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Math. Slovaca 29,1979, No. 1,25—38 

EXTREME ESSENTIAL DERIVATIVES OF BOREL 
AND LEBESGUE MEASURABLE FUNCTIONS 

LADISLAV MlSfK 

1. It is well known ([1] and [7]) that the Dini derivatives of Borel (Lebesgue 
measurable) functions are Borel (Lebesgue measurable) functions. Let Ba, respec
tively L, denote the family of all real Borel functions of a real variable of the 
class a, respectively the class of all real Lebesgue measurable functions of a real 
variable. Let a be an ordinal and 5(a) be the least upper bound of the set of all 
ordinals y for which there exists a Borel function feBa with one of the Dini 
derivatives in the Borel class y and not in the Borel class 5 for <5 < y . It is known 
that a^6(a)^a + 2 holds ([1], [5] and [7]). From an example of J. Staniszewska 
([8]) one can easily see that <5(0) = 2. For a > 0 we do not know whether the 
equality 6(a) = a + 2 holds. In [5] we have proved actually that the upper, 
respectively lower, Dini derivatives of a Borel function of the class a are upper, 
respectively lower, semi-Borel functions of the class a + 1 . 

Let a be an ordinal and ^^(a ) , respectively Sess(a), be the least upper bound of 
the set of all ordinals y for which there exists a Borel function feBa with one of the 
extreme unilateral, respectively bilateral, essential derivatives in the Borel class y 
and not in the Borel class 6 for 6 < y . Recently ([6]) we have proved that 
2 = (5ess(0) = 3 . From the cited example of J. Staniszewska and from corollary 2 in 
our paper [4] (Folgerung2, p. 158) we get that 2^<5ess(0). The inequality 
6^(0) = 3 gives that also <5ess(0) ;= 3 holds. In the presented paper the proof is given 
that for a > 0 the upper (lower) unilateral essential derivatives of Borel functions 
of the class a are the lower (upper) semi-Borel functions of the class a + 2. 
Therefore 6ess(a)^a + 3 holds and 6 e s s (a )^a + 3 . It is also proved that the 
extreme unilateral essential derivatives of Lebesgue measurable functions are 
Lebesgue measurable too. 

In [3] O. Hajek proved that extreme bilateral derivatives of an arbitrary function 
are in the Borel class two. A similar theorem for extreme bilateral essential 
derivatives of functions does not hold. For any ordinal a there holds a^d^a) and 
a = desS(a). There are Lebesgue measurable functions having extreme unilateral 
and also bilateral essential derivatives which are not Borel. 
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2. The set of all real numbers is denoted by R9 the set of all positive integers is 
denoted by N. In the sequel a will mean an ordinal of the first two classes. A real 
function op of a real variable is a lower (upper) semi-Borel function of the class a iff 
the sets {x eR: (p(x)>(3} ({x eR: <Kx)</?}) are of the Borel additive class a for 
all /3 eR. The system of all lower (upper) semi-continuous functions is the system 
of all lower (upper) semi-Borel functions of the class zero. 

We will denote by / a real function of a real variable, by x and /3 real numbers, by 
r a real number strictly between zero and one, by (o and r\ real numbers which 
satisfy the inequality 0 ^ c o < n , by n and k positive integers and by \A\ the 
Lebesgue outer measure of the set A. 

We set: 

An(x;/3;(o9r1) = {h:(o<h^rl9\f(x+h)\^n9^
X + h)~f(x)>l3}9 

Bn(x;(3;(o9i1) = {h:(o<h^rl9\f(x+h)\^n9f(x+h)-f(x)>(3}9 

Cn(x;t3;(o9r1) = {h:(o<h^r]9\f(x+h)\^n9f(x+h)>t3}9 

A(x;/3;(o9r1)={h:(o<h^r]9
f(x^h^~f(x)

>^ 

(pn,r(x; (o9 t]) = sup {/?: \An(x ; (3;(o9 t))\>r(r) -(o)}9 

\pn,r(x;(o9 r/) = sup {/3: \Bn(x;l3;(o9 n)\>r(t]-(o)}9 

Xn,r(x;w9 r]) = sup {/?: \Cn(x;(3;(o9 r])\>r(r]-co)}9 

cpr(x;(o9 rj) = sup {P:\A(x;l3;(o9 r])\>r(rj-co)}, 

(pn,k(x) = sup {(pl/ik+l)(x;09 T}): 0<r]^-\. 
n) 

It is obvious that q>r(x; (o 9 r\) = (pr(x;(o9r]) for 0 < r ' S r < l , (pn,k(x) = 
(pn,k+i(x), cpn+x,k(x) ^(pn,k(x) for all xeR and n, keN. Therefore there exists 
lim (pn,k(x) for every k e N. For all k eN we denote the limit lim (pn,k(x) by (pk(x). 
n—*°° n—>°° 

There holds (pk(x) _=i (pk+\(x) for all xeR and keN. 
Let nowO<co, co = (o0<(ox<(o2<... <cok = rj and ru r2, ..., rke (09 1). Then we 

set: 
<Pn(x; (o09 col9 ..., (ok:rx r2, ..., rk) = min {cpn n(x ; (Oi-l9 cot): r ,>0, / = 1, 2, 

\pn,rt(x; (ot-l9 (Oj) 

(Oi-i 
Wn(x; cOo, (ou ...9(ok; rl9 r2, ..., rk) = min {min (-

^n(x;coi_l,(olyr>oi = 1 2? ^ 
CO,-

\(Oi —(Oi-i ^ n • 1 -> i 1 
vk =max { : r, > 0 , J = 1, 2, ..., kf . 

