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ON GENERALIZED DABROUX 
AND CONNECTIVITY FUNCTIONS 

JANA FARKOVA 

1. Introduction and notations 

It is known that the Kuratowski—Sierpinski theorem, which asserts that 
a function /: EX^EX of Baire class 1 is Darboux if and only if it is a connected 
subset of the plane E2 (as usually the function is identified with its graph), is not 
valid already in the case /: E2—>EU see [2]. This is due to the fact that already in E2 

the connected subsets form a substantially richer and more complicated system as 
in Ei. For this reason usually the concept of a Darboux function is modified to 
a given base of open subset of the space, to obtain generalizations of results 
from Ex for arbitrary topological spaces. 

If not specified, in the following X will be a locally connected metric space with 
a given base 28 of open connected subsets and all considered functions are defined 
on X and have real values. 

We say that a function / is Darboux with respect to the base S3, shortly 
3&-Darboux (fe3)(0l)), if f(B) is connected for each B eSB. 

Similarly, we say that a function / is a connectivity function with respect to the 
base S8, shortly 33-connectivity function (/e ^(33)), if f/B = {(x, f(x))\: x eB} is 
connected in XxEi for each B eS8. 
» For thus defined classes of functions the following assertion, which in some sense 

generalizes the Kuratowski-Sierpinski theorem, was proved in [3]: 
(A) If /: X-» Y is of Baire class 1, where X is En with a base 33 having some 

special properties and Y is a separable metric space, then feQ)(£ft) o / e ^(.33). 
Somewhat weaker and more general than the Darboux property is the Darboux 

property in the sense of Radakovic. For functions of a real variable it was 
introduced in [8]. In [5] it was generalized for functions on a topological space with 
respect to its base. In [1] these functions were studied in connection with the 
investigation of the uniform closure of Darboux functions. 

We say that a function / is Darboux in the sense of Radakovic with respect to the 

base ffl (fe3)0(m)) if f(B) is connected for each Be®. 
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Similarly as the Darboux property in the sense of Radakovic, we have the 
following generalization or weakening of the connectivity function concept: 

We say that a function / is a connectivity function in the sense of Radakovic with 
respect to the base &(fe %<>(&)) if J/B is connected i n X x £ , for each B e3ft. 

Finally we define the classes of functions Q)0 and ^ 0 as follows: / e 3)0, or / e ^ 0 if 

/ (C) , or / / C i s connected for each connected subset CaX, respectively. 
Naturally the question arises what relations there are between these classes of 

functions, particularly, whether the analogue of assertion (A) above is valid for 
Q)0(3fc) and ^0(S8). In Theorem 1 we show that a similar assertion holds, even 
without the assumption that / is of Baire class 1, however under a special 
assumption on the base 5&. This assumption is introduced by the next 

Definition. We say that the base 3ft of X has the (*) property if BxnB2 e 3ft for 
each Bu B2e®, B1nB2j=0. 

Clearly in En (n>\) the base of all open spheres as well as the base of all open 
connected subsets do not have the (*) property. On the other hand the base of all 
open intervals in En and the base of all open convex subsets have the (*) property. 

C0(/, x) as usually will denote the cluster set of / at x, i.e., the set of all limit 
numbers of / at x (ye C0(f, x) <=> there is a sequence {xn} such that f(xn)—»y and 
xn-*x). 

Co(/, x), where B e 38 a n d x e B , will denote the relative cluster set of / at x with 
respect to B, which means that y eC0(f, x) othere is a sequence {xn} such that 
xneB, *„—>x and f(xn)-*y. 

Clearly Cf(f, x) = C0(f, x) when xeB. 

2. The classes 3b0(3fo) and <<?0(38). 

We prove now some properties of the classes 20(3ft) and VoJJft). 
It is known that for X = EX and 3ft being the base of all open intervals, / e ^(3ft) if 

and only if f/Ex is connected, i.e. if / (its graph) is connected. As the following 
simple example shows, for ^0(S8) this is not so. 

E x a m p l e 1. Let f.Ex-*Ex be defined as follows: f(x) = sin 1/x if J C > 0 , 
f(x) = 0 if x ^ 0 and x is rational, and f(x) = 1 if x < 0 and x is irrational. Then 

clearly f/Ex is connected, however fl(a,b) for a<b^0 is not. Thus the 

connectivity of f/Ex does not imply fe^^Sft). 
life @)(£ft), then it is easy to see that f(0) is connected for each open connected 

subset OczX. Similarly we immediately have the next 

Proposition 1. Let f e 'ZdJJffi). Then f(0) is connected for each open connected 
subset O c X . 

The following proposition will be substantially used in the proof of Theorem 1: 
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Proposition 2. Let the base m of X have the (*) property and let fe2d0(ffl). 
Then C0(f,x) is a closed interval for each Be 26 and each x e B. 

