ) + N"(N) and 
BN(^) => B £ ( ^ ) ^ N . 

Theorem 5. Let N c 2 T be a hereditary ring. Then f + g, heN'(N) for any f, 
geJf'(N) and any heR'T satisfying |rz| = l/|. Moreover .7V'(N)c=^'(^(N)). 
Conversely, ifN'<=R'T is such that f + g, heJf' for any f, g eN' and any heR'T 

satisfying \h\^k\f\, then N(X') is a hereditary ring. 
Proof. Only the inclusion .7V'(N)c=^'(^(N)) is not immediate. Let feN'(N), 

and for each n = 1, 2, ... put 
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I" n'X{t:teTyf(t)<:-n}+ _2, X U:. e T, (Ac/n)_i/(f )<(A: + l ) /n} + 
i 2 rZ 

Ac — — n 

+ n 'X{f.t<ET,f(t)^n}' 

Then obviously /„ eS?(N) for each AZ, and /„-->/. Thus / _ 38'(_^(N)). 

Theorem 6. Let Na2T be a hereditary o-ring. Then _!V'(N) = 38'(.vV'(N)) 
= 38'(^(N)), andf + g, h e_V'(N) for any f, g __V'(N) and any he R'T satisfying 
\h\ _§i \f\. Conversely, ifM'^R'Tissuch thatJf' = 38'(_V'), andf + g, heM' for any 
f, geX' and any heR'T satisfying |/z|___|/|, then N(N') is a hereditary o-ring. 
Moreover in this case _V'(N(.yV')) = .7V'. 

Proof. For the first part, clearly 38'C/V'(N)) = ./V'(N). Thus by Theorem 5 
.vV'(N) cz 3B'(^(N)) cz 38'(_V'(N)) = _V'(N). 

For the converse part, N(_!V') is a hereditary ring by Theorem 5. Let En eN(_/V'), 

n = 1, 2, .... Then for each n we have /„ = 1 A ( 2>feJ e^'. But then y - = 

\k = i I U En 

lim /„ e38'(.fV') = _V'. Thus N(M') is a hereditary cr-ring. 

Clearly /e_V' o | / | eJf', and 1 Alimn| / | e_V' o{t:teT,f(t) i= 0}eN(./V')^> 
feJf'(N(Jf')). Thus _V# = _V'(N(_!V')) if and only if | / | e_V' <=> 1 Alim n\f\ e_V\ 
Let | / | .-AT'. Then lArz|/|e_V' for each n, hence lAlim rz|/| e38'(-V') = _V'. 
Suppose now that lAlimrz|/ | e_V'.Then | / | AkAlimrz|/| eJi' for each k = 1, 2, ..., 
and | / | Ak Alim n|/|-> | / | in R'. In this way | / | e _T(.vV'),hence/e./V'. The theorem 
is proved. 

Theorem 7. Le_ Ncz2T be a hereditary ring. Then: 
1) &czRT implies 38N(^) = _#(^ + _V(N)) = 3 8 ( ^ t ^ ( N ) ) and m(&) 

= 2&*(^ + >f(N)) = 38*(38N(^)) = * 3 8 * ( ^ t ^ ( N ) ) , arid 
2) &c=R*T implies ffi*<(&) = &*([& +N*(N)] + N*(N)). 

Proof. 1). Clearly 38, = 38(_Ft^V(N)) cz 38N(^). Define 38 = {f:fe ®„ f'XT-N 
+ G'XN^^I for each _VeN and each g eRT}. 

Since fxT-N=f-f'XN, 3 8 ^ 3 8 z . ^ . Le t /„e38 , n = \, 2, ..., l e t / _ # T and let 
/„ - » / a.e. N. Then there is a set TV G N such that fn • XT-N -> / • %T-^. Put f'n = fn • %T-N 
+ / * „ . Then /^eSS- for eachrz and / i - > / , hence/GSBL Let M e N and let ^ e i ? T . 
Then (1) fnXT-M + QXM = (fn'XT-N + /X/v)XT-M + _7XM = fn'XT-(M^N) 
+ (I'XN-M + 9XM) ' XN^M. Since M U N G N a n d / : ^ T _ M + g^M -> f'XT-M 
+ Q'XMJ'XT-M + QXM - 3 8 L Since M e N and ge RT were arbitrary, fe 38. Thus 
38x z_ 38 zo 38N(^), hence 38! = 38N(^). 

Since 5^(N) cz .vV(N), 38(^ + S^(N)) cz 38(^ + ./V(N)). But _V(N) cz 38(_/(N))by 
Theorem 6, hence 33(3^ +S^(N)) -̂  ^+38(,Sf(N)) -=> & + JT(N). Thus 
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m(& + Sf(~*)) = 38(33(^ + 5f(N))) 3 « ( y + JV(N)), hence 38(^ + .vV(N)) 
= flB(V + y(N)). 

Obviously ^8t = S8*(^ + ^ ( N ) ) c S8g(^). Define 38* = {/:/e38?, / X T - * 
+ ^ ^ e S t for each N e N and each g GR*T}. 

