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A CONCEPT OF MEASURABILITY
FOR THE DANIELL INTEGRAL

IVAN DOBRAKOV

Introduction

The m in purpose of this paper is to give a new concept of measurability for the
Daniell scheme of integration. This concept seems to be more natural and effective
than the commonly used Stone concept (for the latter see [6], [4], point 13., and [7,
sections 6—S5 and 6—7]). Moreover, this concept will be needed in the non additive
generalization of the Daniell integral, see [2].

To explain the main ideas, let (T, &, I) be an elementary Daniell integral and let
£* denote the class of all summable functions f: T>R* = (—oo, +®©), A
function f: T— R* is measurable in the sense of Stone iff g v (f Ah) € £* for every
choice of g, h € £* such that g =0=h, see [7, section 6—S5]. Thus to decide a given
function f is measurable, we must first determine £* and then prove the
summability of all gv(fAah), —g, h e £**. Roughly speaking, the measurability
depends on and comes after summability, and this strongly reduces its importances
for the theory.

For our concept of measurability we first determine the class N of all I-null sets,
i.e., those sets N c T for which I(x~) =0. Then we define the class BL(F) of R’ —
valued measurable functions (R’ =R or R*) as the smallest class of R’ — valued
functions on T which contains & and which is closed under the formation of
pointwise limits a.e. N of sequences. In this way our measurability depends only on
% and N, and is before summability. Moreover, using our concept of measurability,
in Theorem 24 we give many necessary and sufficient conditions for £* = £*(T,
a(P), u), where (T, o(P), u) is the measure space induced by I. Out of them let us
mention the following: 1) f-g e Bu(F) Vf, g€ F,2) [T e B(F) VfeF, n=2,3,
v D IANF e BNF), 4) INEL =¥, and 5) IAF " = Z. In Stone’s concept only
condition 4) was known, see [7, section 6—7].

The material of the paper is divided into four parts. § O contains the basic
notations. In §1 B(¥) and the measurable sets BYW(¥) = {E:EcT,
xe € BN(F)} are investigated for abstract and concrete % and N. Particularly,
measurability with respect to a o-ring and Baire measurability are obtained as
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special cases. The main Theorem 18 in § 2 give five necessary and sufficient
conditions when there are enough measurable sets. Its proof essentially uses the
Stone—Weierstrass theorem. In § 3 we apply the results of §§ 1 and 2 to the
Daniell integral.

§ 0. Basic notations

Throughout this paper R = (— o, + o) will denote the set of real numbers with
the well-known topological, lattice and algebraic structure. R* = ( — o0, + o) will
be the set of extended real numbers. We shall use R’ and R” to denote either R or
R*, and we always suppose that R’ = R". From the topological point of view R*
will be considered as the two-point compactification of R. Particularly the sets
(c, + ), and (— o, ¢), c e R, will form a base of neighbourhoods of the points
{+ o} and {— o}, respectively. Thus, R* will be a separable compact metric
space.

B, will denote the o-algebra of all Borel (= Baire) measurable subsets of R', i.e.,
the smallest o-ring containing all compact (=compact G;) subsets of R’. It is well
known that B, (B%) is the smallest o-ring containing all sets of form (¢, + ©),ce€R
({c, +©), ceR*). .

R* with the usual lattice operations and order relations is a complete lattice and
a totally ordered space, respectively. Further, ¢,—c¢, c,, ceR', n=1,2, ... if and

only if lim inf ¢, = lim sup c,.

Multiplication, addition and subtraction in R* define as in [7, section 4—1].
Particularly, 0-c =c-0=0foreach ce R*, and (+ ®)+(—®) = (— o)+ (+®)=
0. In this way the addition in R* is commutative, however, it is not always
associative ([(—®) + (+®)] + (+o)=+0o, and (— ) + [(+x) + (+»)]=
0).

In what follows T will denote a non empty set, 27 the collection of all subsets of T
and R'7 the class of all R’ — valued functions defined on T. Convergence, order,
lattice and algebraic operations in R'" are defined pointwise. For fe R'" and
c € R’ we define (c vf)(t) = cvf(t) and (cAf)(t) = cAf(t),teT.For feR'" we
put f*=fv0 and f~=(—f)vO.

If F<R'", then F*'={f:feF, f=0}, F ={f:feF, f=0}, F°={f:fe R*T,
there are f,€ ¥, n=1, 2, .., such that f, 'f}, F,={f:f e R*7, there are f, e F,
n=1,2,...,such that f,\\f}, and = {f: f € R*", there are g € %, and h € #° such
that g=f=h}.

Definition 1. We say that # < R’" is an R’ — linear function lattice (on T) if
fvg, fag and af + bg € F for each f, g € ¥ and each a, b €R.
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Clearly R — linear function lattices are real vector lattices, however, R* —
linear function lattices are not, since the addition in R * is not always associative.

The next theorem follows immediately from the definitions (for the proof of 4.
see the proof of Theorem 6-21III in [7]).

Theorem 1. Let ¥ < R’" be an R’ — linear function lattice. Then:

1. ¥° and &, are lattices closed under multiplication by c € (0, + ), and %°* and
%, are closed under addition. If R’ =R, then %° and %, are closed under
addition,

2.feF° <= —feZF,

3.feF°>f"e€%° and f- € F.. If R’ =R, then the converse is also true.

4. If f,eF,n=1,2, ..., and f. /'f, then there are u, e ¥, n=1, 2, ..., such that
u, =f, for each n and u, /'f. Thus f e F°.

5.Iff,e%,,n=1,2, ..., and f,\\f, then there are u, eF, n=1,2, ..., such that
u,=f, for each n and u,\\f. Thus fe %,,

6. % ={f:fe R*", there exists h € F°" such that |f|=h}, and

7. % is a o-complete R* — linear function lattice closed under the formation of
pointwise limits of sequences. If fe ¥, geR*" and {t:teT, g(t)+0} c
{t:teT, f(t)#0), then ge &.

In the sequel R, D and S will be used to denote a ring, a §-ring (a ring closed
under the formation of countable intersections) and a o-ring of subsets of T,
respectively. If Ec2”, then o(E), 6(E) and o(E) will denote the smallest ring,
6-ring and o-ring containing E, respectively.