Proof. Let Be26 and let x0eB. Put a =inf C0(f, x0), /3 = sup C0 (/, x0) and 
let a < / 3 (otherwise the proof is complete). Let y e ( a , / 3 ) . Then there are 
xn, yneB,n = \, 2, ... such that xn-*x0, yn^>x0,f(xn)->a,f(yn)-*p and/(x„) < y 
< f(yn) for each n = 1, 2, ... 

For each k = 1, 2, ... take Bke26 and n* so that x 0 GB f c cO(jc 0 , 1/k) and x, 
y„k e Bk, where O(x0, \/k) is the open sphere with the centre x0 and the radius 1/k 
Since BknBe26 by the (*) property of 26 and since feQ)0(26), 

п к , 

Ye(f(xПk),f(y„k)) c= ( inf_J(д:), sup / ( * ) ) = f(BknB) 
xєв

kr\B x єß f c oB 

for each k = 1, 2, ... Hence for each k = 1, 2, ... there is an zk eBknB such that 
l / ( ** ) -y |< l / f c . Since j t0eB* czO(x0, 1/&) for each k, zkeB, zk—>x0 andf(zk)—> 
y. Thus y G C 0 ( / , *o), what we wanted to show. 

In the special case when X is locally compact and the base is such that each B e 26 
is relatively compact in X we obtain more, namely the following generalization of 
Theorem 3.1. from [1]. (In [1] X = EX.) 

Proposition 3. Let the base 26 of X have the (*) property and let each B e 33 be 
relatively compact in X. Then the following conditions are equivalent: 

1) fe2)0(26), 
2) Co (/, x) is a closed interval in Et for each B e 26 and each xeB, and 

3) u_CS ( / , x ) = <M/( jc) , sup/(jc)) for each B e 3 8 . 

Proof. 1) => 2) by Proposition 2. 

2) => 3). Let B e 26. Put A = u Cf (/", x) and I = (inf / (x ) , sug /(*)>. First we 
xe*> x e& x eB 

show that A = I. Suppose that A^I. Then there is a non-empty open interval 
(a,b) cz J - A . Denote Ex = {*: JC e £ , f(x)^a} and £ 2 = {x: x eB, f(x)^b}. 
Clearly Bx±0£B2 and B = BXKJB2. Since £ is connected, without loss of generali
ty we may suppose that BlnB2±0. Let x0eBxnB2. Then f(x0)^b and there is 
a sequence xn eBu n = \,2, ... such that xn —>x0. From the sequence {/(*„)} take 

a convergent subsequence {f(xnJ}. Then y = lim f(xnk)^a. In this way C0(f, x0) 

contains the point f(x0) ^ 1?, as well as the point y ^ a, which contradicts to the facts 
that C0(f, x0) is a closed interval and C0(f, x0) n (a, 6) = 0. Thus A=I. 

Let now y e I . Then for each « = 1, 2, ... there are I „ G B and y„ e Co(/ , xn) n 
(y — l / « , y + l /« ) . Since £ is compact by assumption we may suppose without loss 

of generality that the sequence {xn} is convergent. Let x0=lim xn. Then x0eB. 
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Further for each n there must exist zn eO(xn, \/n)nB such that f(zn) e (y — \/n, 
y -\-\ln). Hence zn—>x0, f(zn)-+y and therefore ye A. Thus A = A =1. 

3) --> 1). Let H e 38. We have to show that f(B) = I. Let y e I. Then by 3) there 
is an x eB such that yeC0(f,x), Hence for each e >0 there is an z eB such that 
f(z) e (y-s, y + £). 

Since the base of open spheres in En does not have the (*) property, this 
proposition cannot be applied to this case. However, a similar assertion for this 
special case was proved in [7]. 

Proposition 4. Let m be a base of X. Then <£0(38)cz^0(38). 
Proof. Let fe ^0(38), let P, be the projection ofXxEx onto Ex and let B e 38. 

Clearly Px(f/B) cz Px(f/B) cz Px(f/B). Since Px(f/B) = f(B) and since f/B is 

connected, f(B) is connected. Thus feQ)0(ffi). 
Our main result is the following 

Theorem 1. Let the base 38 of Xhave the (*) property. Then <2)0(2ft) = ^0(38). 
Proof. By Proposition 4 it is enough to show that ^0(38)c=cg0(38). Let 

/ e ^ 0 ( 3 8 ) and suppose that f <k%0(M). Then there is a Be38 such that f/B 
= A x uA 2 , where Ax±0 + A2, and AxnA2 = AxnA2 = 0. Put Bx = {xeB, 
(x,f(x)) e Ax} a n d £ 2 = {xeB, (x, f(x))eA2}. 