Let further / e ^ , let N e N and let geR*T. Then hn=f-f*XN + ( - " ) v 
(wA^f)e^r + JVr(N) for each n = \, 2, ..., hence f'Xr-N + #;fcv = lim hneS8*. 
Thus 38? => 38* => ^ . Now, proceeding as above, we obtain that 38* = 38*j(^F). (Since 
T— (MuN), N — M and M are pairwise disjoint sets, the equality (1) holds in spite 
of being in R*). 

Using the proved equalities &%(&) = ®*(&+N(N)) = &*(&(& +Jf(H))) 
= ®*(®N(&)) = &*(<%(&+Sf(N))) = S8*(^+5^(N)). 

2) Clearly » f = » * ( [ y + ^ * ( N ) ] + J ^ ( N ) ) c= &$($). Define 58* as above 
with S3* instead of 58*. Then it easily follows that 38f =3 38* zo [&+Jf*(N). Now, 
in the same way as above in 1), we obtain the desired equality. 

Let S cz 2T be a a-ring. According to the well-known definition, see [7, section 
5—1], a function f:T-+R' is called S — measurable if [t:teT, f(t)J=0} n 
f~l(B'0) cz S. It is easy to see that Bo may be replaced by any class E c 2R' such that 
o(E) = B'0. Particularly, we may take E = {{x:xeR', x^c}, ceR'}. 

Important information about S — measurable functions are contained in the 
following well-known theorem, see [7, section 5-1]. 

Theorem 8. Let S c 2 T be a o-ring and let f.T^R'. Then the following 
conditions are equivalent: 
1) f is S — measurable, 
2) r,f-eSf(S)°+, 
3) there are fneSf(S), n = l,2, ... such that fn-*f and \f\/\f\, and 
4) feM'(Sf(S)). 

Corollary 1. Let Sc=2T be a o-ring. Then 38(^(S)) = 58*(^(S)) n RT. 

Corollary 2. Let S c 2 T be a o-ring. Then B*(Sf(S)) = B(Sf(S)) = S. 
Proof. Obviously S c B ( ^ ( S ) ) cz B*(^(S)). Let EeB*(Sf(S)). Then XB eSf(S)OA 

by the theorem. Thus there are /„ e Sf(S)+, n = 1, 2, ..., such that fn/xE- Each fn is 

of the form /„ = ^anti • x*n, with 0<an , f ^ 1, A n , , eS , AnJczE, and 
i = l 

A n , , nA n , ,=0 fo r i±j, i,j = l, ..., r„. Put En = l JA n , l , n = \, 2, .... T h e n E n e S , 
i=l 

EnczE, En/, and since /„ =XE„, En/E. Thus EeS. 

Corollary 3. Let S, Si(=2T be o-rings. Then the following conditions are 
equivalent: 
1) ®*(Sf(S)) = ®*(Sf(S1)), 
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2) m(Sf(S)) = m(Sf(Sl)\ and 
3) S = S!. 

Corollary 4. Lef Scz2T be a o-ring. Then: 
1) &aRT and ®(&) = ®(9>(S)) imply B*(&) = B(&) = S, and 
2) &czR*T and ®*(&) = m*(Sf(S)) imply B*(^) = S and 2S*(3^)nRT 

= 98(^(8)). 
If Dcz2T is a 6-ring, then clearly ¥(o(D))+ cz ^ ( D ) ° \ Thus applying 

Theorem 1—4) we immediately have 

Corollary 5. Let Dcz2T be a 5-ring and let f.T->R'. Then the following 
conditions are equivalent: 
1) f is o(D) — measurable, 
2) f+,f-eSf(T>)0+, 
3) there are fneSf(p)9 n = l,2, ..., such that fn-+f and \f\/\fl and 
4) / e » ' (S ? ( D) ) . 

Theorem 9. Lef E, Ncz2T. Then 3BN(S?(e(E))) = 3BN(5^(a(E))) 
Proof. Put B = BN(^(p(E))). Since ^ (p(E) ) is an I? — linear function lattice, 

S?(B) cz 38N(S?(p(E))), and B is a a-ring by Corollary 2-2) of Theorem 2. Since 
EczB, p(E) cz <j(E) cz B, hence ^N(S^(p(E))) <= ®„(Sf(o(E))) cz 3BN(S?(B)) cz 
®»(Sf(Q(E))). 

Using Corollary 4-1) of Theorem 8 we immediately have the following 

Corollary. Let Ecz2T. Then B*(^(p(E))) = B(^(p(E))) = o(E). 

Theorem 10. Let Rcz2T be a ring and let Ncz2T be a hereditary ring. Then 

p(RuN) = RAN = [J U (R -N,RuN) = p^R, N), w17ere (R-N,RuN) 
R e R N e N 

= {A:Ae2T, R-NczAczRuN}. 
Proof. Since R-NczRANczRuN, RAN cz p t(R, N). If R-NczA czRvN, 

then AAI? = (A -R) u (R-A) cz' NuN = N, hence AAReN (N is 
a hereditary class). But A =RAAAR, hence pi(R, N) cz RAN. 

Clearly p(RuN) => RAN. It remains to show that RAN is a ring. Let A,, 
A 2 e R A N . Then A x u A 2 = (AXAA2) u (AxnA2) = A 1 A A 2 A ( A 1 n A 2 ) , and 
Ax-A2 = A i A ( A ! n A 2 ) . Thus R A N will be a ring if and only if it contains 
AxnA2 for any Au A 2 e R A N . Let Ax = RxANt and A2 - R2AN^, where I*x, 
R2GRandN1,N2eN.ThenA1nA2 = (K-AJV,) n (R2AN2) - [R,n(R2AN2)] 
A (Ntn(R2AN2)] = (RxnR2) A (RtnN2) A [Nln(R2AN2)]. 
Since R is a ring and N is a hereditary ring, A ! n A 2 e R A N , and the theorem 
is proved. 