We shall say that a class Ec 27 is hereditary if AnE €E for each A €2” and
each E€E. If A €27, then x, denotes its characteristic function on T. For a ring
Rc 2" #(R) will denote the R — linear function lattice of all R — simple functions

on T, i.e., the class of all functions f of form f = Za,- “Xa,» Where a; e R, A; eR and

i=1
AinA; =0 for i#j, i,j=1, ..., r<+o. If Ec27, then clearly $(¢(E)) is the
smallest R — linear function lattice containing all xg, E € E.

If T is a locally compact Hausdorff topological space, then F, C and C, will
denote the class of all closed, compact and compact G, subsets of T, respectively.
Further, U denotes the class of all open subsets of T and U, =Uno(C,). We shall
say that o(F) = 0(U), o(C) and 0(C,) are the weakly Borel (see [1, p. 181]), Borel
and Baire subsets of T, respectively. Coo(T) denotes the R — linear function lattice
of all R — valued continuous functions on T with compact supports, and Co(T) is
its closure in the sup norm in the Banach space of all bounded functions on T.
Clearly Co(T) is again an R — linear function lattice.

If #,, #<R’'" and o is an algebraic or lattice operation, then %, 0%, = {f:f
= fi0fs, fi€ F, and f, € %,}. Similarly we define E,0 E,, when E,, E, =27 and 0 is
a set operation.
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§ 1. (%, \) — measurable functions and sets

Definition 2. Let N 2”. We say that a property P defined on T is valid almost
everywhere N, shortly a.e. N, if {t:te T, P(t) is not true} e N.

It is clear that under suitable assumptions on N the analogs of the results of §§ 18
and 19 in [1] are valid for R’ — valued functions and the a.e. N concept.

Definition 3. Let Nc 2" and let # = R'". By BX(F) we denote the smallest class
of R” — valued functions on T which contains & and which is closed under the
formation of pointwise limits a e N of its sequences. Elements of B(F) are called
R” — valued (%, N) — measurable functions. By BX(%) we denote the class of all
subsets E T such that g € BN(F). Elements of BY(¥) are called R” — (%, N)
— measurable sets. If N=0, then we write simply B"(¥) and B'(Z).

Let Nc2” and let < R". Then clearly Bu(F) = BE(F)NR", hence By(F) =
%(%). Further BE(BNF)) = BE(F). fMcNc2” and F<R'™, then Bu(F) <
Bu(F) and Bu(F) cB (%F). Particularly, B"(F) = BYF) and B"(F) = BY(F) for

any Nc2” and any ¥<R'".

Theorem 2. Let Nc2”, F<R'", let n=1 and let ¢: R"™ — R" be a separately
continuous function. Suppose that @(fi, ..., f.) € BK(F) for each f,, ..., [, €eF
Then @(fi, ..., f.) € BXF) for each f,, .. f € Br(F).

Proof. Put ?/31 {fi:f1€ BNF), q;(f,,fz, e [n) € BR(F) foreach f,, ..., f, € F).
Then F =B, and if f, , € B,, k=1, 2 and fix—feR"" a.e. N, then fe B, by
the definition of BR(%). Thus B, = (QF) Put %2 {f2:£2€ BUF), o(f1s f2, .-
f2) € BN(F) for each f, € Br(F) and each fs, ..., f, € F}. Then similarly as above
B, = Bu(F). Continuing in this way we obtain that B, = Br(F), i.e., the assertion
of the theorem.

Corollary 1. Let Nc 27" and let F < R'" be a lattice. Then:

Bu(F) is the smallest lattice of R” — valued functions on T satisfying both a):

FRB'(F)cBUF),and b): if f, € BUF), n=1, 2, ..., is a monotone sequence

andf —feR"" a.e. N, then f € BUF),

BR(F) is a o-complete lattice of subsets of T, and

3 If moreover ¥ is an R’ — linear function lattice, then |f| € BX(F) for each

feBNF) and BR(F) is a o-ring.

Proof. 1) Since (x, y)—>x vy, x Ay are separately continuous functions from
R" to R", BYF) is a lattice by the theorem. That Br(F) is the smallest lattice
satisfying both a) and b) follows from the definition of B%(%) and from the fact

that f,—f a.e. N if and only if f=lim inf f, a.e. N.
2) is a consequence of 1).
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3) x—|x| is a continuous function from R” to R”, and (x,y) — 1A(xVvO0)
— 1A(xvO0) A (¥yVvO) is a separately continuous function from R"*> to R".

Corollary 2. Let Nc 2" and let % = R™ be an R — linear function lattice. Then :
1) Bu(F) is an R — linear function lattice, and
2) Bi(%)>BnN(%) are o-rings containing B(¥) and N.

Proof. 1). Since (x, y)>xvy, x Ay, ax + by, a, b € R, are separately continu-
ous functions from R? to R, 1) follows from the theorem.

2) is a direct consequence of Corollary 1—3) and the fact that 0e ¥ =>
NcBuF).

Similarly as Theorem 2 one can prove

Theorem 3. Let Nc27, let #cR" and Iet ¢: R X R*— R* be a separately
continuous function. Suppose that @(f, g)e B¥(F) for each f, geF. Then
@(f, g) € BE(F) for each f e Bu(F) and each g € B¥F).

Corollary. Let Nc27, let F<R" and let f + g € BY(F) for each f, g € F. Then
HF)=B(F) + BYF).

Theorem 4. Let Nc2", < R'", n=1 and let ® =« C;(R"")=the set of all
separately continuous R” — valued functions on R". Suppose that o(fi, ...,
fa) € BYUF) for each f, ..., f. € F and each @ € @. Then @(fi, ..., f.) € Bu(F) for
each fi, ..., f. € B(F) and each ¢ € B"(P).

Proof. Put B={@:peB"(®P), @(f1, ..., f.)EB(F) for each f;, ..,
f. € BY(F)}. Then & =B by Theorem 2. Let @B, k=1, 2, ..., and let
@p—@eR"™™" ie., let gu(xy, ..., Xu) > @(X1, ..., X,) € R" for each (x4, ..., x,) e R™.
Then @(f,, ..., f)=lim q)k(fl, s [n) E BN (97") for each fi, ..., f. € Br(F), hence
@ €RB. Thus B =RB"(P), and the theorem is proved.

Definition 4. For Nc 2" put N'(N)={f:feR'", {t:te T, f(t)#0} €N}, and for
N'cR'" put NWW') = {E:Ee2", xseN').