{ (Oi-X(Oi J 

Let {r\i}7=\ be a decreasing sequence of positive numbers with the limit equal to 

zero, i. e. 0<77I+1<r/I for each ieN and lim r/, = 0 . Let {n}T=i be such a sequence 
i—*0 
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of non-negative numbers less than one that the set {ieN: r, > 0 } is finite. Then we 
set: 

<P(x;{^}T=i; {r,}r=i)-min {(pri(x'^i+u r\i): r,>0, i = l , 2 , . . . } . 
We recall the definition of the upper right essential derivative of a function of 

a real variable in a point. The upper right essential derivative / i s (*) of a real 
function / of a real variable in a point x is the least upper bound of the set of all 

such numbers j3 for which the set {heR: h>0, — ^ • >jg[ has in 
0 positive upper outer density. 

3. Proposition 1. Xn,r(x ; (o, r/) = ipn,r(x ; (o, r/) + fix) and \xn,r(x ; (o, rj)| ^n 
ifXn.rix'9(o9ri)>-oom 

Proof. If Xn.J(x ; (o9 ri) = - <», then \Cn(x ; (3; (o, ?/)| ^ r(rj -co)for all(3 eR. 
But Bn(x;(3;(o, rj) = C„(JC ; (3+f(x); w, rj) for all 0e .R. Therefore 
|-B„(* ; /3; co, rj)\ S r(r? -co) for all (3eR. This implies that T/vr(x ;co,^ = - oo 
and the equality Xn,r(x ;(o,^ = H>n,r(x ;co,^ + f(x) holds. 

Let Xn,r(x ; (O, ri> - «>,Then \{h: (O<h^, \f(x+h)\ -S n,f(x + h) ^-n}\ 
> r(r/-co) as the sets {h: oj<h^, \f(x+h)\^n, f(x+ h)<-n} and {h: o< 
h ^ , \f(x+h)\ ^n,f(x+h)>n} are empty. From this we see that there holds: 
-n ^ Xn,r(x;(o, rj)^rz. Since Bn(x ; p; (D, ^ = Cn(x ; j3+f(x);(o, rj) for all 
£ 6 ^ , it is obvious that the inequality \B„ix ; /3 ; co, r/)| > r(.*j - co) holds iff the 
inequality \Cn(x ; (3 +f(x); (o, ?/)| > r(r? - o>) holds. Therefore Xn,r(x ; co, rj) 
= sup{/3: |G.(x; |8;a>,?i) | > r(r?-co)} = f(x) + sup {y: |B„(x; y ; co, IJ ) | > 
r(rj-co)} = V«.r(*;a>, rj) + / (*)• 

Proposition 2. 77.e function Xn,r(x ; co, r?) is 1ower semicontinuous and conse
quently Xn,r(x; (o, ^eBx. 

Proof. Let peR and x„,r(*; co, rj)>/3. Then there exists such a yeR that 
Xn,r(x ; (o, r/) > y>/3 and | C ( J C ; y ; co, rj)| > r(r/ - co ) . It is obvious that there 
exists such a positive 8 for which |C„(x ; y ; co + (5, TJ - <5)| >r^-(o). 

Let w e (JC - 6, x + 6). Then for he Cn(x ;y; (o+ 5^-6) there holds: (o + 8 < 
h ^ - 8 , \f(x + h)\^n and f(x + h)>y. There exists such a U E ( - < 5 , < 5 ) that 
w=jc + t>. Then there holds: (o = ((o + d) - 8<h - v S ^-^ + ̂  = ^, 
\f(u+h-v)\^n and f(u+h-v)>y. We have proved that 
h-veCn(u; y; (o, rj) and therefore - u + Cn(x; y ; co + <5, r/-<5)c=Cn(w; y ; (o, 
r/). From this it follows: | C ( w ; y ; co, yj)| -^ | - v + C„(A;; y ; co + d, rj-<5)| 
= |C„(JC; y ; co + d, co-<5)| > r(r7-co). Therefore Xn,r(u; (o, rj) S y> /8 . 
Therewith we have proved that Xn,r(x; (o, if) is lower semi-continuous. Conse
quently Xn,r(x; (o, ^eBx. 

Proposition3. Let a>0. If feBa, then ipn,r(x ;(o,^eBa; if f is a Lebesgue 
measurable function, then t /v r(x ; (o, i*j) is also a Lebesgue measurable function. 

Ifyn,r(x;(o,ri>-c°, then \H>n,r(x ; co, rj)| ^ | / (*) | + n hold. 
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Proof. According to proposition 1 tpn,r(x; (o, r]) = %n,r(x ; (o, n)—f(x) and 
according to proposition 2 ipn,r(x ; (o, r\)eBa \ifeBa, respectively ipn,r(x ; co, 77), 
is Lebesgue measurable if / is Lebesgue measurable. 

If t/vr(x ; (o, r\)> — 00, there is also Xn,r(x; (o, r])> — &> and from proposition 1 
we get that \ipn,r(x ; (o, r/)| _i \f(x)\+n. 

Proposition 4. Let 0<co<r] and x e R. Then there holds: 

An[x ; ^-; co, rj)czBn(x ;(3;(o, r/)c_An\x \~\OJ, r\) for /3>0, 

An(x ;0;(o, r]) = Bn(x ;0;(o, r\), 

An[x ;P-;(o,n) czBn(x ;(3;(o, r\)czAn[x ;^;(o,r\) for /3 < 0 . 

