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Math. Slovaca 30,1980, No. 2,139—150 

ON STATISTICALLY CONVERGENT SEQUENCES 
OF REAL NUMBERS 

T. SALAT 

The notion of the statistical convergence of sequences of real numbers was 
introduced in papers [1] and [5]. In the present paper we shall show that the set of 
all bounded statistically convergent sequences of real numbers is a nowhere dense 
subset of the linear normed space m (with the sup-norm) of all bounded sequences 
of real numbers and the set of all statistically convergent sequences of real numbers 
is a dense subset of the first Baire category in the Frechet space s. 

1. Introduction 

In this part of the paper we shall introduce some definitions, notations and two 
auxiliary results. 

If AcziV={l, 2, ..., n, ...} then we put A(n)= ^ 1- ^ l n e r e exists 
a^n, ae.A 

lim ——-, it will be called the asymptotic density of the set A and will be denoted 
n-»«> n 

by 5(A). Obviously we have 5(A) = 0 provided that A is a finite set of positive 
integers. 

Definition 1.1. The sequence x = {£*}r=i of real numbers is said to converge 
statistically to the real number | (this fact will be denoted by 

(1) lim stat & = £ 
k-*<*> 

or briefly x >§) // for each e>0 we have 6(Ae) = 0, where Ae = {neN; 
stat 

Ik-SlSe}. 
In paper [5] instead of (1) the notation D-lim£fc = 5 is used and the statistical 

convergence is called the D-convergence. 
It is easy to see that if (1) holds, then the number £ is determined uniquely. 

If lim §* = §, then (1) holds, too, since the set Ae is in this case finite for each 
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e >0. The converse is not true (see example 1,1). Thus the statistical convergence 
is a natural generalization of the usual convergence of sequences. 

Let us further observe that the condition b(Ae) = 0 is equivalent to the condition 
b(A'e) = 1, where 

Ae = {neN;\%n-Z\<e}( = N-A£). 

The sequence which converges statistically need not be bounded. This fact can be 
seen from the following 

Example 1,1. It is easy to see that the set 

A = {l2 ,22 , . . . ,n2 , . . .} 

has the asymptotic density 0. Since the set of all rational numbers is countable, 
there exists such a sequence {rj/-}r=i that the set of all terms of this sequence 

coincides with the set of all rational numbers. Put r\n =— for n± j2 (/= 1, 2, ...). 
n 

Then lim stat r\k = 0 and simultaneously each real number is a limit point of the 

sequence {r\k}k=lm 

The analysis of the structure of the sequence {r]k}k=1 from the previous example 
suggests the conjecture that the structure of each statistically convergent sequence 
is analogous to the structure of this sequence, i.e. if (1) holds, then there exists such 

a s e t X c N that b(K) = 1 and lim t;k = | (lim £fc = <f means that for each e>0 
k-*oo \fc—K» 
keK keK 

there exists such a k0 that for each k>k0y keK we have |£* -t;\<e). 
The following lemma is an affirmative solution of the mentioned conjecture. 

Lemma 1,1. Statement (1) holds if and only if there exists such a set 

K = {k1<k2<...<kn<...}czN 

that b(K) = 1 and lim &„ = £. 
n-*oo 

Proof. 1. If there exists a set with the mentioned properties and e is an arbitrary 
given positive number, then we can choose such a number n0eN that for each 
n>n0 we have 

(2) l & , - 5 l < * . 

Put Ae = {neN; | § n - £ | ^ e } . Then from (2) we get 

Ae czN — {Ac„0+1, knQ+2, . . . / 

and on the right-hand side there is a set the asymptotic density of which is 0. 
Therefore 6(AC) = 0, hence (1) holds. 
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2. Let (1) hold. Put 

K, = { n G N ; | £ , - § | < f } 0 = L 2 , . . . ) . 

Then according to definition 1,1 we have b(K,)= 1 (j = l, 2,...). 
It is evident from the definition of K, (j= 1, 2,...) that 

(3) Klz>K2=>...=>Kiz>Ki+1=>..., 

(3') 6 ( ^ ) = 1 0 = L 2 , . . . ) . 

