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ON A LEMMA OF G. CHOQUET 

BELOSLAV RIECAN 

0. Introduction. Let 01 be an algebra of subsets of a set ? , m b e a measure on 3#, 
m * be the outer measure induced by m. Then m * is continuous from below i.e. 

An c An+1(n = 1, 2, ...)^>m* (Q AH) = lim m*{AH). 

This fact has been used implicitly and in a more general form in many papers as 
a lemma. In this note we prove a general form of the lemma and then using it we 
present straight-forward proofs of some results appearing in literature. Hence the 
lemma seems to be useful for future applications, too. 

1. Theorem. LetHbe a lattice, X, YaH,Xbe a sublattice ofH,aneY(n = l, 
2, ...), an/a*) aeXuY. Let pi: XuY-»(-oo ? oo) satisfy the following con
ditions : 

(i) \i is non-decreasing. 
(ii) ii(x) + ix(y)^ii(xwy) + ii(xAy) for every x, y eX. 
(iii) (i\Xis continuous from below i.e. xn/x, xneX (n = 1, 2, ...), xeXimplies 

fi(xn)/ii(x). 
(iv) ju(y) = inf {^(x); y^xeX} for every y eY. 
(v) iu(a1)>-0°. 

(vi) Either a eX or X is monotonously upper o-complete (i.e. every non--
decreasing bounded sequence has the supremum) and there is x eXsuch that 
x^a. 

Then \i(an)/\i(a). 

Proof. Since//(an)^ju(a),wehavelim [i(an)^\i (a). Hence we can assume that 
n—*a° 

lim |u(tfn)<oo. Then to every £ > 0 there are bn eX, bn ̂ an such that 

£ 

fi(an) + ^n>fi(bn). 

*) an/a means that an ^an+1 (n = 1, 2,...) and a =sup an. 
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Put cn = \Jbi (n = I, 2, . . .) . Using (ii) it is easy to prove by induction that 
1 = 1 

(*) (i(an) + j:^>(i(cn) (n = l,2,...). 
i = l L 

Now we must distinguish between two cases. 
Let a e X. Then we can assume that bn ^ a (in the reverse case we could take 

bnAa). Hence an^bn^cn^a and therefore cn/a. Now (*) and (iii) 

give lim //(an) + E Sl im ii(cn) = fi(a). 
n—•<» n—•<» 

Let the second alternative in (vi) be satisfied. Then we can assume bn^x 

(n = \,2, . . . ) .Putc = sup cn = sup bn.Thenc eX, c IS a, hence by (*) and (iii) 
n n 

\i(a)1k\i(c) = lim \x(cn)^\\m \i(an) + £. 
n—*°° n—*°c 

2. Evidently the dual assertion regarding Theorem 1 holds too. 

Theorem. Ler H be a lattice, X, YczH, X be a sublattice of H, aneY 
(n = l,2, . . .) , an\a, aeXuY. Let ii: XuY—• ( - ° ° , °°) satisfy the following 
conditions: 

(i) \i is non-decreasing. 
(ii) ii(x) + fi(y)^[i(x Ay) + [i(x vy) for every x, y eX. 

(iii) [i\X is lower continuous, i.e. xn\x, xneX (n = 1, 2, . . .) , xeX implies 
li(xn)\ii(x). 

(iv) ^(y) = sup {/i(jc); y^x eX} for every y eY. 
(v) 1u(a1)<00-

(vi) Either a e X or X is monotonously lower o-complete (i.e. every non-increasing 
bounded sequence in Xhas the infimum) and there is x e Xsuch thatx S a. 

Then fi(an)\fi(a). 
3. Let B be a boundedly a-complete sublattice of a given lattice H. Let there 

exists to every xeH a beB such that b^x. Let J0: B—>( — oo, oo) satisfy the 
following conditions: 

(i) J0 is non-decreasing 
(ii) Jo(x) + J0(y)^Jo(xvy) + Jo(xAy) for every x, yeB. 

(iii) If xn/x, xneB, xeB, then J0(xn)/Jo(x). 
Define further for y eH 

J*(y) = mf{J0(x);y^xeB}. 

Now we can put X = B, Y = H, ii=J*. Evidently \.i \X = J0, hence all assumptions 
of Theorem 1 are satisfied by the second part of (vi). Therefore 
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yn/y, yneH, y eH^J*(yn)/J*(y). 

The last implication is the assertion of Lemma 1.4 of [3]. 
4. Let 91 be an algebra of subsets of a set E, m be a measure on 91. Denote by H 

the family of all subsets of E, by B ttye family of all sets of the form [J An, where 
' n = l 

An e 91 and define / 0 by the formula 

/ o ( Ů A „ ) = lirn/n ( Ů A ) . 

It is not difficult to prove that the definition is correct and that B and / 0 satisfy the 
assumptions of the assertion presented in 3. Therefore / * is upper continuous. But 
/ * is the outer measure induced by m. Hence we have obtained the result stated in 
the Introduction. 

5. In [4] M. Sabo starts with a sublattice A of a given lattice 5 and a mapping / : 
A—>R which is non-decreasing, satisfies the valuation identity J(a)-\-J(b) 
= J(avb) + J(aAb) and is lower continuous. Moreover to every xeS there 
exists an a e A with a^x.ln Theorem 2 of [4] a sequence (an)n=l of elements of A 
is given converging to a given element O eA, where a„ = 0 (n = 1, 2, ...) and 
/ ( O ) = 0. The theorem states that /(a„)->0. 

We show that the mentioned theorem is a corollary of Theorem 2. Put H = S, 

X = A, Y = A + = {xeS; 3bneA, bn/x) and pi(x) = lim J(bn) for xeY = 
n—><*> 

= XuY. If a„->0, an^0, then \Za{\0(n-><*), hence by Theorem 2 

\i (\Ja\\0. Further O^J(an) = ^(an)^fi (\/a.), and therefore /(a„)->0. 

(Here the first possibility in (vi) was satisfied, because O eA.) 
6. Another consequence of Theorem 2 in [4] is the following theorem 

(Theorem 4) : Let A , / satisfy the assumptions given in 5. Let A* = {xeS; 

3bneA, bn-*x},J*(x) = \im J(bn), x e A*. Then an\0, aneA* (n = \, 2, ...) 
n—*°° 

implies / * ( a „ ) \ 0 . 
To prove the statement put X = A~ = {xeS; 3bn eA, bn\x}, Y = A*, \i = / * 

(of course, X c y ) . Lemma 5 in [4] gives (iv), Lemma 6 gives (iii), (ii) is easy to 
prove. Hence Theorem 2 implies Sabo's theorem 4. 

7. Similar considerations have been used by E. Futas in [1]. He also starts with 
a sublattice A of a lattice H and / : A —>R satisfying the same assumptions as we 
have mentioned in 5. Only Futas's construction is different. He puts A 0 = {x; 
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3bn e A, bn/x}, Ji: Aa—>#, Ji(x) = lim J(bn). A very important Lemma 2.2.18 
n-*°° 

in [1] states that xn e ACT, * e A, JC„\X implies lim /I(JC„) = Ji(x). 
n—»<» 

This lemma follows from Theorem 2. It suffices to put X = A, Y = Aa,ix=Jl. 
8. Since Futas's lemma 2.2.19 is dual to the result mentioned above, it follows 

immediately from our Theorem 1. 
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Резюме 

Статья посвящена абстрактной подстановке того факта, что внешняя мера индуцированная 
мерой является непрерывной снизу. 
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