Proof. Let p>0. 

For each h e An( x ; —; (o, rj) we have: oj</z__rj, \f(x +h)\ _irz, f(x+h) 

- f(x)>—h>p. Therefore h eBn(x ; /3; (o, ?]). Consequently 

An(x ; ---; co, rj) czBn(x ;(3;(o, r\). 
\ (O / 

For each h eBn(x ; (3 ; co, rj) we have: oxh^r], \f(x + h)\^nj-^ ^ *^X* 

> » = —,=— and therefore h e An\x ; -; o, rj). Thus Bn(x ; (3 ; co, n) cz 
h r\h r\ \ 17 / 

A „ ( x ; £ ; c o , r\\. 

As, for (o <h _lr), the inequality ^X + ^ " ^ > 0 holds iff f(x+h) - f(x)>0 

holds, we have that An(x ; 0; (o, n) = Bn(x ;0; (o, r\). 
The relations for the case (5<0 are proved analogously as those for /3>0. 

Propositions. Let 0<co<rj. 
For ipn,r(x ; (o, n)> — 00 there holds: 

m_(»"-^a»' ,>), ^_(__I__L_) ^ vUx ;„,,,) ^ 

(ipn,r(x;(o,ri) \pn,r(x;(o, r})\ 
\ (o r/ / 

/ipn,r(x;co, r\) ipn,r(x; (o, r\)\ 
\ (o ' n / 

_n^n(3__X_l____ »-.Xx;-o,n)| ( | / ( „ ) | + w ) ! [ _ _ _ . 
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If ^pn,r(x; (o, r))= -oo, then q>n,r(x; (o, r\)= -oo. 
Proof. Let ^pn,r(x;(o,r})>0. 
Let (3 be such a real number which satisfies 0<f3<^pn,r(x; o, r\). Then there 

exists such a y that 0 < y < i/v-(* ; <*>> f) and |J3_(jt; y; (o, rj)| > r^-co). From 

this and from propostion 4 we get that \Anlx ;-;(o,r\\ -i. \Bn(x ; y; co, ?j)| > 

y 6 
r(t]-(o). Thus cp-,r(*;co, rj) = - > - - Therefore cp-,r(*; co, rj) i^ 

s u p { g : 0 < ^ < ^ r ( , ; c , r 1 ) ) } - ^ ^ ^ ^ . 

Let ^pn,r(x;(o,r})<(3. Then |£„(x ; 0 ; co, rj)| _i r(r\-(o) and, according to 

proposition 4, this implies that A j * ; —; (o, t] J _§ |B_(jt ; /? ; o, r})\ __. r(r\ - (o). 

From this (pn,r(x ; (o, r\) _i ^-. Thus cp„,r(x ; co, rj) _i inf j ^ - : t//„,..(;t ;w,r]) < (3} 

= ^pn,r(x;(o,Y]) 
(O 

The inequality 0 < - ^ - * i - - - - _ »•.-(-; o>,f|) _ ____ s 

'̂̂  r/ r/co v " ш 
y/ — ю 

(\f(x)\ + w)- finishes the proof of the assertion of proposition 5 for 

^pn,r(x;(o, r])>0. 
Let ^pn,r(x;(o,^f])^0. 
Then for every (3 less than ^pn,r(x; a), rj) there exists such a number y that 

0<y<t// n, r(* ; co, r\) and |_3„(x ; y; (o, rj)| > r(fj -co). From propostiion 4 and 

from the last inequality we get that л " v c ' Ž ; í ü ' ř ? ) _: |B„(x;y;<w, »7)| > 

y i3 r(r]-(o). Thus cp„,r(x; co, rf) !__ — > — for each /S less than ^pn,r(x; a>, r\). 

Therefore q>n,r(x ; co, rj) §_ sup { £ : (3^n,r(x ; co, FJ)} = V ^ * ^ ' * - ) . 

Let now t/vX*; co, r/) = 0. Then we have: \Bn(x; (3; co, rj)| _i r(r/-co) if 

xpn.Ax ; (o, Y])<(3. This and propostiion 4 imply that An(x ; —; (o, t]\ __i 

\Bn(x; p;(o, r])\ _i r(r\-(o) if ipn,Xx ; o, t]) < p. Thus q>n,r(x ; (o, r\) _S 

inff--:V .-( .r;(U,i |)</8) = * - ^ Q > ' ' > > = ^ * ^ > . As now also 
I CO J (O X] 

»--(*; ".»>> - y - X x ; ^ ! ? ) _ 0 s ( | / ( x ) | + „ ) _ _ _ _ , t h e assertion of 

proposition 5 is proved for ^pn,r(x ; (O,r]) = 0. 
Let -oo<t/;n r(*;co,rj)<0. Then \Bn(x; /?; co, r/)| _i r(rj-w) if 

29 



^pn,r(x; (o, r\) < /3 < 0. Consequently, by proposition 4, there holds: 

_. \Bn(x;(3; (o, rj)| =\r(r\-(o) if yn^r(x; (o,r\) < |8 < 0. . , ^ x ; - ; c o , rj) 

Therefore qp„,r(x ; co, rj) ._ inf j —: ip„,r(x ; (o, r\) < /3 < o | = — - — - — . 