Let us choose an arbitrary number v1eK1. According to (3') there exists such 
1C (n\ 1 

av2>vl9 v2 eK2 that for each n ̂ v2 we have >^- Further, according to (3') 

there exists such a v3>v29 v3eK3 that for each n^v3 we have 3 > - a.s.0. 

Thus we can construct by induction such a sequence 

v1<v2<...<vi<... 

of positive integers that vi eK, (j = 1, 2, ...) and 

(4) *£0>Lzi 
n j 

for each rc^i;, (/ = 1> 2, ...). 
Let us construct the set K as follows: Each natural number of the interval 

(1, vt) belongs to K9 further, any natural number of the interval (vi9 vi+1) belongs 
to K if and only if it belongs to Kt (/ = -U 2, ...). 

According to (3), (4) for each n9 v,^n<vi+1 we get 

KW^KMu-l 

From this it is obvious that 6(JC) = 1. 

Let e >0. Choose a ; such that -<£. Let n^vi9 neK. Then there exists such 

a number l^j that Vi^n<vi+1. But then on the basis of the definition of K9 n e Kt, 
hence 

Thus !§„ - £ | <e for each n e K9 n^vi9 i.e. lim §* = §. 
Ac—>oo 

AceK 

The following result can be obtained (cf. [1], [5]) directly from the definition 1,1. 
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Lemma 1,2. If 

lim stat §* = a, lim stat rjk=b 

and c is a real number, then 

(i) lim stat (&+r/*) = a+ 6, 
Ac-»oo 

(ii) lim stat (c -%k) = ca. 
k-*°o 

It follows from lemma 1,2 that the set of all bounded statistically convergent 
sequences of real numbers is a linear subspace of the linear normed space m of all 

bounded sequences of real numbers (with the norm | | x | | = sup | § J , x = 
k-l, 2, .. 

{%k}k=iem). 

2. Bounded statistically convergent sequences of real numbers 

We denote by m 0 the set of all bounded statistically convergent sequences of real 
numbers. 

Theorem 2,1. The set m0 is a closed linear subspace of the linear normed space 
m. 

Proof. Let x(n)em0 (n = 1, 2, . . .) , jc(n)—>JC e m . We shall show that x em0. 
According to the assumption for each n there exists such a real number an that 

xin) >an (AT = 1 , 2 , . . . ) 
stat 

i.e. if j c < n ) = { | l n , r , then 
J*-i 

lim stat | i " ' = A„ (/i = 1,2,...). 

We shall prove that 
a) the sequence (of real numbers) {an}n=i converges to a real number a ; 

b) x >a (i.e. if x = {&}*=-- then lim stat | f c = a). 
stat k->°o 

From a), b) the assertion follows on account of Lemma 1,2. 
Proof of a). Since {jt(n)},7=i is a convergent sequence of elements from m, for 

each e > 0 there exists such a n0eN that for each /, n>n0v/e have 

„ ( / > _ *.(">.! (5) I I * 1 " - J Г Ч K ; ,£ 
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limlíP-
fc—°° 
kєAj 

= */ 

Иm Й">-
fc—»«> 
fceA„ 

= « n 

Further, according to Lemma 1,1 there exist such sets A,, A„, A,, A„cAT that 
S(A,) = 5(A„) = 1 and 

(6) 

(7) 

The set AjnAn is infinite since the asymptotic density of this set is equal to 1. 
Hence we can choose such a keAjC\An that we have (see (6), (7)): 

(8) \&~a,\<\, \^-an\<£-. 

According to (5) and (8) we get for each / , n>n0 

+ |^>-a„|<f + H = £. 
Since the sequence {ak}Z=x fulfils the Cauchy condition for convergence, it must 
converge to a real number a, hence 

(9) a = lima*. 
fc-»<» 

Proof of b). Let r\ > 0 . It suffices to prove that there exists such a set A czN that 
5(A) = 1 and for each keA the inequality \^k—a\<r\ holds (see Lemma 1,1). 