Clearly feN'(N)<>—feN'(N) < |[fleN'(N) < afeN'(N) for each
aeR—{0}.If F<R", then Bu(F) > Bu(F) + N(N). Since EeN < e N'(N),
N=N(#'(N)) for any N=2". Further, f+g € BX(F) when f € BUF), g € N"(N)
and f-g=0. If Nc2r is a hereditary class, then BY(F)>BUF) + N"(N) and

BU(F) o BY(F)~

Theorem 5. Let Nc2" be a hereditary ring. Then f+g, h e N'(N) for any f,
geN'(N) and any heR'" satisfying |h|=Z|f|. Moreover N'(N)c=RB'(¥(N)).
Conversely, if N'<R'"issuch that f+g, he N’ forany f, ge N’ andanyheR'"
satisfying |h|=|f|, then N(N") is a hereditary ring.

Proof. Only the inclusion &' (N) = B'(¥(N)) is not immediate. Let f e ' (N),
and for each n=1, 2, ... put
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n2—1

fﬂz_n'X(t:reT,f(t)<—n)+ 2 ;x(::teT,(k/n)§f(t)<(k+l)/n)+
k=-n?

F N X(teT. f@)zn) -
Then obviously f. € (N) for each n, and f,—f. Thus f e B'(¥(N)).

Theorem 6. Let Nc2™ be a hereditary o-ring. Then N'(N) = RB'(N'(N))
= B'(¥(N)), and f+g, he N'(N) for any f, g e N'(N) and any h € R'" satisfying
|h| =|f|. Conversely, if ' = R'" is such that N' = B'(N'), and f + g, h € N for any
f, geN' and any h e R'" satisfying |h|=|f|, then N(N') is a hereditary o-ring.
Moreover in this case N'(N(N'))=N".

Proof. For the first part, clearly 8'(¥'(N)) = A'(N). Thus by Theorem 5
N'(N) € B'(P(N)) =« B'(N'(N)) = N'(N).
For the converse part, N(A"') is a hereditary ring by Theorem 5. Let E, e N(N”),

n N

n=1, 2, .... Then for each n we have f, = IA(ZxEk)eN’. But then XO =

k=1

lim f, e B'(N')=WN". Thus N(N"') is a hereditary o-ring.

Clearly fe N' < |f|eN',and L Alimn|f|e N' < {t:te T, f(t) # 0} eN(N') <
feN'(N(N')). Thus ¥’ = N'(N(N")) if and only if |[f|e A" < 1Alim n|f|eN".
Let |f|eN'. Then 1An|fleN’ for each n, hence 1Alim n|f|eB'(N')=AN".
Suppose now that 1 Alim n|f| € N'. Then |f| Ak Alim n|f| e N’ foreach k=1,2, ...,
and |f| Ak Alim n|f|—|f| in R’. In this way |f| € B'(/") hence f € A”. The theorem
is proved.

n
n—1

Theorem 7. Let Nc 27 be a hereditary ring. Then:
1) F<R” implies BAF) = BF+NN)) = BF+FN)) and BLF)
= B(F+NN)) = B*(Bu(F)) = B*(F+F(N)), and
2) F<R*" implies BE(F) = B*([F + N*(N)]+ N*(N)).
Proof. 1). Clearly 8B, =B(F + N(N)) c Bn(F). Define B={f:fe B, f-Xr-~
+ g xn€ B, for each NeN and each ge R™}.

Since fxr-n=f—f xn, BioB>F. Letf,eB,n=1,2, ...,let fe R" and let
f.—f a.e. N. Then there is aset Ne Nsuch that f, - xr_—~ — [ Xr-n~-Put fr=f Xr-n
+ f-x~- Then f, e B, for each n and f,—f, hence fe B,. Let MeNandletg e R".
Then (1) forxr-m + g = (faXr-n + [ Xn) X1-M + g XM = fo XT-Mom)
+ (fxn-m + g°Xm) * Xnom- Since MUNeN and flxr-m + G Xm — fXr-m
+ 9 Xxm> [ Xr-m + g -Xm€RBy. Since M e N and g e R™ were arbitrary, f € B. Thus
B12>RB > RBn(F), hence B, = Bu(F).

Since #(N) = N(N), B(F + F(N)) < B(F +N(N)). But F¥(N) = B(F(N)) by
Theorem 6, hence RB(F+F(N)) o F+RB(FN) > F+N(N). Thus
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BF+FN) = BRBF+SN)) o B(F+NN)), hence B(F+NN))
= B(F L F(N)).

Obviously B =B*(F+N(N)) c BXF). Define B* = {f:feBY, [ Xr-n~
+ g-xn€RB* for each NeN and each g e R*"}.

Let further fe %, let NeN and let ge R*". Then h,=f—f-xx + (—n) v
(nAng)eF+N(N) for each n=1, 2, ..., hence f-xr-n + g-x~ = lim h, € B%.
Thus B% o> B* o F. Now, proceeding as above, we obtain that B% = B%(F). (Since
T—(MuUN), N—M and M are pairwise disjoint sets, the equality (1) holds in spite
of being in R*).

Using the proved equalities B¥(F)=B*(F+N(N)) = B*(B(F+N(N)))
= BX(BNF)) = BH(B(F+I(N)) = BX(F+F(N)).

2) Clearly B%=3B*([F+N*(N)]+N*(N)) < B%(F). Define B* as above
with % instead of B%. Then it easily follows that B% o B* o [F + N*(N). Now,
in the same way as above in 1), we obtain the desired equality.

Let S=27 be a o-ring. According to the well-known definition, see [7, section
5—1}], a function f:T—>R’' is called S — measurable if {t:teT, f(t)¥0} n
f'(Bg)<=S. 1t is easy to see that B, may be replaced by any class E 2% such that
o(E) =By Particularly, we may take E={{x:x€eR’, x=c}, ceR'}.

Important information about S — measurable functions are contained in the
following well-known theorem, see [7, section 5-1].

Theorem 8. Let Sc2” be a o-ring and let f: T—>R'. Then the following
conditions are equivalent:
1) fis S — measurable,
2) f*, [ e (S)",
3) there are f, € #(S), n=1, 2, ... such that f,—f and |f|/|f|, and
4) feB'(HL(S)).

Corollary 1. Let Sc2” be a o-ring. Then B(F(S)) = B*(¥(S)) n R".
Corollary 2. Let Sc2” be a o-ring. Then B*(¥(S)) = B(¥(S))=S.