Corollary 1. Lef Ecz2T and let Ncz2T be a hereditary ring. Then p (EuN) 
= p (E )AN = p!(p(E), N)). 
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In the process of completion of a measure space the following special case is 
used: 

Corollary 2. Ler Ecz2T be a ring, let Ncz2T be a hereditary ring and let there 
exist for each N e N an M e R n N such that NczM. Then R A N = R + N, where 
+ means disjoint unions. 
* Proof. If AeR, NeN and N c M e R n N , then (A-N) u (N-A) 
= [A-(AnM)] u [An(M-N)] u (N-A) e R + N. 

If R, Ncz2T are rings, and if fe¥(R) and g eSf(N), then clearly f + g e 
5^(o(RuN)). Using this observation, Theorem 7-1), Theorem 9 and its Corollary 
and Theorem 10, we immediately have the next 

Theorem 11. Let Rcz2T be a ring and let Ncz2T be a hereditary ring. Then 
33N(^(R)) = ®'(¥(RAN)) = ®'(<f(o(RAN))), and BN(^(R)) = BN(^(R)) 
= a (RAN) . 

Using Corollary 2-2) of Theorem 2 we immediately have the following 

Corollary. Let 2FczRT be an R — linear function lattice and let Ncz2T be 
a hereditary ring. Then ^ N ( ^ ( B N ( ^ ) ) ) = &'(¥&*(&))). 

Theorem 12. Let Ecz2T and let Ncz2T be a hereditary o-ring. Then o (EuN) 
= 6 (E)AN and a (EuN) = a (E)AN. 

Proof! 6 (E)AN and a ( E ) A N are rings by Theorem 10. Let An e 6(E) AN, 
n = 1, 2, . . . . Then by Theorem 10 there are Rn 6 6(E) andN„ eN, n = 1, 2, ...,such 

that Rn-NnczAnczRnuNn for each n. But then f]Rn - \jNn = f](Rn-Nn) 
n = l n = l n~=1 

c f ]A„ c H ^ u U ^ , hence 6 (E)AN is a 6-ring by Theorem 10. If 
n = 1 n = l n = l 

A n e a ( E ) A N , then the inclusions \J Rn - \jNn cz \J(Rn-Nn) cz \jAn cz 
n = l n = l n = l n = l 

\jRn u \jNn and Theorem 10 imply that a ( E ) A N is a a-ring. 
n = l n = l 

Since D n a ( D ) = D for a 6-ring D cz 2T, similarly as Corollary 2 of Theorem 10, 
we have the following 

Corollary. Let D cz 2T be a 6-ring, let N cz 21 be a hereditary o-ring and let there 
for each NeN exist Mea(D)nN such that NczM. Then 6 (DuN) = D + N. 

From Theorems 11 and 12 we immediately have 

Theorem 13. Ler Ecz2T and let Ncz2T be a hereditary o-ring. Then 
a ; ( ^ ( o ( E ) ) ) = ®'(?(o(E)AN)), and BN(^(o(E))) = BN(^(o(E))) 
= a (E)AN. 

Theorem 14. Ler Scz2T be a o-ring, let N cz 2T be a hereditary o-ring and let f be 
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an R' — valued SAN — measurable function. Then there is an R' — valued S 
— measurable function g such that f(t) = g(t) a.e. N. 

Proof. Since / = /+—/~, f+f~ = 0, and / + and / " are S A N — measurable, it is 
enough to prove the assertion of the theorem for / + . According to Theorem 8 
/ + e ^ ( S A N ) ° + . Hence there is a sequence /„ e ^ ( S A N ) , n = 1, 2, ..., such that 

r 

/ „ / / + . Each /„ is of the form /„ =^anJ • fa.^^, where EnieS, N„, ,eN and 
r n n 

an^eR+, i = l, 2, ..., rn. Put w„ =2X><'/fen,, and vn = \fui, n = 1, 2, ..., and let 
i = i i = i 

0 + = lim vn if/+ is R* —valued, and g+= \\m vn - ( + ° ° ) •#{,:, eT,»(o=+°°> if / + is R 
— valued. Then clearly g+ is an Rf — valued S — measurable function, and 
9 tW=r«a.e,N. 

Corollary 1.Let Sc~2Tbea o-ringandletNcz2Tbea hereditaryo-ring. Then 

^ N ( ^ ( S AN)) = »;(S?(S)) = ®'(y(S)) + Jf'(N). 

By Theorem 8{t:teT, f(t) J= 0} e S for each / e ffl'(¥(S)), hence we immediate­
ly have 

Corollary 2. Let S cz 2T be a o-ring, let N cz 2T be a hereditary o-ring and suppose 
that for each IV e N there exists an M e S n N such that NczM. Then each 
/ e ^ N ( ^ ( S A N ) ) can be written in the form f = g+h, where geffl'(<f(S)), 
heJf'(S) and gh=0. 