A s 0 < ^ ^ ; c o , r / ) _ V^x ;<»,*) _ _ ^ ^ . ^ ^ a 

r/ co T " v " rjco 

(I/O*). + n) , the assertion of proposition 5 is proved for — oo< 

^n,r(x; (o, n)<0. 
It remains only to prove that cpnr(x ; (o, r]) = — oo if \pn r(x ; (o,r])= — «". But 

this is a consequence of proposition 4 and the inequality \Bn(x; (3; (o, r\)\ = 
r(r\ -co), which holds for all ^ < 0 if ^l>n,r(x ; (o, r])= — oo. 

4. Let 0<c0 = co 0<c0 1<co 2<...<coA c_ 1<coA c = ?7. Let 0 < r < l . We set A 
= {(ru r2, ..., rk): 0_=r,<l , r, is a rational number for i = l , 2, ..., k and 
k 

^Jri((oi-(oi-l)>r(r]-(o)}. 
i = l 

Proposition 6. Let 0<(o<rj. 
1. Then for each (ru r2, ..., rk)eA there holds: 
a) ^pn(x; w0, (ou ..., (ok; ru r2, ..., rk) =\ <Pn(x ; (o0, (ou ..., (ok; ru r2, ..., rk). 
b) If <Pn(x; (o0, (ou ..., cok; ru r2, ..., rk) > -oo, then <Pn(x ; (o0, wu ..., (ok; 

rur2,...,rk) - Wn(x ; (o0, cou ..., wk ; ru r2, ..., rk) =\ (\f(x)\ +n)vk. 
c) If feBa, then Wn(x;(o0, (ou ..., (ok; ru r2, ..., rk) e Ba. 

d) If f is Lebesgue measurable, then Wn(x; (o0, (ou ..., (ok; ru r2, ..., rk) is 

Lebesgue measurable. 
2. We have: 
a) qp„, r(x;co,r]) = sup {<Pn(x ;w0,(ou ...,(ok;ru r2, ...,rk):(rur2, ..., rk)eA). 

b) *Fn(x) = sup{Wn(x;(o0,(ou...,(ok; rur2, ..., rk): (ru r2, ..., rk)eA) =\ 
cpn,r(x;co, r\). 

c) If cpn,r(x;co,r])>-co, then cpn,r(x;co, rl)-^l>n(x) ;_ (\f(x)\ +n)vk. 

Proof. 1. a) The assertion in a) is a direct consequence of proposition 5. 

b) Let <Pn(x; (o0, (ou ..., (ok; ru r2, ..., rk)> -oo. Then min {cpn,n(x ; (ot-u (ot): 

rt>0, i = l , 2, ..., k}>-oo. Thus we have: cpn,n(x; (ot-u (ot)> - co for each 

i = l , 2, ..., k for which r , > 0 . From proposition 5 it follows that t/V-,(* ; w , i» 

w A ( \ (Vn.njx; (Qj-i, (Qj) ^pn,ri(x; (Oj-u (Qj)\ < 
0 > - ° " and cpn,n(x; <o,--i, (Oj)~ m i n T ' | V LL, - — ' — ) -^ 

\ (O j — \ (Oj 

( I / O O I + M ) ^ " ^ ' - 1 ^ ( | / ( j c ) | + n > * for each / e { l , 2, ..., A:} which satisfies 
C0,-iC07 

r}>0. From this <Pn(x ; (o0, (ou ..., (ok; ru r2, ..., rk) — Wn(x; (o0, (ou ..., (ok; 
rur2, ..., rk) =\ (\f(x)\ +n)vk. 
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c) Let feBa. It follows from proposition 3 that */>„,-,(*; cot_i, c0t) is a Borel 
function of the class a if rt > 0 and i = 1, 2, ..., k. Since Wn(x; c00, col5 ...9 a>k; 

- \ !.,;» L-j , . / ^ . - . ( J C ; ^ - ! , ^ ) ^ n , r , ( ^ ; ^ - l > ^ ) \ . r ^ Q • , -
ri, r2, .., rk) = mm nun I — , — ). r. >U, l = 1, 2, 

[ \ C0t_i CUj / 

... k\ , it is obvious that Wn(x ; co0, coi, ..., (ok; rl9 r2, ..., rk)eBa. 

d) This is also an immediate consequence of proposition 3. k 

i = l 

2. a) First it is obvious that u An(x ; /3 ; cot_i, cot) = An(x ; fi ; (o9 r\) for each 

real number j3. 
Let (ri, r2, ..., rk)eA and p<&n(x ; co0, coi, ..., wk ; rl9 r2, ..., rk). Then (3< 

min {qp„,r;(x;cot_i, cot): rt>0, i = l , 2, ..., k}. Therefore \An(x ; j3; (ot-u cot)| > 
rt(cot - cot_i) for each / = 1, 2, ..., k for which rt > 0 . From this \An(x ; j3; co, rj)| 

k 

= __{|A„(x;/3; cot_i, cot)|: rt>0, / = 1, 2, ..., k} = ^ O ^ - ^ - - ) > r(rj-co). 

Therefore j3 _iqp„,r(* ; co, rj). Thus we have that <Pn(x ; co0, (ou ...9(ok; 
ri, r2, ..., rk) = (pn,r(x; (o9 r\) and therefore sup {<Pn(x ; co0, cou ..., co*; 
ri, r2, ..., rk): (ri, r2, ..., rO-A} = (pn,r(x;(o9r\). 

