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Math. Slovaca 29,1979, No. 3 

ON THE ASYMPTOTIC BEHAVIOUR 
OF A SOLUTION OF A DIFFERENTIAL EQUATION 

IN A HILBERT SPACE 

IGOR BOCK 

1. Introduction 

We shall be dealing with the initial value problem 

(1.1) 
. • ч d и л . . d м * , v /., ч 

Ao(0 ^ г + ...+Am-,(t)— + Am(t)u =f(t) 

(1.2) 
ďu 
átr = Ur, r = 0, 1, ..., m — 1 

with the abstract functions u:(R + ^>X), f:(R + —>X*), the operator functions 
Ar(.): (R+-*L(X, X*)) and the elements ur eX, where R + = [0, oo),X is a Hilbert 
space, X* is a dual space to X and L(X, X*) is a space of all linear bounded 
operators mapping X into X*. 

We shall analyse the behaviour of a solution of (1.1), (1.2) for t—> oo. Due to the 
results obtained in this paper the solution behaves in the same way as the deflection 
of a viscoelastic plate made of aging material. These results generalize the results of 
paper [1], where the problem (1.1), (1.2) with the stationary operator functions 
Ar(t) = Ar was considered. 

First we shall introduce some results from the theory of differential equations in 
a Banach space proved in [3]. . 

Let X be a complex Banach space, R+~=[0, oo). We denote by C(R+, X) the 
space of all continuous functions mapping R + into X and by C(m)(R +, X) the space 
of all m -times continuously differentiable functions mapping I? + into X. 

Consider the initial value problem for the differential equation in the space X 

(1.3) 

(1.4) 

™ A ( 0 И + / ( 0 . 

u (0) = Иo 

tєR + 
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Theorem 1.1 ([3], HI. 1.2). Let f e C(R +, X) , A (•) e C(R +,L(X, X)), u0 e X. 
Then there exists a unique solution u e C(1)(R +, X) of the problem (1.3), (1.4). 

A solution u of the problem (1.3), (1.4) can be expressed with the help of 
a solution UeC(1)(R+, L(X, X)) of the homogeneous operator differential equa
tion in the space L (X, X) 

(1.5) ^~ = A<<t)U 

(1.6) (7(0) = I (the identical operator) 

There exists for each t eR+ the inverse operator U~\t). The operator function 
V(.) is a solution of the problem 

dV (1-7) -£=-VA(t) 

(1-8) V(0) = J 

A solution u of (1.3), (1.4) can be expressed in the form 

u(t)=U(t)u0+ í U(t,r)f(r)dr, 
Jo (1.9) 

where 

(1.10) U(t, T)=U(t)U~\T). 

The following theorem plays an important role in our further considerations of 
the asymptotic behaviour of a solution of the problem (1.1), (1.2). 

Theorem 1.2 ([3], III. 6.3). Let A(.)eC(R+, L(X,X)), A~eL(X,X), 

lim | |A(0-Aoo| | = 0. R e A < - v 0 < 0 for all X ecx(Aoo), where o(A00) is the spec-
t—*oo 

trum of the operator Ac, || • || is the norm in the space L(X, X). 
Then there exist such constants v>0, N depending only on A (t) that 

(1.11) \\U(t,T)\\^Ne-v('-T\ Vt^T,VreR + 

2.The existence and the uniqueness of a solution 

Let X be a complex Hilbert space with the scalar product (.,.) and the norm || • || 
and X* with the norm | | | | - the antidual space of all linear bounded functional 
over X. 

We formulate a theorem of the existence and the uniqueness of a solution of the 
problem (1.1), (1.2) 
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Theorem 2.1. Let feC(R+,X*), At(.)e C(R+, L(X, X*)), i = 0 , 1, ...,m; 
ureX,r = 0, 1, ..., m — 1. If there exists such a real positive and continuous on R + 

function a(t) that 
(2.1) a ( 0 l l * | | 2 ^ I K A o ( 0 * , * > , VxeX,teR + , 

then there exits a unique solution u e C(m)(R+, X) of the problem (1.1), (1.2). 