Theorem 15. Let T be a locally compact Hausdorff topological space and let 
Ncz2T Then ®^(Coo(T)) = ®N(C0(T)) = 33N(^(a(C0))). 

Proof. By Theorem B in § 51 in [3] each feC0(T) is a(C0) — measurable, 
hence ®»(Coo(T)) cz ^N(C0(T)) cz .^ N (^(^(a(C 0 ) ) ) ) cz ^ N (^ (a (C 0 ) ) ) . On the 
other hand, ^ C G ^ ( C 0 0 ( T ) ) for each C e C 0 by Theorem A in § 55 in [3], Thus 
^(a(C 0 ) ) cz 3BN(Coo(T)) by Corollary 2-1) of Theorem 2, hence S8N(^(a(C0))) cz 
33N(Coo(T)). Finally ^N(Coo(T)) = 33*(38N(Coo(T))) = ®*(®N(y(o(C0)))) 
= m*<(y(o(Co))) by Theorem 7-1). 

Applying Theorem 13 we immediately have the next 
Corollary. Let Tbea locally compact Hausdorff topological space and let N cz 2T 

be a hereditary o-ring. Then 33N(Coo(T)) = ^N(C 0(T)) = ®'(<f(o(C0) AN)), and 
BN(Coo(T)) = BN(C0(T)) = BN(Coo(T)) = BN(C0(T)) = a(C0)AN. ' 

If feR'T and if T°czT, then / / > will denote the restriction of / to T°. If T is 
a separable locally compact metric space, then C = C0 and a(F) = a(C), see 
Theorem E in § 50 in [3]. Further, recall the definition of a Borel measurable 
function, see § 51 in [3]. 

Theorem 16. Let n^l and let T° = R,n - (0, ..., 0) be equipped with the relative 
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topology. Define &l = {/: f:R'n-+R, /(O, ..., 0) = 0, andf/T<>e C00(r>)}, »£ , = {/: 
f:R'n-+R, /(O, ..., 0) = 0, and f/To is Borel measurable on T0}, and Sft'0 = {f: 
f:R'n-+R, /(O, ..., 0) = 0, and f is Borel measurable on R'n}. 

Then Sft(&0) = Sfc'00 = Sftl 
Proof. Using Theorem 15 we easily obtain that 53(<2>0) = .530o. Since T° is 

equipped with the relative topology, F° = Fo71°. But then a(C°) = <J(F°) 

= a (F)nT° = <j(C)nT° by Theorem E in § 5 in [3]. Now using the definition of 
a Borel measurable function it is easy to see that S8o0 = SSL 

Theorem 17. Let us have the notations of Theorem 16, let Nc= 2T, let SF<^R'Tand 
let cp(fu ..., fn)em'^(&) for each fu ..., fne& and each cpe&0. Then cp(fu ..., 
/„) e &*(&) for each fu . . . , /„ e 38 N (^ ) and each cp e Sft0. If moreover & is an R' 
— linear function lattice, then Sft$(!W) is an R* — linear function lattice. 

Proof. The first part of the theorem follows from Theorems 4 and 16. For the 
second part of the theorem we have to realize that the functions (x, y) -» x vy , 
xAy, ax + by: x, y e R', a, b e R, belongs to 2&0 when n = 2 . 

Corollary. Let & = Sf(R) or C^T), let N c 2 T and let us have the notations of 
Theorem 16. Then cp(fu ..., /„ )e33 N (^) for each fu ..., fneSB'^(&) and each 
cp e S8o. Particularly Sft%(SF) is an R* — linear function lattice. 

Proof. Forgiven SF' s it is easy to see that cp(fu ..--/*) e5F for each fu ...,fneSF 
and each cp e &0. 

§ 2. Main results on (.3% IV) — measurable functions and sets 

Theorem 18. Let N c 2 T and let SFczRT. Then the following conditions are 
equivalent: 
1) af + bg, fgeS8N(^) for each f, ge&and each a, beR, 
2) af + bg, fvg, f/\g, f+n e 33N(^) for each f, g e&, a, b eR, and each n=2,3, 

..., 
3) af + bg, fvg, f/\g, 1 A / + e 3 3 N ( ^ ) for each f, ge&and a, beR, 
4) BN(^) is a o-ring and each f eSfo^(SF) is BN(£F) — measurable, 
5) ®»(&) = ®(Sf(o(BN(&)))), and 
6) BN (^) is a o-ring and each f eSFis BN(cF) — measurable. 

Proof. l)--^>2). We show that if cp: R xR—>R is a continuous function with 
<p(0, 0) = 0, then cp(f, g)e33N(^) for each f,ge&. This will prove 2), since (x, y) 
—> jcvy, JCAy, (jcvO)n are such functions. 

Let 5 = R x R — (0, 0) be equipped with the relative topology and consider the 
restrictions to S of the following functions on R X R: 

q>i(x,y) = (x2 + y2)e-ix2+y2) = r2e-r2, where r2 = x2 + y2, 
(p2(x,y) = (x2 + y2)2e-ix2+y2) = r4e-r2, 
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<P3(x,y)=xe ix2+y2) = x-e r2, and 
cp4(x, y) = y -e~

(x2+y2) = y e~r2. 