There holds sup {<_>„(*; co0, coi, ..., c0fc ; ri, r2, ..., rk): (rl9 r2, ..., rk)eA} 
= cpn,r(x; co, r\) if (?„,-(*; co, rj) = - » . 

Let (p„,r(x; co, r j ) > - ° ° . Let cp„,-(*; w, r ] ) > ^ . Then |A„(x ; /3; (o9 r\)\ > 

r(r\ — co). For i = 1, 2, ..., k9 we denote by g, the number |An(x ; /? ; cot_i, 
cot — COt-i 

(Ot)\. If qt=09 we set rt = 0 . It is obvious that __{gt(cot-cot_i): <It>0,1 = 1,2,..., k} 
= __{|A„(x;/3;co t_i,co t)|:c7 t>0,/ = 1,2, ..., k} = \An(x ;/3; (o,r\)\ >r(r\-(o). 
Therefore, for each i = l , 2, ..., k satisfying qt>09 there exists such a positive 
rational number rt that rt<c1t and __{rt(cot — cot_i): rt>0, i = 1, 2, ..., k} 
>r(r\-(o). Thus (ri, r2, ..., rk)eA. For rt>0 we have: |A„(x; (3; cot_i, cot)| 
= ^.(co, — cot_i) > rt(cot — cot_i). From this it follows that (pn,n(x ; cot_i, cot) = /? if 
rt>0and/3 = min {(fn,ri(x ; cot_i, cot): rt>0, i = 1, 2, ..., k} = <Pn(x; co0, co1? ..., 
(ok; ri, r2, ..., rfc) = sup {<->„(x; co0, coi, ..., cok;sl9s29 ...9sk): (sl9s29 ..., sk)eA}. 
Therefore there holds: (pn,r(x; (o9 r\) __ sup {<Pn(x; (o0, (ol9 ...9(ok; rl9 r29 ..., rk): 
(rl9 r2, ..., rk)eA}. 

b) This is an immediate consequence of 1 a) and 2 a). 
c) Let cpn,r (x; o9 r\) > — oo and e > 0 . Then, according to 2 a), there exists 

sucha(r1 ,r2 , . . . ,^)eAthat0„( .x:;coo ,coi, ...9(ok;rl9r29 ...9rk) > q>n, r (x ;(o9r\)-£. 
Since, according to 1 b), Wn(x) = Wn(x ; co0, (ol9 ...9(ok; rl9 r2,..., rk) i_ <&n(x ; co0, 
coi, ..., (ok; ri, r2, ..., rk) - (\f(x)\ +n)vk9 we have Wn(x) > (pn,r (x; co, r\) - e 
~ (\f(x)\ + ri)vk. As e is any positive number, there is (pn,r (x ;(o9r\) — Wn(x) _i 
(\f(x)\+n)vk. 
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Let 0<o><»7, 0 < r < l and k be a positive integer. We set a>hk 

= (O + 2^(tl-(o)foii = 0, 1,2, .... 2*. Let, for& = l, 2, 3, ...,Ak = {(r„ r2, ..., 

2k 

r 2 *) : 0 _ r , < l and r( is a rational number for i - 0 , 1, 2, ..., 2* ^>< ^ ^ > 
i = l --

rr(rj -co)} . We denote by _>„, k (x ; rl9 r2, ...y r2*) the function min {cpn, r.(x ; a)i-u k9 

C0i,k): n>0, i = l, 2, ..., 2*}, by - ^ ( J C ; rl9 r2, ..., r2*) the function 

rшn {min ( ^ - * ( * ; "'-•» "'•*>, ^ * ; " - ' * ' (°i-k)): r , > 0 , « = 1, 2, .... 2* 
l V cOi-i,k co:k 

and by F the system {Wn,k(x; rl9 r2, ..., r2*): (ru r2, ..., r2*)eAk, k = \, 2, 3, ...}. 
We remark that the system F is obviously countable. 

Theorem 1. Let 0<co<n and 0 < r < l . If feBa, then the function cpn,r(x ; co, 
n) is a lower semi-Borel function of the class a; if f is a Lebesgue measurable 
function, then cpn,r(x; co, n) is a Lebesgue measurable function. 

Proof. Now, from propostition 6 la) and 2a), it follows that W„tk(x ; rl9 r2, ..., 
r2*) _i cpn,r(x; co, t]) for k = l, 2, 3, ... and (rl9 r2, ..., r2*)eAk. From this 
sup{g(x): geF} _i cpn,r(x; co9 n). 

If cpn,r(x ; co, n) = - oo, the equality sup {g(x): g eF} = cpn,r(x ; co9 n) holds. 
Let cpn,r(x; co, t])> — °° and e >0. We choose such a positive integer k that 

(\f(x)\+n) ^-2-~k<£- By proposition 6.2. c), yn,r(x ;co9n) - sup {Wn,k(x ; rl9 r2, 

• ••, r2*): (rl9r29 ..., r2*) e Afc} g ( l / (x ) [+n) max ^ ^ fc:rt>0, i = 1,2, 
I CO,, fcCO,--!, / tZ 

. . . , 2 * | _i ( | / ( * ) | + M ) 2?fc <g- Hence we get that cpnr(x; co, 77) 

— sup {g(x): geF} < _ . The last inequality holds for all positive e and therefore 
sup {g(x): geF} = cpn,r(x; co, n). 