Proof. Due to (2.1) the operators A(t) and A(t)* (the adjoint operator to 
A ( 0 ) satisfy the inequalities 

a(OH*N l|A(Ox||* 
(2.2) 

a ( O H * N | | A ( 0 * * | | * , VxeX,teR + 

Using (2.2) and the theorem on the solvalibility of the operator equations ([6], 
VII. 5) we obtain that there exists the inverse operator A0~

1(t)eL(X*, X) 
satisfying 

(2.3) l l A o ' t O l k ^ x ^ a W " 1 , VteR + , 

where the function a(t)'1 is continuous on R+. Using the relation 

Ao\t)-Ao\to) = Ao\to)(Ao(to)-Ao(t))Ao\t) 

we can verify easily that the operator-function A0~*(.) is continuous in each point 
t0eR+ and hence 

(2.4) Ao\.)eC(R+,L(X*,X)). 

Consider the initial value problem in the Hilbert product space x = [X]m 

^ = s*(t)u+F(t) 

(2.6) u(0) = uo 

with the operator function sd(.):(R+->L(x, x)), the function F(.):(R+—>x) and 
the element u0ex defined by 

(2.7) Җt) = 

(2.8) F ( 0 = (0,0, ..., A o ' ( 0 / ( 0 ) T , 

( 2 . 9 ) Uo = («o, Mi, . . . , u m - , ) T 

Using (2.4) we obtain JJ/(.) e C(R +, L(x, * , ) ) , F(.) e C(K +, x). There exists, due to 
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Theorem 1.1, a unique solution u e C1(R +, x) of (2.5), (2.6) which has the form 

(2.10) u(t) = (u(t), u'(t), ..., W
( m-1 }(0)T . 

The function u eC(m)(R+, X) is then a unique solution of the problem (1.1), (1.2). 

3. On the asymptotic behaviour of a solution 

Using the result of Theorem 1.2 we shall investigate the asymptotic behaviour of 
a solution of the problem (1.1), (1.2). 

Theorem 3.1. Assume that the assumptions of Theorem 2.1 are fulfilled. 
Assume, moreover, that there exist such a constant a0>0 and the operators 
AtGL(X,X*), i = 0 , 1, . . . ,m, that 

(3.1) «O||JC||2^ \(A0(t)x,x)\, VxeX,teR + , 

(3 .2) lim | | A I ( t ) ~ A I , o o | | = 0 , i = 0 , 1, ..., m 

f_.oo 

and the polynomial operator 

(3.3) D(A) = AmA0,oo+...+AAm-1,oo + Am,Oo; A e C 
possesses the inverse operator D(X)~l eL(X*, X) for all A eC with Re A ̂ 0 . 

Then the estimate 
m —1 m —1 pt 

(3.4) 2 \\um(t)\\G\Me-«{ J) | k | | + e1/(T)| |* dT) 
i=0 V i=0 JO ' 

of a solution ueC(m)(R+,X) of (1.1), (1.2) holds with the constants M, v > 0 
depending only on At(t), i = 0, 1, ..., m. 

If there exists such a functional / x e X * , that 

(3.5) lim | | /(0-/coll* = 0, 
f_»>oo 

then 
m - l 

(3.6) lim | | ( | | M ( 0 - A - : - / - | | . + 2 ll"(,)(0ll) = 0 
' - •oo i = 0 

Proof. Consider the problem (1.1), (1.2) as the problem (2.5), (2.6) in the 
space x = Pf]m- Using (3.1), (3.2) we can see that there exists the inverse operator 
Ao,1oceL(X*,X) satisfying the relation 

(3.7) HAo/ooll^ao1 
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Using the relations (3.1), (3.7) we obtain 

(3.8) HAo^O-Ao/ooll HlAo.^Ao,oo-AotOMo^Olh 

^ao2||A0,oo-Ao(OH, VteR + 

and combining with (3.2) we arrive at 

(3.9) lim HAo^O-Ao/ool^O 
f_>oo 

Let us define the operator sdo* e Of, $f) by 

(3.10) лř„= 1 

f°> 
o, 

I, 
0, 

0, 
I, 

..., 0 

..., 0 
(3.10) лř„= 1 

i o, 
V -AÕ: 

1 л 
oo-rт. m, oo, 

o, 
-AÕ: »Am_, 

o, 
l , o o , . . . , 

..., I 
- Aõ.'« Ai, 

Combining (2.7), (3.2), (3.8), (3.9) we obtain 

(3.11) lim |M(0-^~| |L ( X ,Z ) = 0. 
r_».oo 

We apply now the results of Theorem 1.2. We must therefore find such a number 
v 0 > 0 that 

(3.12) R e A < - v 0 , V A e a W . 