Then S is a separable locally compact metric space and cpi/s e C0(S), i = 1, 2, 3, 4 . 
Clearly cpx Acp2>0 on S. We now show that the functions cpt, i = 1, 2, 3, 4 separate 
the points of 5. 

The function cpx depends only on r, and lim cpx(r) = lim cpx(r) = 0. If r, 
r^0+ r^+°° 

rxe(0, 1) and r<rx, then cpx(r) < cpx(rx). If r, rxe(l, + oo) and r<rx, then cpx(r) 

> cpx(rx). Thus the graph of cpx is a "crater" with the maximumcpx(r) 
r e (0 , +oo) 

= cpx(l) = e~l. Further, for each ae(0, e~l) there are exactly two points rx, 
r2e(0, +oo)? rxe(0, 1) and r 2 e ( l , + oo) with cpx(rx) = cpx(r2) = a. 

The function cp2 behaves similarly as cpx, but the maximum cp2(r) = q)2(V2). If rx, 
re(0, +oo) 

r2 e (0, + oo), rx -̂  r2 and if q>i(rx) = (Pi(r2), then it is easy to compute that cp2(rx) + 
cp2(r2). Thus the functions cpx and cp2 separate the points of 5 with different r. 
Clearly cp3 and cp4 separate the points of 5 on a given circle r2 = x2 + y2. 

Denote by <2> the algebra of functions on S generated by the functions q>, s, i = I, 
2, 3, 4. Then by the Stone—Weierstrass theorem, see Theorem A in § 38 in [5], 
C0(S) is the closure of <P in the supremum norm. 

We extend each / e C0(S) to R x R putting/(0, 0) = 0. By C0(R X R) we denote 
the space of all thus extended elements of C0(S), and by <P° the extended members 
of 0 . It is easy to see that ffl(<P°) = 3&(C°0(R XR)). 

According to Theorem 4 it remains to show that cp(f, g)ei3^(^) for each / , 
g e SF and each cp e 0°. 

Theorem 2 implies that af + bg, f • g e ^ N ( ^ ) for each f,ge 3#N(^) and each a, 

b e R. By induction 2 *-,/" f ' & ' ® N ( ^ ) for each f,ge fflN(&) and each at; e R. 
i+ / = l 

Using the Taylor development of e~(x2+y2) we immediately see that each <#, / = 1, 2, 
3, 4 is a pointwise limit of a sequence of such polynomials. Thus owing to 
Theorem 4 <pt(f, g)e®n(&) for each / , g G S 8 N ( ^ ) and i = 1, 2, 3, 4. 

Clearly each cpe<P° is of the form cp= ]T aM,fc,/ • (pVg92 ' ^3 ^1 with 
i+7+fc+/=l 

a,,,,*,, e R. Hence cp(f, g)e S9N(^) for each / , g e 2&H(3F) and each cpe<&° again by 
Theorem 4. Particularly cp(f,g)e3#N(^F) for each f,ge&< and each cp e 0 ° , what 
we wanted to show. 

2) =>3). We have to prove that 1 A / + G S 8 N ( # ) for each / e ^ . Let 5 = (0, + oo) be 
equipped with the relative topology and consider on S the functions tyx(x) = x • e~x 

and ^^)2(x) = x2e~x. Then 5 is a separable locally compact metric space, 
^ i A ^ 2 > 0 o n S and the functions ^p1 and ty2 separate the points of S. Denote by W 
the algebra of functions on 5 generated by tyx and ^p2. Then similarly as in l)-=>2). 
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above we obtain that il>(f)e0&d(9r) for each fe38N(&) and each continuous 
function il>:R^>R with xp(x) = 0 for x e(- oo, 0 ) . Particularly ip(x) - I A ( X V O ) 

is such a function, hence 1 A / + G S 8 N ( ^ ) for each fe&. 
3)=->4). S8N(^) is an R — linear function lattice by Theorem 2, hence B N (^) 

= B(S8N(^)) is a a-ring according to Corollary 2-2) of Theorem 2. Since the 
function x -> 1 A (JC V0), x e R, is continuous, 1 A®T*(&) + <= S8N(^) by Theorem 2. 
Since ^N(:^) is an R — linear function lattice, / e <&*(&) o - / e 53N(^). Thus by 
Theorem 8 it is enough to prove that each / + , fe 88N(fF), is B N (^) — measurable. 
Let fefflN(&). Then / + will be 38N(^) — measurable if and only if {t:teT, 
f+(t)=\c} e B N (^) for each ce(0, +oo). Let c e ( 0 , + oo) and take a sequence 

c*e(0, +oo) -{c},k = 1,2, ..., so that ck/c. Then {f.teT, f+(t)^c} = f]Ck, 

where Ck = {t:te T, f+(t)>ck}. Obviously 1 An(f+ - ck A / + ) e 9&*(&)+ for each n, 
k = l, 2, ..., and lM(f+-ck/\f

+)/xck\ hence C K e B N ( ^ ) for each k = l, 2, .... 

Since BN(2F) is a a-ring, f] Ck eBN(:J), what we wanted to shdw. 
k = l 

4)-->5). is the implication l).-->4). of Theorem 8. 
5)=>6). BN (^) = B(S3N(:^)) = B(SrX,p(BN(^)))) = a (B N (^ ) ) by the Corollary 

of Theorem 9. The implication 4).=>1). of Theorem 8 implies that each / e : J is 
B N (^) — measurable. 