Let now / e Ba. By proposition 6.1. c), every function g e F is in Ba and therefore 
the set {xeR: g(x)>/3} is a set of the Borel additive class a for each geF and 
e a c h ^ E i ? . Since {xeR: cpn,r(x; co, r})>p} = u{{xeR: g(x) > (}}: geF} and 
since the system F is countable, the set {xeR: cpn,r(x ; co, J1)>/3} is of the Borel 
additive class a. This proves that the function cpn,r(x ; co9 n) is a lower semi-Borel 
function of the class a. 

Analogously, we prove that the function cpn,r(x ; co, 17) is a Lebesgue measurable 
function if / is a Lebesgue measurable function. 

Proposition 7. Let 0<co<rj and 0 < r < l . Then for n = 1, 2, 3, ..., (3 eR and 
xeR there holds: 

a) An(x ; p; co9 n) c= An+l(x ; /?; co, n)9 

b) cpn,r(x; co9 n)^q)n+Ur(x; co, r\)9 
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c) cpr(x; co, rj) = lim cpn,r(x; co, 17), 
n—*<x> 

d) The function cpr(x; co, 17) is a lower semi-Borel function of the class a if 
feBa. 

e) The function cpr(x ;co^)isa Lebesgue measurable function iffis a Lebesgue 
measurable function. 

Proof, a) This follows at once from the definition. 
b) From a) it follows that \An+1(x ; j3;co,^\ > r(r/ -co) if \An(x ; f$ ; co, r/)| > 

r(?7 -co). Therefore /3<cpn+Ur(x ;co, ^if/3<cpn,r(x;co, rj). Thus cpn,r(x ;co, 77) S 
cpn+i,r(x; co, r/). 

c) Since An(x ; (3; co, 17) c A(x ; (3; co^) for n = 1, 2, 3, ... a n d / 3 e R , one can 
easily prove that cpn,r(x ; co, 17) ^ (pr(x ; co, 77) for w = 1, 2, 3, .. . . Thus linicD,.,- (* ; 
co, ?]) ^ cpr(x; co, 77). 

Let now(3 <cpr(x ; co, 17). Then there exists such a y that /3 < y <cpr(x ;co^) and 
| A ( * ; y ; co, rj)| > r(?7-co). Since {An(x; y; co, ^}n=i is a non decreasing 
sequence of sets converging to the set A(x ; y; co, 17), there exists such a positive 
integer n that |A„(x ; y ; cu, rj)| > r(?7 - c0 ) . But this gives that cpn,r(x ; co, if) S 

y > ^ . Therefore limq9„,r(x; co, 77) = cpr(x; co, ?7). 
n—»°o 

d) By theorem 1, for n = \, 2, 3, ..., the function cpn,r(x; co, 77) is a lower 
semi-Borel function of the class a. Therefore, for n = 1, 2, 3, ... and (3 eR, the set 
{x eR: cpn,r(x ; co, ^>(3} is of the Borel additive class a. Since {x eR: cpr(x ; co, 

rl)>P} = u {JCG/?: <p,.,r(x; co, i7)>jS} for each /3e-R, the set {jceK: cpr(x ; co, 
n = 1 

rl)>P} is of the Borel additive class a for each (3eR. Therefore the function cpr(x ; 
co, rj) is a lower semi-Borel function of the class a. 

e) Using theorem 1, we prove easily that cpr(x ; co, 77) is a Lebesgue measurable 
function if / is a Lebesgue measurable function. 

Let now 0<?7 and {?7,},°=i be a decreasing sequence of positive numbers which 

converge to zero and ^^ = ^, i. e. ^ = ^l>^2>^3> ">0 and limty = 0 . Let A be 
i—* 00 

the system of all such sequences {r,}T=i of rational numbers that 0^T{<1 for / = 1, 

2, 3, ..., the set {i eN: r,>0} is finite and 2r,(?7. — ^i+\)>r^. Let F be the system 
1 = 1 

{<P(x ; {r7,}r=i; {r,}i°°=i) •' {ri}«°°=i e A}. We remark that it is obvious that the system F 
is countable. 

Theorem2. Let ^>0 and 0 < r < l . Then there holds: 
a) cpr(x; 0, r/) = sup {g(x): geF}. 
b) TTie function cpr(x ;0^) is a lower semi-Borel function of the class a iff e Ba. 
c) The function cpr(x ; 0,17) is a Lebesgue measurable function iffis a Lebesgue 

measurable function. 
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Proof, a) Let g eF. Then there exists such a sequence {r,}r=ieA that g(x) 
= 0(x ; {r7,}r=i; {n}T=i)- Let now /3 e R and p<g(x). Then (3<cpri(x ; r\i+u rr) for 
each i eN for which r ,>0 . Thus \A(x ; )3 ; ^i+l, rr)| > ri(^i-^l+l) for each ieN 

for which r, > 0 . Since A (x ; /3; 0, rj) = u A (x ; /? ; rj l+1, rjO, there holds: I A(JC ; (3 ; 
« = i 

0, ?7)| = ^ r I ( r / l - r7 I + 1 )>r r7 . Therefore/3 = cp r(x;0, rj). From this g(jc) = yr(x ; 
i = l 

0, 4) . Hence we get that sup {g(x): g eF} = cpr(x ; 0, 4). 