It can be verified easily that A e a(sd^) if and only if 0 e a(D(A)), which means that 
there does not exist the inverse operator D(A) - 1 . Using the assumption (3.3) we 
obtain that 

(3.13) R e A < 0 , \/Xea(s400) 

The set o(sdoo) is closed in the complex plane ([6], VIII. 2). Then there must exist 
such v 0 > 0 that (3.12) holds. Otherwise there exists such a sequence A„ eo(s4OD) 

that lim A„ =A0, Re Ao = 0, A0ea(^oo), which is in contradiction to (3.13). 
r—»oo 

We can now use Theorem 1.2. Combining (1.9), (1.11), (2.5), (2.6) we obtain 

(3.14) ||M(Oll^^""(ll"o|| + j Jo |F(T) | |dT) , VteR + 

Using (2.8), (2.9), (2.10), (3.1) we obtain the estimate (3.4) with the constants M, 
v > 0 depending only on A,(t), i = 0 , 1, ..., m. 

297 



It remains to verify the second part of the theorem. Let /oo be such a functional 
from X* that (3.5) holds. We express a solution u of the problem (1.1), (1.2) in the 
form 

(3.15) u(0 = ij(0 + A ^ / o o . 

The operator Am\oo eL(X*, X) exists, because D(0) = AmOo. A function 
v e C(m)(R+, X) is a solution of the initial value problem 

m %rn—i 

i = o Q f 

= vІ9 / = 0, 1, ..., m — 1 
f = 0 

(3A6) 
d'v 

d7 

with Vi e X and 

(3.17) g(t)=f(t)-Am(t)Am\4o0. 

Due to the first part of the theorem a function v satisfies 
m-\ m-\ r-t 

(3.18) 2 \\vu\t)\\^Me-( 2 | k | | + e l 0 ( t - ) | | * d r ) . 
t = 0 V j = 0 J o ' 

The relations (3.2), (3.5), (3.17) imply 

(3.19) lim||flf(0ll* = 0. 
r_,.oo 

If 

m-\ 

(3.20) lim 211^(011 = 0, 
/_^oo i = 0 

then the conclusion of the theorem follows from (3.15). Considering (3.18) we see 
that it suffices to verify 

/ ; 
(3.21) l ime" v ' e | | 0 ( T ) | | * dr = 0. 

r^oo J o 

If f eVT||a(r)||*dr<°o, then (3.21) follows immediatly. If lim f eVT||a(r)||* dr = 
Jo r-+°o Jo 

oo, then (3.21) follows from (3.19) after using the L'Hospital rule and the proof is 
complete. 

There arise difficulties with verifying the assumption about the operator D (A) by 
applying Theorem 3.1. The following corollaries show that under some conditions 
the polynomial operator F>(A) defined in (3.3) satisfies the assumption of 
Theorem 3.3. We shall be dealing with the problem of the first and the second 
order. 
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Corollary 3.1. (m = 1). Assume that the operators Aif00eL(X, X*), i = 0, 1 
satisfy the assumptions 

(3.22) (A0,ooJC,y) = (A 0 ooy,Jc) , Vx,yeX, 

(3.23) 0^ (A 0 ,OOJC,JC) , V J C E X , 

(3.24) a , | | j c | | 2 ^ R e (A ,,ooJC, JC) , a , > 0 , V J C E X . 

Then the operator 

(3.25) D(A) = AA0,oo + A,,oo 

possesses the inverse operator D(X)~l for all X eC with Re A 5*0. 

Proof. Using (3.22) we obtain 

(3.26) Re (D(A) j t : , Jc )=ReA(A 0 ,ooJC,Jc)+Re (A-.o-Jt, JC) . 