Clearly B=BxuB2, and Bx±0±B2 (Bx = 0 => f/B czA2 => J/BczA2 =-> A , = 
0). Since B is connected, without loss of generality we may suppose that there is 
a point x0eBxnB2. But then (x0, f(x0))eA2 and there is a sequence xn eBx,n = 1, 
2, ... such that JC„—>JC0. Let {xnk} be such a subsequence of {xn} that the sequence 

{f(xnJ} is convergent and put y = lim/(x„J. Then yGCo(/", x0). Since ^ e B i for 

each k = l , 2 , ..., (xnk, f(xnk))e Ax, and therefore lim (xnk, f(xnk) = (x0, y) e 
& — • « 

AX = AX. Hence y±f(x0) (AxnA2 = 0). 
Since the base 38 has the (*) property (min (f(x0), y), max (f(x0), y)) c: 

Co(/, *o) by Proposition 2, hence G = {(x0, v ) : VG (min (f(x0), y), 

max (/(x0),y))}cz/ZB = A 1 uA 2 . 
Since G n A ! - ^ 0 - ^ G n A 2 , and since G is connected, Ai and A2 cannot be 

separated, a contradiction. The theorem is proved. 

R e m a r k . If X = Ex and 38 is the base of open intervals in Ex, then clearly 38 has 
the (*) property, hence S0(38) = <g0(38). But then %(38) n 38x = <£0(38) n 38„ 
where 38! is the first Baire class. Hence we have the analog of the Kuratow-
ski—Sierpinski theorem, which asserts that S>(38) n 38! = <£(38)n38i. 
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From results of [5] and [6] it follows that 3)(2fc)n2fcl = 30(m)n2fcx. Hence we 
have the following 

Corollary. Let X = EX and let di be the base of all open intervals inEx. Then 

3(2&)n®1 = 30(m)n^x = c€(^)nml = c€0(m)n®l . 

In this real case also clearly 3>0(2&) = 3)0 and %0(2&) = c&0, hence 30 = %o by 
Theorem 1. The following simple example shows that for X = E2 this is not true. 

E x a m p l e 2. Define / : E2-^EX as follows: f(x, y) = cos x for J C ^ O , f(x, y) 
= sin IIx for J C > 0 . Clearly fe3)0n^l, but f i^0 (for example, the set C 

= {(*>y) : * > 0 , y=s in l / j c} u {(0,0)} is connected, hower fIC is not 
connected. 

The following theorem is concerned with the relationships between the classes 
2>0(33) and 3)0 and <g0(33) and %0 in general. 

Theorem 2. Let fe3)0(2ft) (fe^0(m)) be such that C0(f, x) cz f(C) for each 
non-degenerated connected subset CczX, with x e C. Then fe 3)0(fe ^o). 

We omit the proof of this theorem, since it is very similar to the proof of 
Theorem 2.4. from [4], which gives a sufficient condition that a function fe 3(2R) 
maps each connected subset into a connected subset. 

Let 'A denote the class of all functions / : X - > £ , for which C0(f, x) cz / (C) for 
each non-degenerated connected CczX and each xeC. Then from Theorems 1 
and 2 we immediately have the next 

Corollary. Let the base 2fi of X have the (*) property. Then 3)0(2ft)n4 
= ^0(®£)n.4 = 30n.4 = <€0n .4. 

Finally we give an example of a function / e 3)0(2d) such that / i. 3)0. This example 

shows that the condition C0(f, x) cz f(C) from Theorem 2 cannot be omitted. 

E x a m p l e 3. Let X = E2 and let 39 be the base of open intervals in E2. Let 
further gr. Ei—>Ei be a function which maps each non degenerated interval 
onto Ex. Define / : E2-+Ei as follows: f(x, y) = q>(x)) if y = 0, and f(x, y) = x if 
y^O. Then it is easy to see that fe3)0(ffl) (even fe3(ffl)). 

Take JC0 SO that q)(x0) =£ JC0. Then C = {(x0, y): ye (0, l ) } i s a non-degenerated 
connected subset of E2, but / ( C ) = {x0} u {(p(x0)}, hence f(C) is not connected. 
Thus f£D0. Since for the point (JC0, 0 ) e C we have C0(f, (JC0, 0)) = £ „ the 

assumption C0(/, x) cz f(C) from Theorem 2 is really not satisfied. 
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ОБ ОБОБЩЕННЫХ ФУНКЦИЯХ: 

ДАРБУ И СО СВЯЗНЫМ ГРАФИКОМ 

Яна Ф а р к о в а 

Р е з ю м е 

В этой статье вводятся и рассматриваются некоторые классы обобщенных функций: Дарбу 

и со связным графиком. Эти функции определены на метрическом пространстве. Свойство Дарбу 

и связность графика относятся к некоторой базе и кроме того понимаются в смысле Радаковича. 
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