Proof. Obviously S = B(¥(S)) = B*(¥(S)). Let E e B*(¥(S)). Then xz € (S)°*
by the theorem. Thus there are f, € #(S)*, n=1, 2, ..., such that f, /xs. Each f, is

of the form f, = D.a.: - Xa,, With 0<a,, = 1, A,,€S, A..cE, and

i=1
AniNA,, =0 for i#j, i, j=1, ..., r.. Put E,=JA,.., n=1, 2, .... Then E, €S,
i=1
E.cE, E,/, and since f,=Xzg,, E./E. Thus E €S.

Corollary 3. Let S, S,<=2" be o-rings. Then the following conditions are

equivalent:
1) B*(L(S))=RB*(L(S1)),
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2) B(L(S))=RB(¥(S1)), and
3) S=S,.

Corollary 4. Let Sc2" be a o-ring. Then:
1) F<R" and B(F)=B(¥L(S)) imply B*(¥)=B(%) =S, and
2) FcR*™ and BHF) = BHFS)) imply B*(F)=S and B*(F)AR"
= B(L(S)).
If Dc2” is a S-ring, then clearly ¥(o(D))* < ¥(D)°". Thus applying
Theorem 1—4) we immediately have

Corollary 5. Let D<2" be a S-ring and let f: T—R’'. Then the following
conditions are equivalent:
1) fis o(D) — measurable,
2) f*, freFD)T,
3) there are f, € (D), n=1, 2, ..., such that f,—f and |f|/|f|, and
4) feRB' (¥ (D)).

Theorem 9. Let E, Nc2”. Then Bn(F(0(E))) = B(FL(0(E)))

Proof. Put B=BnN(F(0(E))). Since ¥(0(E)) is an R — linear function lattice,
F(B) = Bu(F(0(E))), and B is a o-ring by Corollary 2-2) of Theorem 2. Since
EcB, o(E) = 0(E) = B, hence Bu(F(0(E))) = BN(F(0(E))) = Bu(F(B)) <=

Bn(S (0 (E)))-
Using Corollary 4-1) of Theorem 8 we immediately have the following

Corollary. Let Ec2”. Then B*(¥#(0(E))) = B(¥(o(E))) = o(E).
Theorem 10. Let Rc27 be a ring and let Nc2" be a hereditary ring. Then
o(RUN) = RAN = U U (R-N,RUN) = 0,(R, N), where (R —N, RUN)

ReR NeN
= {A:Ae€2", R—NcAcRuUN}.

Proof. Sincc R—NcRANcRUN,RAN < ¢9/(R,N).If R—NcA cRUN,
then AAR = (A—R) u (R-—A) = NUN=N, hence AAReN (N is
a hereditary class). But A=RAAAR, hence ¢,(R,N) = RAN.

Clearly o(RUN) o RAN. It remains to show that RAN is a ring. Let A,,
A;eRAN. Then A,UA, = (A;1AAz) U (AINA;) = A|AAAN(AINAL), and
A —A; = A/A(AINA,). Thus RAN will be a ring if and only if it contains
A,NnA;forany A, A;eRAN. Let A, = R;,AN, and A, — R,AN-, where R,,
R,eR and N,, N,eN. Then Ai\nA, = (R,AN,) n (R,AN,) — [Rin(R,AN,)]
A (Nin(R:AN)] = (RinR,) A (RiANL) A [NiA(R.ANY)].

Since R is a ring and N is a hereditary ring, AinA, € RAN, and the theorem
is proved.

Corollary 1. Let Ec2” and let Nc2" be a hereditary ring. Then ¢(EUN)
= 0(E)AN = 0.(e(E), N)).
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In the process of completion of a measure space the following special case is
used:

Corollary 2. Let Ec 2" be a ring, let Nc 27 be a hereditary ring and let there

exist for each N €N an M € RnN such that Nc M. Then RAN = R+N, where
+ means disjoint unions.

Proof. If AeR, NeN and NcMeRnN, then (A—N) u (N—-A)
=[A-(AnM)] U [AN(M—=N)] U (N—A) € R+N.

If R, Nc2" are rings, and if fe #(R) and g € #(N), then clearly f+g €
¥ (0(RUN)). Using this observation, Theorem 7-1), Theorem 9 and its Corollary
and Theorem 10, we immediately have the next

Theorem 11. Let R<2" be a ring and let Nc 2" be a hereditary ring. Then

BUS(R)) = B(F(RAN)) = B'(F(0(RAN))), and BY(F(R)) = By(S(R))
= o(RAN).

Using Corollary 2-2) of Theorem 2 we immediately have the following

Corollary. Let #<R" be an R — linear function lattice and let N<27 be
a hereditary ring. Then B(F(Bu(F))) = B'(FL(BN(F))).

Theorem 12. Let Ec2” and let N<2" be a hereditary o-ring. Then § (EUN)
= 6(E)4AN and o(ELN) = o(E)AN.

Proof. §(E)AN and o(E)AN are rings by Theorem 10. Let A, € 5(E)AN,
n=1,2,.... Then by Theorem 10 there are R, e §(E)and N,eN,n =1, 2, ..., such

that R, — N, = A, = R,UN, for each n. But then [ \R, — JN, = [)(R,—N,)
n=1 n=1 n=1
c ﬁA,, c ﬁR,. ) CJN,., hence S(E)AN is a é-ring by Theorem 10. If
n=1 n=1 n=1

A, €0(E)AN, then the inclusions [JR, — UN, ¢ J(R.-N,) ¢ UA, <
n=1 n=1 n=1 n=1

Ij R, U ON,, and Theorem 10 imply that 0(E)AN is a o-ring.

n=1 n=1

Since Dna(D) = D for a §-ring D < 27, similarly as Corollary 2 of Theorem 10,
we have the following

Corollary. Let D 2" be a d-ring, let N<= 2’ be a hereditary o-ring and let there
for each N eN exist M € a(D)nN such that Nc M. Then §(DUN) = D+N.
From Theorems 11 and 12 we immediately have

Theorem 13. Let Ec2” and let N<2" be a hereditary o-ring. Then
BUL(e(E) = RB(F(o(E)AN)), and BX(F(e(E))) = BnNF(e(E)))
= o(E)AN.

Theorem 14. Let S< 27 be a o-ring, let Nc 2" be a hereditary o-ring and let f be
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an R’ — valued S/AN — measurable function. Then there is an R’ — valued S
— measurable function g such that f(t)=g(t) a.e. N.