6)=>l)...If / , g eSf(BN(&)) and a,beR, then clearly af + bg, f-geSf(B^)). 
Applying Theorem 2 we obtain that af + bg, fg e $(SfBN(&))) cz S8N(^) for 
each / , g e®(£f(Bn(&))) and each a, beR. Since each fe& is BN (^) — 
measurable, ^c :S3(^ (B N (^ ) ) ) by implication l).-=>4). of Theorem 8, hence 1). 
follows. The theorem is proved. 

Corollary. Let N c 2 T be a hereditary o-ring, let 9^ciRT be an R — linear 
function lattice and let 1A&+<^®(&). Then » N ( ^ ) = S8(^(B(^)AN)) and 
B N (^) = B ( ^ ) A N . 

Proof. &(&) •= ®(£f(B(&))) by the theorem, hence 33N(^) = MN(M(&)) 
= 33N(S8(^(B)^)))) = 33N(^(B(^))) = ®(Sr(B(&)£N)) and BN(S^) 
= B( :J)AN by Theorem 13. 

The following simple example shows that the condition lA:f+ c SJ(^) is in 
general weaker for R — linear function lattices than Stone's condition 1 A ^ C 2F. 

E x a m p l e . Let T = (0, 1) and let &= {f:f eRT, f is continuous and there exist 
c e ( 0 , 1) andaeR such that f(t) = a-1 for te(c, 1 )} . Then clearly 9 is an 1* — 
linear function lattice, I A ^ C ^ ^ (consider the function t-»2t), but 1 A ^ + C 

®(&). 

§ 3. Applications to the Daniell integral 

We suppose that the reader is familiar with the Daniell integral (for a clear 
exposition of it see [7]). (T, ?F, I) will be a given elementary integral and 
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1°: &?° —> (— oo? + oo) will be the corresponding extension of I to over functions, see 
sections 6-1 and 6-2 in [7]. 

For each feR*T we define its upper integral 1(f) and its lower integral 1(f) by 
the equalities 

I(f) = M {I°(h),he&°,h^f} (inf {0}= +oo), 
and 

J ( 0 = - * ( - / ) • 
Uf,geR*T and 1(f) + 1(g) (/(/) + 1(g)) is not of the form ( + oo) + ( - oo) or 

( -oo) + (+oo), then ! ( / + #) g I(f) + I(g) (I(f + g) -= 1(f) + 1(g)). Further 
1(f) ^ 1(f) for each feR*T. 

The class N of all I — null sets is defined by the equality 

N = { E : E c r , % E ) = 0 } . 

N is a hereditary cx-ring and ^(N)cJV**(N)cz^- since 9 is an R — linear 
function lattice. 

Our concept of measurable functions and sets for the Daniell integral is given by 
the next 

Definition 5. Elements of 38N(:jF) are called R' — valued measurable functions 
and elements of BN(:^) are called R' — measurable sets. 

Corollaries 1 and 2 of Theorem 2 imply that BN (^) is a a-ring, that S9N(^) is an 
R — linear function lattice and that 38N(;JF) is a lattice of functions. If the 
conditions of Theorem 18 are valid, then 98 N ( ^ ) is an R* — linear function lattice 
by the Corollary of Theorem 17. 

Since 9 is an R — linear function lattice and since X(N) c= X*(N) <= 3F, 
2fcN(.F) <= <&*(&) c & owing to Theorem 7. 

The class ££' of 1?' — valued summable or integrable functions is defined by the 
equality 

££' = {f:f:T^R', - oo </(/) = / ( / )<+ oo}. 

If feR*T and 1(f) = 1(f), then this common value is denoted by 1(f). 
We easily have: ^ ' ( N ) = {f:fe£f, 1(f) = 0} = {f:feR'T, J ( | / | ) = 0}, 

5£ = $ + N(N),$*=$*+N*(N) = X + Jf*(N), and «S? = 5£*nRT. The last equali­
ty implies that {E:XE e<£} = {E:XEe&*}. Let P = {E:XE e5£}, and for H e P p u t 
[i(E) = I(XE)> Elements of P are called summable or integrable sets. The 
Lebesgue dominated convergence theorem, see [7, Theorem 6-3IV (c)], and the 
simple properties of I and !£ imply that P is a S-ring and that /i: P —> (0, + oo) is 
a complete countably additive measure. Clearly a(P) cz B N (^) . 

It is well known, see [7, Theorems 6-4V and 6-4VI], that for each f e5£' there 
are fn e ? , n = 1, 2, ..., such that fn(t)-*f(t) a.e. N. Thus .2" c S B - ^ ) . Moreover 
we have 
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Theorem 19. 5BN(^) = 3BN(i?') =̂  &»(£') = m"(Se). 
Proof. Suppose S£'=Se. Since & = £ + Jf(N), flB£(«S?) = flB"(-S-0 by Theorem 

7-1). Since ^czifcz 3BN(^), 3BN(^) = »%s?). Let now ^ ' = .S?*. Since Se* =Se + 
N*(N) cz ®(Se) + ®*(Se) a 3B*(i?), » * ( # * ) = 3B*(^) by the Corollary of 
Theorem 3. Since [SB* + .vV*(N)] + N*(N)=Se*,m%(Se*) = SB*(i?*) by Theorem 
7-2). The remaining equality 3B£(^) = ffi*i(Se*) follows from the inclusions 
&czse* cz ® s ( ^ ) . 