Considering (3.23), (3.24) we arrive at 

(3.27) Re (D(A)jc,jc)^a,| | jc| |2 , A eC, Re A ^ 0 , VJC e X . 

The last inequality implies the existence of the inverse operator D(A) - 1 for all A e C 
with Re A ^ 0 and the proof is complete. 

Corollary 3.2. (m =2). Assume that the operators Aiy00eL(X, X*), i = 0, 1, 2 
satisfy the next assumptions 

(3.28) (Ay,ooJC,y) = (Ay,ooy,Jc), ; = 0 , 2, VJC, y eX, 

(3.29) 0 ^ ( A 0 , O O J C , J C ) , V J C E X , 

(3.30) a , | | j c | | 2 ^ R e ( A - .«*, JC) , a , > 0 , V j t e X , 

(3.31) a2 | | jc | |2^(A2 ,ooJC,Jc), a 2 > 0 , V * e X . 

Then the operator 

(3.32) D(A) = A2A0,oo + AA,,oo + A2,oo 

possesses the inverse operator D(A) - 1 for all X eC with Re A ^-0. 

Proof. Assume first that A = 0 . Then D(A) = D(0) = A2 ,». There exists due to 
(3.31) the inverse operator A~1

oo = D(0)~1. 
Let A^0 , R e A ^ O . Consider the operator T(A) = A_1D(A). T(A) can be 

expressed in the form 

A 
T(A ) = AA o, oo + A , , oo + 7772 A 2.00, A T-= 0 

|A| 

With the help of (3.28) we obtain 
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(3.34) Re (T(A)jc,x)=ReA(A 0 .ocx ,Jc)+Re (A, , 0 0 x ,x) + 

Re A + TT|2~ (A2,oox,x), A ^ O , x e X 
|A| 

Using (3.29), (3.30) we obtain the inequality 

(3.35) Re ( T ( A ) j c , x ) ^ a , | | x | | 2 , V x e X , A e C , R e A ^ 0 , A ^ 0 , 

which implies the existence of the operator T(A) \ Then, however, there exists the 
inverse operator D(A) - 1 = A ^ ( A ) - 1 for all A^O with Re A ^ 0 and the proof is 
complete. 

Remark 3.1. The previous results can be applied to the case of the real Hilbert 
space X, too. We can extend the space X onto the complex Hilbert space 
X = {x = {x\,x2} eXxX) with the scalar product [x,y] = (x\, y.) + (x2,y2) 
+ i((x2,yx) — (x\,y2)). The operator A eL(X, X*) can be extended onto the 
operator A eL(X, X*) by (Ax,y) = (Ax,,yi) + (Ax2, y2) + i((Ax,, y2) 
- <Ax 2,y,». 

4. Bending of viscoelastic plates with aging 

The previous theory can be applied to the initial boundary value problem, which 
expresses a bending of a viscoelastic plate made of aging material with a short 
memory ([5], IV.). We suppose, that the central surface of the plate is the bounded 
region QcE2 with the Lipschitz boundary dQ (def. [4]). We assume that 
dQ = FiuF2, Fi nF2 = 0. A plate is clamped on rx and simply supported on F2. The 
case Fi = dQ, or F2 = 3Q is always possible. The bending u(x\, x2, t) of the plate is 
a solution of the initial boundary value problem 

m %m—r 

(4.1) 2Kiy*/(0 -rm=-r u,l}kl = f(xu x2, t), (xu x2,t)eQxR + 

r=0 Qt 

(4.2) dru 
áť = ur, r = 0, 1, ..., m — 1 

ř = 0 

(4.3) w = 0 on BQxR* 

(4.4) ^-- = 0 on F,x,R + 

dn 
m _,m—r 

(4.5) M(t)u = ^Kuki(t)—^-ru,i} cos (n,xk) cos (n ,x , ) = 0 
r = 0 Q l 

on Г2xR + . 
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We denote by n the exterior normal to dQ. The above problem with constant 
3 4 

coefficients is investigated in [21. We use the notation u,iiki = -—-—-—-—, i, j , k, 
dXidXjdXkdx* 

I e {1, 2}. Summation over repeated subscripts i, j , k, I is implied. We assume that 
the coefficients K%k)(t) are symmetric 

(4.6) Kfkl(t) = KS(t) = Kk%(t), VteR + , 

continuous on R+ and uniformly positive definite, i.e. 