Proof. Since f=f"—f, f*-f~=0, and f* and f~ are S AN — measurable, it is
enough to prove the assertion of the theorem for f*. According to Theorem 8
freY(SAN)°*. Hence there is a sequence f, € (SAN), n=1, 2, ..., such that

f./f*. Each f, is of the form f, =Za,,,i " Xe, on..» Where E, ; €S, N, ;eN and
i=1

a,;eR*, i=1,2, ..., r.. Put u, =Ea,.,,~x5n,,. and v, =\’I/ui, n=1, 2, ..., and let
i=1 i=1
g =limuv, if f*is R* — valued, and g*"=1lim v, — (+ %) X (1T, viy=+) if f* i8S R
— valued. Then clearly g* is an R’ — valued S — measurable function, and
g (t)=f"(t) a.e. N.
Corollary 1. Let S =27 be a o-ring and let N < 27 be a hereditary o-ring. Then
BUS(SLN))=BUSL(8))=B'(L(8)) +N'(N).

By Theorem 8 {t:t€ T, f(t) 0} €S for each f € B’ (#(S)), hence we immediate-
ly have

Corollary 2. Let S 2" be a o-ring, let N 2" be a hereditary o-ring and suppose
that for each NeN there exists an M eSNN such that NcM. Then each
feBMF(SAN)) can be written in the form f=g+h, where geRB'(¥(S)),
heN'(N) and g-h=0.

Theorem 15. Let T be a locally compact Hausdorff topological space and let
Nc2”. Then BU(Col(T)) = BUCAT)) = BUF(0(Co)))-

Proof. By Theorem B in § 51 in [3] each fe Cy(T) is 0(C,) — measurable,
hence Bu(Coo(T)) = BN(CoT)) = Bu(B(F(5(Co)))) = Bu(F(0(Co))). On the
other hand, xc € B(Co(T)) for each CeC, by Theorem A in § 55 in [3]. Thus
F(0(Cy)) = Bn(Coo(T)) by Corollary 2-1) of Theorem 2, hence Bu(F(a(Cy))) =
BN(Coo(T)). Finally BXCoo(T)) = B*(Bn(CooT))) = B*(Bu(F(0(Co))))
= BE(F(0(Cop))) by Theorem 7-1).

Applying Theorem 13 we immediately have the next

Corollary. Let T be a locally compact Hausdorff topological space and let N 27
be a hereditary o-ring. Then B(Coo(T)) = B(Co(T)) = B'(¥(0(Cy) AN)), and
BX(Co(T)) = BX(Co(T)) = Bn(Coo(T)) = Bu(Co(T)) = 0(Co)HN.

If feR'" and if T°< T, then f/;o will denote the restriction of f to T°. If T is
a separable locally compact metric space, then C=C, and o(F)=0(C), see
Theorem E in § 50 in [3]. Further, recall the definition of a Borel measurable
function, see § 51 in [3].

Theorem 16. Letn =1 and let T°=R'" — (0, ..., 0) be equipped with the relative
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topology. Define ®={f: f:R'"—>R, f(0, ..., 0)=0, and f/ro € Coo(T°)}, Boo= {f:

f:R'" >R, f(0, ..., 0)=0, and f/ro is Borel measurable on T°}, and B;={f:
f:R'"—>R, f(O, ..., 0)=0, and f is Borel measurable on R'"}.

Then B(D) = Bl = Bo.

Proof. Using Theorem 15 we easily obtain that B(®6)=RBo,. Since T° is
equipped with the relative topology, F°=FnT’. But then o(C’) = o(F°)
= o(F)nT° = o(C)mT’ by Theorem E in § 5 in [3]. Now using the definition of
a Borel measurable function it is easy to see that PBo, = RBo.

Theorem 17. Let us have the notations of Theorem 16, let Nc 27, let # = R’ and
let o(f\, ..., fu) € B(F) for each f,, ..., f, € F and each ¢ € ®,. Then @(fi, ...,
f.) € BUF) for each f., ..., f, € B(F) and each @ € B,. If moreover F is an R’
— linear function lattice, then B¥(%) is an R* — linear function lattice.

Proof. The first part of the theorem follows from Theorems 4 and 16. For the
second part of the theorem we have to realize that the functions (x, y) — xvy,
XAy, ax+by: x,yeR’', a, b € R, belongs to B, when n=2.

Corollary. Let F = #(R) or Cu(T), let Nc 27 and Iet us have the notations of
Theorem 16. Then @(f., ..., f.) € BN(F) for each f,, ..., f, € BYF) and each
@ € BS. Particularly B¥(F) is an R* — linear function lattice.

Proof. For given &’ s it is easy to see that @(f,, ..., f,) e F foreachf,, ..., [, e F
and each @ € Pg.

§ 2. Main results on (%, N) — measurable functions and sets

Theorem 18. Let Nc27 and let <= R". Then the following conditions are
equivalent:
1) af +bg, f-g € BN(F) for each f, g€ F and each a, b eR,
2) af +bg,fvg,fag, f" €eB(F) foreachf,geF,a,beR, and eachn=2, 3,

3) af +bg, fvg, fag, IAf* € Bu(F) for each f, ge F and a, beR,
4) Bn(%F) is a o-ring and each f € B(F) is Bu(¥) — measurable,
5) BN(F)=B(F(0(BN(F)))), and

6) Bn(F) is a o-ring and each fe€ F is Bn(¥) — measurable.

Proof. 1)=>2). We show that if ¢: R X R—R is a continuous function with
®(0, 0)=0, then @(f, g) € Bu(F) for each f, g € %. This will prove 2), since (x, y)
— xvy, xAYy, (xv0)" are such functions.

Let S=R X R —(0, 0) be equipped with the relative topology and consider the
restrictions to S of the following functions on R X R:

@i(x, y)=(x*+y?)-e PI=r2e7, where r’=x>+y?

—r2

Bt )= (£ +y) e = e,
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@s(x, y)=x-e " =x-e7, and
Pulx,y)=y-e =y e
Then S is a separable locally compact metric space and ¢.s € Co(S), i =1, 2, 3, 4.
Clearly @, A@,>0 on S. We now show that the functions ¢;, i =1, 2, 3, 4 separate
the points of S.

The function @, depends only on r, and lim @,(r) = lirp @«(r)=0. If r,

r—o*

r1€(0,1) and r<r,, then @,(r) < @,(r). If r, r,e (1, + ) and r <r,, then @,(r)

> @i(r,). Thus the graph of ¢, is a ‘“‘crater” with the maximum @,(r)

r € (0, +x)
= @(1)=e"". Further, for each ae(0,e”") there are exactly two points r,,
r2€(0, + ), r,e(0,1) and r,e (1, + ) with @,(r)) = @i(r2)=a.