Since JC0)—>JC, there exists such a p e N that 

(10) | | * W - J C | | < 3 . 

The number p can be chosen in such a way that together with (10) also the 
inequality 

(ii) k-«l<? 
holds (see (9)). 

Since JC(P) >ap, there exist such a set A c:N that 5(A) = 1 and for each keA 
stat 

we have 

d2) i?r-«Pi<f. 

143 



Now according to (10), (11), (12) we get for each keA 

\^k-a\^k-^\ + \^-a„\ + 

+ k-a|<f + 3 + 3 = n. 

Hence b) follows. 
Using the previous theorem we can easily prove the following result on the 

structure of the set m0. 

Theorem 2,2. The set m0 is a nowhere dense set in m. 
Proof. It is a well-known fact that every closed linear subspace of an arbitrary 

linear normed space E, different from E, is a nowhere dense set in E (cf. [2], p. 37, 
Exercise 4; [3]). Hence on account of Theorem 2,1 it suffices to prove that m0i=m. 
But this is evident, since the sequence x = {(-1)* }£=i e m does not belong to m0. 

3. Statistically convergent sequences of real numbers 
and the space s 

Denote by s0 the set of all statistically convergent sequences of real numbers. In 
what follows s denotes the Frechet metric space of all real sequences with the 
metric g, 

( \ v- 1 %~T\k\ 

x = {£*}r=i e s, y = {rjfc}r=i e s. 

In this part of the paper we shall describe some fundamental properties and the 
structure of s0 in the space s. 

Theorem 3,1. (i) The set s0 is dense in the space s. 
(ii) The set s0 is a set of the first Bake category in the space s. 

Corollary. The set s-s0 (of all real sequences which are not statistically 
convergent) is a residual set (of the second Baire category) in the space s. 

For the proof of Theorem 3,1*) we shall use the following 

Lemma 3,1. Let gk (k = 1, 2, ...) be complex valued continuous functions on 
R=(—oo9 +oo). Let us suppose that there are two distinct complex numbers cu c2 

such that for each sufficiently large k we have cu c2egk(R). 

*) The author is indebted to Professor M. Novotny for his suggestion, which led to an improvement 
of the original version of the proof of this theorem. 
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Let (ank) be a triangular matrix with the following properties: 

(Pi) For each fixed k we have lim ank = 0; 
n-*o° 

(P2) lim i>„fc = l. 

Tften fhe set Si of all such x = {%k}Z=\ e s for which there exists a (finite) limit 
n 

lim T f l ^ f ^ ) is a set of the first Baire category in s. 
n-+°° * = i 

Proof. For * = {£*}r=iGSi we put 

fn(x)=JZankgk(£k) (n = l , 2 , . . .) , f(x) = \im fn(x). 
k=\ n->°° 

We shall prove that 
a) /. (n = 1, 2, ...) is a continuous function on s,; 
b) / is discontinuous at each point of sx. 
a) Let a = {ak}k=xesu x<J)= {%V}k=\€sx (j = 1, 2, . . . ) , jca)—>a. Since from the 

convergence in the space s the convergence "by coordinates" follows, for each 

fixed k we have lim ^ = ak. But then on account of the continuity of functions gk 

(£ = 1,2, ...) we get 

lim/„(jc0)) = l i m i a n ^ f c ( ^ ) ) = 
/ - » » /_oo k = l 

n n 

= ^ank \imgk(t;k
i)) = '^ankgk(ak) = fn(a). 

k=l /—» k=l 

Thus fn (n = 1, 2, ...) is continuous on st. 
b) Let b = {ft}r=i eSi. Denote by v such a number c, (i = 1 or 2) that differs 

from f(b). It suffices to prove that in each sphere S(b, d) = {x esi; g(b, x)<6} 
( 6 > 0 ) there exists such an element x = {£*}*=i that f(x) = v. 