LetfJeI? and/3<q? r(x ;0, 4) . Then |A(x ; (3 ; 0, r/)| > rrj. Obviously there exists 
such an r/v that |A(x ; /?; r/,, r/)| >rr j . For each 1=5 we choose r , = 0 . Since 

^ I W_J— fa~?L-n) = | A ( x ; ^ ; r/s, 4)I >rr7, there exist such rational 
i=i 4 , *7« + i 

numbers r-, r2, ..., Tv_, that, for i = 1, 2, ..., s -1, there holds: r, = 0 if |A(JC ; (3 ; 

IJI+1, f,OI=o, o<r, < lA^^>J'^y?0l if |A(JC. p . nM9 ^ ^ o and 
/]« / / i + i 

5 1 

Sr i (^ i - ^ i + 0 > ^ - Obviously {r,}r=i<EA. Thus 0(JC ; {rjjr=i; {r.OH-OeF. As for 
« = i 

each 1 e AT for which r, > 0 the inequality |A(JC ; /3 ; r7I+1, rjO| > ri(^i — ^i+^) holds 
we have /3<cpr.(x; ^i+l, fy) for each ieN for which r f > 0 . Therefore |3 = 0 ( J C ; 
{-7i}r=i; {rOH-0 = <?(*)• From this cpr(x; 0, rj) = #(JC) = sup {h(x): heF}. 

Thus we have proved that qpr(x; 0, rj) = sup {g(x): g eF}. 

b) By proposition 7 d), each function cpr.(x; ^i+l, r/0 is a lower semi-Borel 
function of the class a. As each function of the system F is a minimum of a finite set 
of functions cpr.(x ; ^i+l, fy) for some appropriate 1, each function of F is a lower 
semi-Borel function of the class a. As the system F is countable and {xeR: cpr(x ; 
0, r/)>/3} = u{{xeR: g(x)>(3}: g eF} for each /3eR, the function cpr(jc ; 0, rj) 
is a lower semi-Borel function of the class a. 

c) This is a consequence of the countability of the system F , of the equation 
cpr(x ; 0, rj) = sup {g(x): g eF} and the Lebesgue measurability of each function 
cpri(x; ^i+u rj,). 

5. Proposition 8. Let n and k be positive integers. 

a) Then cpnk(x) = sup {<p1/(fc+1)(* ; 0, rj): 0 < r ] = - , ^ is a rational number}. 

b) If feBa, then cpn,k(x) is a lower semi-Borel function of the class a. 
c) Iffis a Lebesgue measurable function, then cpn, k(x) is a Lebesgue measurable 

function, too. 

Proof, a) Since {qPi/(Ac+i)(jc; 0, r,): 0 < r j = - , r ] is a rational number} cz 
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|<Pi/(k+i)(x;0, TJ): 0 < r ] g - | it holds sup {<PI/(*+D(X ; 0, rj): 0<r\^-, r} isarat ion-

al number} S sup \cpl/(k+l)(x ; 0, Y]): 0 < r j = ^ - j = cpn,k(x). 

Let now (3<cpn,k(x). Then there exists such a <5 that 0<<5=i - and cpl/(k+l)(x; 

0, d)>fi. Hence | A ( x ; /?; 0, (5)| >1TTT- J t i s obvious that there exists such 

a rational number £ that 0 < £ = 6 and |A(x ; (3 ; 0, e)\ > —- 6 ^ Y+\ £' From 

this <p1/(*+1)(x; 0, e)=./? and then also sup {<p1/(*+1)(* ; 0, 77): 0<:?7 == —, 17 is 

a rational number} .= <p1/(*+1)(*; 0, E ) . = ^ . But this proves that sup {<p1/(* + 1)(* ; 

0, 77): 0<C?7 =i—, 77 is a rational number} .= <p„,*(x). 

Thus we have proved that cpn,k(x) = sup {<p1/(*+1)(x; 0,77): 0<t]= — ,r] is 

a rational number}. 

b) Let feBa. Since the system {<p1/(fc+1)(*; 0, r\): 0<?7=i—,rj is a rational 

number} is a countable and since each function cpl/{k+l)(x; 0, r)), according to 
theorem 2 b), is a lower semi-Borel function of the class a, the function <p„, k is the 
least upper bound of the countable system of lower semi-Borel functions of the 
class a and therefore it is a lower semi-Borel function of the class a. 

c) If / is a Lebesgue measurable function, then the function cpn,k is the least 
upper bound of a countable system of Lebesgue measurable functions and 
therefore it is Lebesgue measurable. 

Theorem 3. a) There holds: ft^(x) = lim (lim<p„,*(*)). 
k—*oo M—»oo 

b) Iff e Ba, then ft& is a lower semi-Borel function of the class a + 2 and thus it 
is a Borel function of the class a + 3. 

c) if / is a Lebesgue measurable function, then /^ss is a Lebesgue measurable 
function. 