The function ¢, behaves similarly as ¢, but the ma)ﬁi)rgu)m @.(r) = (pz(\/i). If ry,

r,€(0, + ), ry#r, and if @,(r;) = @.(r,), then it is easy to compute that @,(r,) #
@2(r2). Thus the functions ¢, and ¢, separate the points of S with different r.
Clearly @, and @, separate the points of S on a given circle r’=x>+y>

Denote by @ the algebra of functions on S generated by the functions @; s, i =1,
2, 3, 4. Then by the Stone—Weierstrass theorem, see Theorem A in § 38 in [5],
Co(S) is the closure of @ in the supremum norm.

We extend each f € Co(S) to R X R putting f(0, 0)=0. By C5(R X R) we denote
the space of all thus extended elements of C,(S), and by @° the extended members
of @. It is easy to see that B(P’) = B(CYR X R)).

According to Theorem 4 it remains to show that @(f, g) € Bn(F) for each f,
g €% and each @ € @°.

Theorem 2 implies that af + bg, f-g € Bu(F) for each f, g € Bu(F) and each a,
b € R. By induction Z’a,-_,- ‘f*-g' € Bu(F) foreach f, g € Bu(F) and each a, ; € R.

i+j=
Using the Taylor development of e "+’ we immediately see that each ¢, i =1, 2,
3, 4 is a pointwise limit of a sequence of such polynomials. Thus owing to
Theorem 4 @.(f, g) € Bu(F) for each f, g e Bu(F) and i =1, 2, 3, 4.

24y

Clearly each @ € @° is of the form @= D  a,,.: - @i @i @5 @i with

i+j+k+i=1

a; ;... € R. Hence @(f, g) € Bu(F) for each f, g € Bu(F) and each ¢ € P° again by
Theorem 4. Particulatly @(f, g) € Bu(F) for each f, g € F and each @ € @°, what
we wanted to show.

2)=3). We have to prove that 1 Af* € Bn(F) foreachfe F. Let § = (0, + ) be
equipped with the relative topology and consider on S the functions ¥,(x) = x-e™
and Y,(x) = x?-e*. Then S is a separable locally compact metric space,
Y. AY,>0o0n S and the functions v, and y, separate the points of S. Denote by ¥
the algebra of functions on S generated by v, and v,. Then similarly as in 1)=>2).
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above we obtain that ¥ (f) e Bu(%F) for each feBn(F) and each continuous
function : R— R with y¥/(x)=0 for x € (— =, 0). Particularly 9 (x) = 1A(xVvO0)
is such a function, hence 1Af* e Bu(F) for each fe F.

3)=>4). Bu(%) is an R — linear function lattice by Theorem 2, hence Bn(F)
= B(Bn(F)) is a o-ring according to Corollary 2-2) of Theorem 2. Since the
function x - 1A(x v0), x € R, is continuous, 1 A Bn(F)* = Bn(F) by Theorem 2.
Since Bn(Z) is an R — linear function lattice, f € Ba(F) < — f € Bu(F). Thus by
Theorem 8 it is enough to prove that each f*, f € Bn(F), is B(¥) — measurable.
Let fe Bn(F). Then f* will be Bu(F) — measurable if and only if {t:t€T,
fr@®)=c} € Bu(%F) for each ce(0, + ). Let c €(0, + ») and take a sequence

o €(0, +®)—{c}, k=1,2, ..., so that ¢, /c. Then {t:te T, f*(t)=c} = ()G,
. k=1

where C, = {t:te T, f*(t)>c}. Obviously 1Aan(f* —c. Af*) € Bu(F)" for each n,
k=1,2, .., and 1an(f* —cAf*),/ %c ; hence Cx e By(F) for each k=1, 2, ....

Since By(%) is a o-ting, [ ) Ce € Bx(%), what we wanted to show.
k=1

4)=5). is the implication 1).=>4). of Theorem 8.

5)=6). BM(F) =B(Bx(F)) = B(¥(0(Bu(F)))) = o(Bn(F)) by the Corollary
of Theorem 9. The implication 4).=>1). of Theorem 8 implies that each fe & is
Bn(%) — measurable.

6)>1)...1f f, g e ¥(Bn(¥)) and a, b € R, then clearly af + by, f - g € P(Bu(F)).
Applying Theorem 2 we obtain that af +bg, f-g € B(FBu(F))) = Bu(F) for
each f, g e B(F(Bu(F))) and each a, beR. Since each feF is Buy(F) —
measurable, ¥ c B(F(Bn(F))) by implication 1).=>4). of Theorem 8, hence 1).
follows. The theorem is proved.

Corollary. Let Nc2" be a hereditary o-ring, let ¥ = RT be an R — linear
function lattice and let 1A% = B(¥). Then Bu(F) = B(F(B(F)AN)) and
By(#) = B(¥)AN.

Proof. B(F) = B(F(B(F))) by the theorem, hence B(F) = Bu(B(F))
= BB (B)F))) = B(IB(F)) = B(L(B(F)LN)) and BNF)
= B(%)AN by Theorem 13.

The following simple example shows that the condition 1AF* < RB(F) is in
general weaker for R — linear function lattices than Stone’s condition 1 A% = &.

Example. Let T=(0,1) and let F={f:fe R", f is continuous and there exist
ce€(0,1) and a € R such that f(t)=at for te(c, 1)}. Then clearly ¥ is an R —
linear function lattice, 1A%¢F (consider the function t—2t), but 1AF* <
B(F).

§ 3. Applications to the Daniell integral

We suppose that the reader is familiar with the Daniell integral (for a clear
exposition of it see [7]). (T, %, I) will be a given elementary integral and
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I’°: %° —(— o, + ) will be the corresponding extension of I to over functions, see
sections 6-1 and 6-2 in [7].

For each f e R*™ we define its upper integral I(f) and its lower integral I(f) by
the equalities

I(f)=inf {I°(h), he F°, hZf} (inf {0} = + =),
and ;

I(f)= -1(-f).

If £, g € R*" and I(f) +I(g) (I(f) + I(g)) is not of the form (+ %) + (— ) or
(=) + (+), then I(f +g) = I(f)+1(g) I(f+g) = I(f) + I(g)). Further
I(f) = I(f) for each fe R*7,

The class N of all I — null sets is defined by the equality

N={E:EcT, I(x)=0}.

N is a hereditary o-ring and A(N)cN*(N)c %, since & is an R — linear
function lattice.