(4.7) K&iOEneuzzCrEijEij, cr>0, 

r = 0, 1, ..., m, {eii}eEA, £« = £», teR + 

We introduce a weak solution of the problem (4.1)—(4.5). Let H2(Q) be the 
Sobolev space of all functions from the space L2(Q), whose generalized derivatives 
up to the 2-nd order belong to L2(Q). The scalar product in H2(Q) is defined by 

(4.8) (u,v)2= Y f D'uD'v dQ 

gl'l 

{D'u=3~WdZr ' = <'•»''->• l''l=«'+'-)-

We denote by W(Q) the space of all functions from H2(Q) which satisfy the 
essential (or geometrical) boundary conditions (4.3), (4.4) in the sense of traces 
(def. [4]). It can be verified with the help of the Fridrichs and Poincarre inequalities 
([4]), that W(Q) is a Hilbert space with the scalar product 

(4.9) (u, v)= y f D'w Dv dQ 

and the norm 

(4.10) ||M|| = ((gJo(D'«)2d.Q) , 

which is equivalent to the original norm in the space H2(Q). Let us denote by 
W(Q)* the space dual to W(Q). We define now a weak solution of the problem 
(4.1—(4.5). 

Definition 4.1. Let f e C(R+, W(Q)*), ut e W(Q), i = 0, 1, ..., m - 1, 
K\;k)(.) e C(R+), r = 0,l, ..., m ; i, j , k,le{l,2}.A function u e C(m)(R+, W(Q)), 
which is for each h e W(Q) a solution of the initial value problem 

(4.11) J f K\;k\^ru,ij(t)h,kldQ = (f(t),h) 

dj/l 
dtr\ 

is a weak solution of the problem (4.1)—(4.5). 

(4.12) -т-7 =ur, r = 0, 1, ...,m-l, 
Uí | / = o 
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If we define the operators Ar(t) by 

(Ar(t)u, h)=[ KJ3(0",«A,H d£2, 
Ja (4.13) 

u,heW(ü), teR+, r = Q,í,...,m, 

then the operators Ar(t) (extended to Ar(t) according to Remark 3.1) satisfy all 
the assumptions of Theorem 2.1 with X=W(Q), X* = W(Q)* and hence there 
exists a unique weak solution of the problem (4.1)—(4.5). 

If lim K$(t) = K-;J, r = 0, 1, ..., m ; lim ||/(t) - /_!!*= 0, U e W(Q)*, then the 

assumptions of Corollaries 3,1, 3.2 are fulfilled and hence a weak solution u of 
(4.1)—(4.5) satisfies in the cases m = 1, 2 the relation 

(4A4) lim | |M(0-WO- | | = 0 , 

where u^e W(Q) is a weak solution of the corresponding elastic problem, i.e. 

(4.15) f K^ru,I//z,wdO = (/00,/i), VheW(Q). 
Jn 

T h i s result c o r r e s p o n d s w i t h the phys i ca l e x p e r i e n c e . 
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АСИМПТОТИЧЕСКОЕ ПОВЕДЕНИЕ РЕШЕНИЯ ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ 

В ПРОСТРАНСТВЕ ГИЬБЕРТА 

Игорь Бок 

Резюме 

В этой работе изучается начальная задача (1.1), (1.2) в пространстве Гильберта X с оператор
ными функциами Аг(.) е С(Д+, Ь(Х, X*). Если оператор Л0 коэрцивный для любого / еК+, то 
для любой функции /еС(К+, X*) и для любых элементов игеХ существует единственное 
решение задачи (1.1), (1.2). Если выполнены некоторые предположения и если 

}ип||Дг(0-Аг,-||=}ш1||/(0-/-11* = 0, то }1т||1|(0-А«!-/-||* = 0. 

Полученные результаты используются для решения начально краевых задач, решения которых 
определяют изгибы вязкоупругих плит со свойствами зависящими от времени. 
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