Let (5>0. Choose a natural number m such that 2 2~*<<5. According to 
fc=m + l 

the assumption there exists such an m' that for each k>m' there exists such r\keR 
that gk(t]k) = v. Put m0 = max {m, m'} and define the sequence x = {§*}r=i in the 
following way: %k = ft for k^m0 and £fc = rj* for A: >m 0 . Then JC = {§* }r=i e s and 
by choice of m0 we get g(b, x)<6. Further for n >m0 we have 

/.(*) = E^(^(j3fc)-v))-hvX«nfc. 
k=i k=i 

Now from the properties (Pi), (P2) it follows at once that f(x) = lim fn(x) = v. 
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According to previous considerations the function / is in the first Baire class and 
is discontinuous at each point of su But it is a well-known fact that the set of 
discontinuity points of an arbitrary function of the first Baire class is a set of the 
first Baire category (cf. [6], p. 185). Hence sx is a set of the first Baire category in s, 
and so a set of the first Baire category in s, too. The proof is finished. 

R e m a r k . Every regular triangular matrix (ank) has the properties (Pi), (P2) from 
Lemma 3,1 (cf. [4], p. 8). The converse is not true. Putting e.g. 

_J_ _J_ 1_ 
^nl /— > -2n2 — , . . . , ann-2 /— , ann-1 — /— , ann — 1 

Vn Vn Vn Vn 
for n odd and 

_J_ _ J_ _J_ _ _ 1 
#nl — /— 9 Qn2— — , . . . , ann-3— — , ann-2- /— , 

Vn Vn Vn Vn 

1 
ann—\ i*nn _ 

for n even we get the triangular matrix with the properties (Pi), (P2), for which 
n 

Ekfcl-^ + ^C"^00)-
k = \ 

Hence this matrix is not regular. 
Proof of T h e o r e m 3,1. (i) If x = {^k}k=les0 and the sequence y = {t]k}k=\ of 

real numbers differs from x only in a finite number of terms, then evidently y e s0, 
too. From this statement (i) follows at once on the basis of the definition of the 
metric in s. 

(ii) For the proof of (ii) we shall use the following result from [5] (Theorem 4). 

Theorem A. Statement (1) holds if and only if for each real number t we have 

lim ± _>'**= e**. 

1 " 
Denote by s[ the set of all such x = {%k}k=i es for which the finite lim — y\e*k 

»-~n k=i 

exists. Putting in Lemma 3,1 

gk(t) = eu(k = 1,2, . . . ) , ank=-(k = l,2, ...,n\n = l,2, ...) 

we see that si is a set of the first Baire category in s. According to Theorem A we 
have s 0 c s l , hence s0 is a set of the first Baire category in s, too. The proof is 
finished. 
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In what follows denote by s* the set of all such x = {t=k}k=1es for which the 
sequence 

G 21*0" 
\n k=\ ) n=i 

is bounded. The set s* will be considered as a subspace of the space s. For § e R 

denote by s*(§) the set of all such x = {%k } k = l e s for which lim stat & = §. We shall 
fc—»oo 

show that s*(§) is a set of the second Borel class in the space s*. 

Theorem 3,2. The set s*(§) is an Fas-set in s*. 
For the proof of the theorem we shall use the following lemma. 

Lemma 3,2. The sequence x = {t;k}k=1es* converges statistically to the real 
number £ if and only if for each rational number t we have 

(13) l i m - i > l * * = e'*. 
n^°° n k=i 

Proof. 1) If (1) is true, then according to Theorem A (cf. [5]) the equality (13) 
holds for each real / and so for each rational number t. 

2) Let (13) hold for each rational number t. Let t0 be an arbitrary real number. 
We shall prove that 

(14) l i m - V e ' ^ = ^ . 
«—~ n k=i 

From this statement (1) follows according to Theorem A. 
For t G R put 

A-(/o,0 = i І e , л - - І ^ . 
n k=1 n fc= 

Since eiv* = cos v% 4- i sin v§ (v e R), we get 

1 JL 
| A „ ( t 0 , t ) | - S - X V(cosf 0& - cos*&)2 + (sinto?* - sin/&)2. 

W fc = i 

Using the mean value theorem we get 

(15) iA.(.-o,oi-s-^k-*.iii&|. 