Our concept of measurable functions and sets for the Daniell integral is given by
the next

Definition 5. Elements of B (%) are called R’ — valued measurable functions
and elements of BN(F) are called R’ — measurable sets.

Corollaries 1 and 2 of Theorem 2 imply that BL{(%) is a o-ring, that Bn(F) is an
R — linear function lattice and that B#(%) is a lattice of functions. If the
conditions of Theorem 18 are valid, then B%(%) is an R* — linear function lattice
by the Corollary of Theorem 17.

Since & is an R — linear function lattice and since N(N) < N*(N) ¢ %
BuF) = BEF) < F owing to Theorem 7.

The class £’ of R’ — valued summable or integrable functions is defined by the
equality

)

L ={f:f: T>R', —o<I(f)=I(f)< + »}.

If fe R*" and I(f)=1I(f), then this common value is denoted by I(f).

We easily have: /'(N) = {f:fe&’, I(f)=0} = {f:feR'T, I(|f[)=0},
FL=L+NN), L*=L*+N*(N) = £+ N*(N), and £=£*NR". The last equali-
ty implies that {E: xz € £} = {E: xs € £*}. Let P={E: xz € £}, and for E € P put
u(E) = I(xe). Elements of P are called summable or integrable sets. The
Lebesgue dominated convergence theorem, see [7, Theorem 6-31V (c)], and the
simple properties of I and % imply that P is a §-ring and that u: P — (0, + ®) is
a complete countably additive measure. Clearly o(P) = Bn(%).

It is well known, see [7, Theorems 6-4V and 6-4VI], that for each f € ¥’ there
are f,e¥,n=1, 2, ..., such that f,(t)— f(¢) a.e. N. Thus £’ = B(F). Moreover
we have
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Theorem 19. BUF) = BUL') = B"(¥') = B"(F).

Proof. Suppose £’ =2. Since £=%+ N(N), B(L) = B"(¥) by Theorem
7-1). Since F ¢ £ c BUF), B(F) = B"(¥). Let now £’ =F*. Since £*=L +
N*(N) © B(L)+B*(L) = BHL), B*(L*) = B*(¥) by the Corollary of
Theorem 3. Since [£* + N*(N)] + N*(N) = £*, BE(L*) = B*(L*) by Theorem
7-2). The remaining equality BHF) = BX(L*) follows from the inclusions
FcP* ¢ BUF).

Theorem 20. Let f e BUF), let g€ ¥’ and let |f(t)] = |g(¢)| a.e. N. Then
feZ". -
Proof. Put B' = {f:fe BN (F), [f(t)| = |g(¢)| a.e. N>feZL'}). Then F= RB’,
and if f,eB’', n=1, 2, ..., and f,(¢)>f(¢) a.e. N, then fe B’ by the Lebesgue
dominated convergence theorem, see [7, Theorem 6-3IV (c)]. In this way
B' = BNF).

Corollary 1. fe ¥’ if and only if f e BY(F) and |f|e ZL'.

Corollary 2. &' = {f:f € BNF), I(|f|) < + =}.

Proof. If fe BL(F) and I(|f|)< + o, then there is an h € F°* such that |f|=h
and I°(h)< + . But then h e ¥*, see [7, Theorem 6-31 (b)], hence fe £’ by
Corollary 1 above.

Corollary 3. P={E: E e B\(%), [(xs) < + ©} = {E: E e B&(%F), I(xs) < + ©}.

Theorem 21. Let f € Bu(F)*. Then I(f)=I(f).

Proof. If I(f)< + «, then I(f) = I(f) by the preceding Corollary 2. Suppose
that I(f)= + . Since f € ¥, there are h, e F*, n=1, 2, ..., such that h, /h=f.
According to the preceding Corollary2 h.Afe£* for each n. But then
limI(h, Af)= + o, because otherwise f € £* by the monotone convergence theo-
rem, see [7, Theorem 6-3III]. Since I(f) = I(h.Af) = I(h,Af) for each n,
I(f)= + .

Corollary 1. Let fe B¥F) and let I(f*) — I(f") be not of the form (+ )
~ (+). Then I(f) = I(f) = I(f*) — I(f"). _ _

Proof. If)—I(f) = IGH+I(~f) = I() = I(f) = IGH+I(-f)
= I(f*) — I(f") under the assumptions of the corollary.

Corollary 2. Let f € BE(F), let I(f*)—I(f") be not of the form (+ ) — (+ )
and let g e £*. Then I(f+9g) = I(f+g) = I(f) + I(g).

Proof. [(f)=I(f) by the preceding corollary, hence I(f) + I(g) = I(f+g) =
I(f+g) = I(H) + I(9).

Theorem 22. Let f, e B(F), n=1,2, ....,letge £ and let g(t) = f.(t) a.e. N
for each n. Then I(f,) = I(f.) for each n, and I(lim inff.) = lim infI(f.). If
moreover, f,/feR'T a.e. N, then fe BW(F) and I(f,) /I(f).
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Proof. Since 0=f,(t) — g(¢) ae. N, and f,.—geBNF), I(f.—g+9g)
= I(f.—g +g) by Corollary 2 of Theorem 21. For the same reason I (lim inff,)

=1 (limninf f+)- The inequality I (lim inff,) = lim inf I(f,) is a direct consequence

of Fatou’s lemma, see [7, Theorem 6-3IV (b)]. The final assertion now trivially
follows from the monotonicity of I.

Corollary 1. Let f, € BM(F)*, n=1, 2, .... Then I (Zl f,.) = 21(,’“).

Corollary 2. For E e BY(F) put u'(E)=1(xe). Then p' : B&{(F) — (0, + ) is
a complete countably additive measure.

Theorem 23. Let f € R*™ be B4{(¥) — measurable and letj frdu' — j f-du’
T T

be not of the form (+oo) — (+®). Then I(f) = I(f) = Lfdu'.

Proof. According to Theorem 21 and its Corollary 1 it is enough to prove the
theorem for f*-f* € P(B4(F))°* by Theorem 8, hence there are f, € Z(BA(F)),
n=1, 2, ..., such that f, /'f. But then I(f,)/I(f) by Theorem 22, hence the

monotone convergence theorem implies that f fodu' /‘f fdu'. Since I(f.)
T T

= f f.du’ for each n, the theorem is proved.
T
Our basic result is the following

Theorem 24. The following conditions are equivalent:
1) f-geBNF) foreachf, geZ,
2) f™eBNF) for each fe F and each n=2, 3, ...,
3) 1Af*"eBNF) for each fe ZF,
4) 1Af*ePforeachfeX,
5) 1Af*eX for each feF,
6) each fe ¥ is Ba(¥) — measurable,
7*) each f e ¥* is o(P) — measurable,
7) each fe X% is o(P) — measurable,
8*) L*=L*(T, o(P), u),
8) £L=%L(T, o(P), 1)
9%) BXF)=B*(L(P))
9) B(F)=B(S(P)),

and each of them implies that B§(¥) = By(%) = o(P) and that I(f) = j fdu for
T

each fe £*.
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Proof. 1)=2)=3) by Theorem 18.