Theorem 20. Let fe&^(&), let geS£' and let \f(t)\ ^ \g(t)\ a.e. N. 77_en 
/e-S?'. 

Proof. Put SB' = {/: /eflBN 'W, | / (0l = b ( 0 l a.e. N 4 > / G ^ ' } . Then 5^czSB\ 
and if / n e 9 B \ w = l , 2, ..., and fn(t)-^f(t) a.e. N, then /eSB' by the Lebesgue 
dominated convergence theorem, see [7, Theorem 6-3IV (c)]. In this way 
S3' = SBN(^). 

Corollary 1. / e S£' if and only if f e ®U&) and l/l e %'• 

Corollary 2. SS'= {f:f e®^(&), I ( | / | ) < + «>}. 
Proof. If feffl„(&) and I ( | / | ) < + oo, then there is a n h e F + such that \f\=\h 

and I°(h)< +cc. But then /zei?*, see [7, Theorem 6-31 (b)], hence feSB' by 
Corollary 1 above. 

Corollary 3 . P = { £ : £ e B N ( : f ) , % £ ) < +00} = {E:E eB£(&),I(XE)< + °°}. 

Theorem 21. Ler / e S8N(^)+. 77ien 1(f) = 1(f). 
Proof. If / ( / ) < + 00, then 1(f) = 1(f) by the preceding Corollary 2. Suppose 

that / ( / ) = + 00. Since fe&+, there are hne&+, n = l,2, ..., such that A„/7z .=•/. 
According to the preceding Corollary 2 hn/\feSe+ for each n. But then 
\\ml(hn A / ) = + 00, because otherwise f eS£+ by the monotone convergence theo­
rem, see [7, Theorem 6-3III]. Since / ( / ) =1 I(hnAf) = I(hn/\f) for each n, 
/ ( / ) = + 00. 

Corollary 1. Lef / e S 3 N ( ^ ) and /et I(f+) - I(f~) be riot of the form (+00) 
- ( + 00). Then 1(f) = 1(f) = I(f+) - / ( / " ) . 

Proof. I(f+)-I(f~) = I(f+) + I(-f~) =" 1(f) -= 1(f) -= I(f+) + i(-D 
= I(f+) - I(f~) under the assumptions of the corollary. 

Corollary 2. Let f e <&U&), let I(f+) - I(f~) be not of the form ( + 00) - ( + 00) 
andletgeSe*. Thenl(f + g) = I(f + g) = 1(f) + 1(g). 

P roo t . l(f) = 1(f) by the preceding corollary, hence 1(f) + 1(g) S I(f + g) =̂  
I(f + g) 1= 1(f) + 1(g). 

Theorem 22. Letfn e ®1*(&X n = l,2,..., let geSB' and let g(t) S fn(t) a.e. N 

for each n. Then I(fn) = /(/») for each n, and J(limmf/„) =\ \immfI(fn). If 

moreover, fn/feR'T a.e. N, then / e3B N (^ ) and I(fn)/I(f). 
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Proof. Since 0^fn(t) - g(t) a.e. N, and fn-ge®^(&), I(fn-g+g) 

= I(fn —9+9) by Corollary 2 of Theorem 21. For the same reason /(lim inf/„) 

= J(lim inf/„). The inequality I(lim inf/„) ^ lim inf !(/„) is a direct consequence 
n n n 

of Fatou's lemma, see [7, Theorem 6-3IV (b)]. The final assertion now trivially 
follows from the monotonicity of I. 

Corollary 1. Let fn e ®^(&)\ n = 1, 2, .... Then I ( J /«) = 2 W-). 
\ n = l / n=l 

Corollary 2. For E e BN(:^) put JU'(E) = I(xE). Then [i': BN(^) -> (0, + » ) is 
a complete countably additive measure. 

Theorem 23. LetfeR*T be B^) — measurable and let J /+dju' - J /"d/i ' 

be not of the form (+00) - (+00). Then 1(f) = 1(f) = J /dju'. 

Proof. According to Theorem 21 and its Corollary 1 it is enough to prove the 
theorem for /+•/+ e 5^(BN(^))°+ by Theorem 8, hence there are /„ e^(BN(^)), 
fi = l, 2, ..., such that / „ / ' / . But then I(fn)/I(f) by Theorem 22, hence the 

monotone convergence theorem implies that J fnd^i' / \ /d/ / ' . Since I(fn) 

= /„dju' for each n, the theorem is proved. 