Proof, a) Let t3<fe*s(x). Then there exists such a positive integer p that the 

upper outer density of the set \h:h>0, — j-—-^->m in the point 0 is 

greater than ———-. Therefore, for each positive integer n, there exists such 

a number r) that 0 < r ? S - and | A ( J C ; (3; 0,t])\ = \{h: 0<h ^rj/^ + / * ) ~ ^ x > > 
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(3}\ > -n. Since for all positive integers n and k there holds: cpn,k(x) = 

cpn+x,k(x) and (pn,k(x) _i cpn,k+l(x), we have lim<pn,X*)=j8 for j=p. Thus 
n—*oo 

lim (lim (Lv *(*)) = £• As lim (Mmcpn,k(x))=(S if (3<fess(x), there holds: /^ s(x) _i 
Ac—»oo ,._>oo Ac—*°° /7_>,oo 

//rrz (lim cpn,k(x)). 
k—»oo n—»oc 

If /3 < lim (///w qpn, k(x)), then, for each rz = 1, 2, 3, ..., there exists such a number 
Ac—»oo Л1—*« 

r/„ that 0</7„_i— and q)i/(k+i)(x; 0, nn)>(3. From this 0<nn=— and | A ( x ; /3; 

0, nn)\ > T — r ^ n for n = l, 2, 3, .... But this implies that the set \h: h>0, 

— j-—--^--->jS| has in 0 the upper outer density not less than -. Therefore 

h ) k + 1 
(3=feSS(x). Hence we have proved that lim (lim cpn,k(x)) = fess(x). Thus the 

k—>oo n ^ o o 

equality / i s (x ) = lim (lim q)n,k(x)) is valid. 
/c—»oo n—>oo 

b) Let f eBa. Since for each k EjV, lim (p„,^(x) is the limit of a non-increasing 
n—»oo 

sequence of lower semi-Borel functions of the class a, the limit lim (fn,k(x) is, for 
M—»oo 

each k eN, an upper semi-Borel function of the class a + 1. Since lim q)n,k(x) _i 
n—»oo 

lim q)n,k+i(x) for each keN, the function /^ss is the limit of a non-decreasing 

sequence of upper semi-Borel functions of the class a + 1. Therefore fess is a lower 
semi-Borel function of the class a + 2 and thus /^ s is a Borel function of the class 
a + 3 . 

c) This is a consequence of the equality f^(x) = lim (lim q)n,k(x)) and 
Ac—>oo n—»oo 

proposition 8 c). 

6. Theorem 4. a) There holds: a = 5ess(a) and a=dess(a) for a=0. 
b) There exists a Lebesgue measurable function the upper right essential 

derivative and the upper bilateral essential derivative of which are not Borel 
functions. 

Proof, a) For a = 0 this is obvious. 
Let C be the Cantor set in (0, 1). The characteristic function cc of the Cantor set 

is a Borel function of the class one and its upper right essential derivative, and also 
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its upper bilateral essential derivative are Borel functions of the class one, since 
ccts(x) = -oo, cCess(*) = oo for xeC and c c i s ( x ) = cCess(jc) = 0 for x&C. 
Therefore l-=<5ess(l) and 1^5 e s s( l) . 

It is obvious that for a > 1 it suffices to prove this only for a non-limit a. 
Let a > 1 and non-limit. From the existence theorem (Theorem I. in [2], p. 182) 

we get: For the Cantor set C there exists a subset A for which there holds: 
(1) A is a Borel set in C of the additive class a — 1, 
(2) A is not a Borel set in C of the additive class less than a — 1, 
(3) C — A is not a Borel set in C of the additive class a — 1. 
It is obvious that the set A is a Borel set in (— oo,oo) of the additive class a - 1 

and not of the additive class less than a — 1, the set ( — oo,oo) - A is a Borel set in 
( - oo, oo) of the additive class a and not of the additive class a — 1. 

The characteristic function cA is therefore a Borel function of the class a and its 
upper right essential derivative and its upper bilateral essential derivative are Borel 
functions of the class a, as cA^s(x) = — oo, cAess(jc) = oo for xeA and cA

+
ss(x) 

= cA ess(x) = 0 for x £ A. Thus we have proved that a g <5ess(a) and a =? Sess(a) for 
a > 1 and the proof is finished. 

b) Let A be a non Borel subset of the Cantor set C. Then cA is Lebesgue 
measurable. As cA ts(x) = - °°, cA ^(x) = oo for x e A and cA ess(*) = cA css(x) = 0 
for x £ A, the functions cA ess and cA ess are Lebesgue measurable functions, but not 
Borel functions. 

7. We add another remark. 
S. Banach in [1] gives the following two theorems: 
If the set of all numbers in which one of Dini's derivatives of a function f is 

infinite is at most countable, then the function fis a Borel function of the class 2. 
If one of DinVs derivatives of a function f is almost everywhere finite, then f is 

a Lebesgue measurable function. 
Are there any analogies to these theorems? Is the following assertion true: If the 

extreme unilateral essential derivative of a function fis almost everywhere finite, is 
then f a Lebesgue measurable function ? 
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ЕКСТРАМАЛЬНЫЕ СУЩЕСТВЕННЫЕ ПРОИЗВОДНЫЕ БОРЕЛЕВСКИХ 
И ЛЕБЕГОВСКИХ ИНЗМЕРИМЫХ ФУНКЦИЙ 

Ладислав Миш и к 

Р е з ю м е 

В этой работе доказывается, что а ^д^(а)^а + 3 и а ^6^Ха)^а + 3 для каждого порядково 
числа а из первых двух классов, когда д^(а) = $ир{у: существует борелевская функция класса а, 
которой одна экстрамальная односторонняя существенная производная принадлежит борелевс-
кому классу у и не принадлежит борелевскому классу д для д < у} и 6 „Да) = $ир {у: существует 
борелевская функция класса а, которой одна экстрамальная двустронняя вущественная произ
водная принадлежит борелевскому классу у и не принадлежит борелевскому классу 6 для д <у}. 
Каждая экстремальная существенная производная борелевской (лебеговской измеримой) функ
ции — борелевскя (лебеговская измеримая). 
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