3)=>4) Since x > 1 A(x v0) is a continuous function from R to R, 1 Af* € Bu(F)
for each f € Bn(F) by Theorem 2. But £ < Bu(F), hence 1Af* € Bu(F) for each
feZ. Since 1Af* = f*, Inf* € for each fe ¥ by Theorem 20.

4)>5), since Fc .

5)=>3), since £ < Bu(F).

3)=>6) by Theorem 18.

6)=>7*) By Theorem 8 each fe Bn(F)>L is Bu(F) — measurable. Since
L*=%L+ N*(N), each fe £* is also By(¥) — measurable. Let f € £*. According
to Theorem 8 take f, e ¥(Bn(%F))", n=1, 2, ..., so that f, /'f*. Since 0=I(f,) =
I(f") < + oo, f, € (P) for each n by Corollary 3 of Theorem 29. Thus f* is o(P)
— measurable. Similarly f~ is 0(P) — measurable, hence f is also.

7*)=>7) trivially.

7)=>8%). L*(T, o(P), u)c¥* by Theorem 23. Let fe ¥*. Since ¥*=%
+ N*(N)) and since each ueN*(N) is o(P) — measurable, f is o(P)
— measurable. Applying Theorem 23 to f* and f we have fe ¥£*(T, o(P), u).

8*)=>8) trivially.

8)=>9*). Since each fe% is o(P) — measurable, #(P)c.¥c B(F(P)) by
Corollary 5 of Theorem 8. Hence B*(F(P)) = B*(Z). But B*(¥) = BE(F) by
Theorem 19.

9*)=>9) trivially.

9)=>1). Clearly f-ge%(P) for each f, ge¥(P). Since (x,y)—x'y is
a separately continuous function from R*to R, f-g € B(F(P)) = Bn(F) for each
f, g€ B(L(P)) = Bn(F) by Theorem 2.

9) and Corollary 4 of Theorem 8 give the equality BX(¥) = Bu(F) = a(P). 8%)

and Theorem 23 give the equality I(f) = J' f du for each f € £*. The theorem is
T

proved.

Addendum

In [8] the class of measurable functions A is defined by 9.20: A = {f: T>R*:
there are f, e ¥, n=1, 2, ... such that f,—f}, and using limit theorems for the

integral it is shown that 9.42 (g): f,e A, n=1,2, ... and f,(t) > f(t) a.e. N>fe A,
and that 9 D: fe A if and only if there are f, e #, n =1, 2, ... such that f,(¢) — f(t)
a.e. N.

From 9.D and 9.42 (g) it is evident that our class of R* — measurable functions
Bn(F) equals the class of measurable functions A introduced by J. LukeS. Hence
9.D and 9.20 give further valuable information about our common class of
measurable functions.

For some further conditions equivalent to those given in Theorem 24 see [9].

The author is indebted to the referee for pointing out these references.
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OB OOHOM KOHUEIILUUU U3MEPUMOCTH IOJISI UHTEIPAJIA TAHUDIIA
NBanJo6pakoB
Pe3ioMe

B pa6oTte onpeaeneHa u uccneaoBaHa HOBas KOHLEMLMA M3MEPHMOCTH [isl CXEMbI MHTETPUPOBAHHUS
Hanuansg. Ira KOHUENUMs OKa3bIBaeTcsi Gosiee ecTecTBEHHOM U 3¢ EKTHBHON YeM oblie MpUHATAs
koHuenuus CToyHa.

ITyctb & HekoTOpas BEKTOPHas pelleTKa BEILECTBEHHbIX (pyHKUMil Ha HenycToM MHoxectse T,
u nycte Nc2”. Torna knacc BX(F) Tak HasbiBaeMblx R*=(—o, +0©) — 3paunbix (%, N)
__ U3MepHUMbIX (PYHKUMIA onpegensieTcs Kak HaMMeHblIMiA Kinacc R* — 3HauHbIX ¢yHKuui Ha T,
cofepxawmi F, U 3aMKHYTbI OTHOCHTENLHO OOpa30BaHUA TOYEYHbIX MpeaeaoB N — nouyTH Bciogy
cBOMX nocnenoBatensHocrein. [TonMHoxecTBo E « T Ha3sbiBaeTcs R* — (%, N) — u3MEpUMbIM, €ClH
ero xapaktepucruieckasi yHxkuus npunapiexur BE(F). Knacc Bcex R* —(F, N) — usMmepumbIx
nogMHoxects T ofo3vaunm BX(F). B cnyyae, korma N nycto u ¥ BekTopHas peuietka S
__ CTyneH4aThIXx QYHKUMI, rae § curMa konbuo noaMHoxecTB T, To BE(F) coBnagaeT ¢ 0ObIYHBIM
KJaccoM Bcex S — wu3Mepumbix R* — 3nauHbix ¢yHkuuit Ha T, u B(%)=S. Korma N nycro
i F=Cy(T), rae T nokanbHO KOMNAKTHOE Xaycaop¢OBO NPOCTPAHCTBO, TO MbI MOJNYy4aeM OGBIYHYIO
U3MepUMOCTb B cMbIcie Bapa.

B ocHOBHO# TeopeMe 18 maeTcs NATb 3KBMBAJICHTHBIX YCJIOBHI HEOGXOMUMBIX H JOCTATOYHBIX NS
TOro, 4To6sl Knacc BE(F) — cryneHyarbix ¢pyHKUMIA NOPOXKAaN Bech knacc BE(F).

B § 3 aTu pe3yJbTaThl NPUMEHSIOTCA K HHTErpany JlaHnans, u B TeopeMe 24 YCTaHOBNEH Pl HOBBIX
HEOOXOMMBIX M OCTATOYHBIX YCJIOBHIA VIS BO3MOXHOCTH MPEACTaBIEHUS MHTerpaia [aHuans Kak
MHTErpajia no MHAyUHPOBaHHONH Mepe.
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