Our basic result is the following 

Theorem 24. The following conditions are equivalent: 
1) fge ®N(&) for each f,ge&, 
2) /+" e38N(^) for each fe&and each n = 2, 3, ..., 
3) 1 A / + e S9N(^) for each fe&, 
4) lj\f+e<£ for each fe5£, 
5) lAf+e£ for each fe&, 
6) each fe!F is BN(^) — measurable, 
7*) eacA / e ^ * is a(P) — measurable, 
1) each fe<£ is o(P) — measurable, 
8*) ^*=i?*(T, a(P),ju), 
8) ^ = J?(T,o-(P),^), 
9*) ^ £ ( ^ ) = 23*(^(P)), 
9) a N (^ ) = ^(5^(P)), 

and each of them implies that B£(&) = BN(^) = o(P) and that 1(f) = [ /d/ifor 

each/ei?*. 
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Proof. l)-^>2)-^>3) by Theorem 18. 
3)=->4) Since x—>1A(*V0) is a continuous function from R toR, 1 A / + E S 3 N ( ^ ) 

for each fe 3BN(^) by Theorem 2. But ^ c z 9BN(^), hence 1 A / + 6 SBN(^) for each 
/e<2\ Since 1 A / + ^ / + , 1 A / + 6 ^ for each feSe by Theorem 20. 

4)=>5), since V c i ? . 
5)=>3), since i?czSBN(^). 
3)=->6) by Theorem 18. 
6)=^>7*) By Theorem 8 each / e 3BN(^) =Di? is BN (^) — measurable. Since 

S£* = Se + J{*("S), each feSe* is also B N (^) — measurable. Let feS£*. According 
to Theorem 8 take /„ e:f(BN(:J))+, n = 1, 2, ..., so that / n / T . Since 0^I(fn) -^ 
I(/+)< + ° ° , / n e 5^(P) for each n by Corollary 3 of Theorem 20. Thus / + is a(P) 
— measurable. Similarly / " is a(P) — measurable, hence / is also. 

7*)=->7) trivially. 
7)=>8*). Se*(T, o(P), ii)czSe* by Theorem 23. Let feS£*. Since %*=% 

+ >f*(N)) and since each MGJV*(N) is a(P) — pleasurable, / is a(P) 
— measurable. Applying Theorem 23 to / + and / we have fe££*(T, a(P), Lt). 

8*)-»8) trivially. 
8)-->9*). Since each feSe is a(P) — measurable, :^(P)cz^cz3B(5^(P)) by 

Corollary 5 of Theorem 8. Hence m*(Sf(P)) = <&*(£). But ®*($) = m*<(&) by 
Theorem 19. 

9*)-->9) trivially. 
9)-->l). Clearly fgeSf(P) for each / , ge^(P). Since (x,y)-+xy is 

a separately continuous function from R2 to R, f g e 3B(S^(P)) = 3&N(&) for eaclj 
/ , ^ e 3B(5^(P)) = 3BN(:^) by Theorem 2. 

9) and Corollary 4 of Theorem 8 give the equality B^(^) = B N (^) = a(P) . 8*) 

and Theorem 23 give the equality 1(f) = I / d^ for each f eS£*. The theorem is 

proved. 

A d d e n d u m 
In [8] the class of measurable functions A is defined by 9.20: A = {/: T-*R*: 

there are /„ eif, n = 1, 2, ... such that /„—»/}, and using limit theorems for the 
integral it is shown that 9.42 (g): /„ e A, n = 1, 2, ... a n d / n ( t ) - > / ( 0 a.e. N = > / e A, 
and that 9 D : / e A if and only if there are fn e &, n = 1, 2, ... such that/„(/)—>/(t) 
a.e. N. 

From 9.D and 9.42 (g) it is evident that our class of R* — measurable functions 
gfcN(3F) equals the class of measurable functions A introduced by J. Lukes. Hence 
9.D and 9.20 give further valuable information about our common class of 
measurable functions. 

For some further conditions equivalent to those given in Theorem 24 see [9]. 
The author is indebted to the referee for pointing out these references. 
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ОБ ОДНОЙ КОНЦЕПЦИИ ИЗМЕРИМОСТИ ДЛЯ ИНТЕГРАЛА ДАНИЭЛЯ 

Иван Д о б р а к о в 

Р е з ю м е 

В работе определена и исследована новая концепция измеримости для схемы интегрирования 
Даниэля. Эта концепция оказывается более естественной и эффективной чем обще принятая 
концепция Стоуна. 

Пусть & некоторая векторная решетка вещественных функций на непустом множестве Т, 
и пусть N с : 2 ^ . Тогда класс Ш*Д;^) так называемых / ? * = ( —оо, +а>) — значных (&, /V) 

измеримых функций определяется как наименьший класс К* — значных функций на Т, 
содержащий &, и замкнутый относительно образования точечных пределов N — почти всюду 
своих последовательностей. Подмножество Е е : Г называется К* — (&, №) — измеримым, если 
его характеристическая функция принадлежит ^^(^). Класс всех К* — (&, №) — измеримых 
подмножеств Т обозначим В*^(;^). В случае, когда N пусто и & векторная решетка 8 

ступенчатых функций, где 8 сигма кольцо подмножеств Г, то Ш * , ^ ) совпадает с обычным 
классом всех 8 — измеримых Я * — значных функций на Т, и В%(&) = §. Когда N пусто 
I & = С0(Т), где Т локально компактное хаусдорфово пространство, то мы получаем обычную 
измеримость в смысле Бэра. 

В основной теореме 18 дается пять эквивалентных условий необходимых и достаточных для 
того, чтобы класс В*4(;^) — ступенчатых функций порождал весь класс 38*,(;^). 

В § 3 эти результаты применяются к интегралу Даниэля, и в теореме 24 установлен ряд новых 
необходимых и достаточных условий для возможности представления интеграла Даниэля как 
интеграла по индуцированной мере. 
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