By the assumption x = {^k}k=\ e s*. Hence there exists such a K > 0 that for each 
n = 1, 2, ... we have 

06) ^ i l&l-SIC. 
A l fc = l 
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It follows from (15), (16) that 

(17) \An(to,t)\z%y/2K\t-t0\. 

Further, we have 

(18) ^ i e ^ ^ i ^ + A . C o . O . 
n k=i n k=i 

From this we get 

\n ifti 
(19) 

i v p«<ftk _ pi'fi < II V f"e" - P"SI + 
- ^ =\n^C V 

+ \ei,s-e"°*\ + \An(t0,t)\. 

Let e > 0. According to the continuity of the function h (x) = e1** (x e R ) and (17) 
we can choose a rational number t such that 

(20) \eu*-e^\<£-, 

(20') |A.(fo,0l<f (n = l ,2, . . . ) . 

By our assumption there exists such an n0 that for each n>n0 the first summand on 

the right-h; 

from (19) 

the right-hand side of (19) is less than - . Then with respect to (20) and (20') we get 

I- T e l ' r ^ - e ' ^ | < f 
\n £A | 

for each n>n0. Hence (14) is valid. 
Proof of Theorem 3,2. Denote by Q the set of all rational numbers. From 

Lemma 3,2 we get 

(2i) » * g ) = n n u n #(*,/)> 
teQj=\ p = l n=p + \ 

where 

H(n,j) = \x = {&}:.les*; 1 ^ - ^ l - s l V 
l n k=\ I J ) 

It can be easily checked that the set H(n,j) (for each n,j) is closed in s*. But then 
the assertion of the theorem follows at once from (21). 
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Problems. From the definition of the set s* it follows that 

(22) s* = U»?, 
/ = -

where 

-T = {* = {&}:-.e»;V^i|§ t|g/l 0 = L2,...). 
I n " k=l J 

It can be easily checked that s* (/ = 1, 2, ...) is a closed set in s. This is a simple 
consequence of the fact that the convergence in the space s is equivalent to the 
convergence "by coordinates". Hence according to (22) the set s* is an Fa-set in s. 
Since the set s*(f) is an Fao-set in s* and s* is an Fa-set in s, the set s*(f) is an 
Fas-set in s. In connection with the foregoing fact the question arises whether the 

set s(<f) of all such x = {^k}k=i es, for which lim stat §fc = £ is an F^-set in s, too. 

Further, the following question remains open: Is the set s 0 c s a Borel set in s and if 
the answer is affirmative, in which Borel class is the set s0? 
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O CTATИCTИЧECKИ CXOДЯЩИXCЯ ПOCЛEДOBATEЛЬHOCTЯX 
ДEЙCTBИTEЛЬHЫX ЧИCEЛ 

T. Шaлaт 

Peзюмe 

Пocлeдoвaтeльнocть {a„}ñ=i дeйcтвитeльныx чиceл нaзывaeтcя cтaтиcтичecки cxoдящяяcя 
к чиcлy Ű, ecли для кaждoгo £ > 0 acимптoтичecкaя плoтнocть мнoжecтвa {n; \an— a|=е} 
pавняeтcя нyлю. B pабoтe пoказанo, чтo мнoжecтвo вcex cтатиcтичecки cxoдящиxcя пoc-
лeдoватeльнocтeй пpocтpанcтва вcex oфаничeнныx пocлeдoватeльнocтeй нигдe нe плoтнo, 
мнoжecтвo вcex cтатиcтичecки cxoдяu иxcя пocлeдoватeльнocтeй пpocтpанcтва Фpeшe s являетcяя 
мнoжecтвoм пepвoй катeгopии Бэpа. 
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