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COVERS OF DIGRAPHS

WILLIBALD DORFLER—FRANK HARARY—GUNTHER MALLE

1. Introduction

Covers of graphs and hypergraphs have been studied extensively, compare [1],
|2], [6] and their references. In this paper some of these results are shown to hold
also for an appropriate concept of covers of digraphs and further results are
obtained. As general references for digraphs we refer to [3] or [4, chapter 16].

There are several ways to define a digraph. We have chosen one which allows
multiple arcs and loops. This is cailed a “pseudodigraph” in [3] and a “net” in [4].

Definition 1. A digraph D is a quadruple (V, E, f, s) where V and E are disjoint
sets (possibly infinite) and f and s are mappings from E into V. The elements of V
are the vertices of D, the elements of E are the arcs of D ; for an arc E the vertex
fe is its first vertex and se is its second vertex. A loop is an arc e with fe =se.

A walk in a digraph D = (V, E, f, s) is an alternating sequence x,, €3, X1, €2, ...,
e., X, of vertices and arcs such that fe; =x;,_; and se; = x; fori =1, ..., n. A semiwalk
in D is an alternating sequence x,, €1, X1, €a, ..., €,, X, Of vertices and edges such
that either fe, = x;_,, se, = x; or fe, = x;, se, =x,_, fori =1, ..., n. Thus a single vertex
is considered as a trivial walk. In a closed walk (semiwalk), x,= x,. A digraph D is
called (weakly) connected or weak if for every pair x, y of vertices there is
a semiwalk with first vertex x and last vertex y ; D is called unilaterally connected
or unilateral if for every two vertices x, y there exists a walk from x to y or from y
to x; finally D is called strongly connected or strong if for every pair x, y of
vertices there exists a walk from x to y. Following [4], Co denotes the class of
digraphs which are not weak ; C, all weak digraphs which are not unilateral ; C; all
unilateral digraphs which are not strong; C; the strong digraphs. The classes C,
0<i=<3, are called connectivity classes. _

The maximal weak subgraphs of a digraph D are called the (weak) components
of D ; the maximal strong subgraphs are called the strong components of D. The
components (strong components) of a digraph determine a partition of the vertex
set of D.

Definition 2. Let D, = (V,, E,, f., s:), i =1, 2, be two digraphs. A homomorphism
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h: D,—D, is a mapping h: V,UE, — V,UE, with hv,cV,, hE,cE, and
h(fe)=f(he), h(se)=s(he).

Definition 3. A digraph D=(V, E, f, §) is called a cover (with covering
projection p) of the weak digraph D =(V, E, f, s) if there exists a homomorphism
p of D onto D with the following property:

Property (C). For every x' e p 'x, x € V, the restriction of p to {¢' e E|fe’ =x"}
is a bijection onto {e e E|fe=x} and the restriction of p to {e' € E|se’' =x'} is
a bijection onto {e € E|se =x}.

Example. Let D=(V, E, f, §) where V=Z, E=Z x {0} and f(z,0)=z2,
§(z,0)=z+1forall (z, 0) e E. Let further D =(V, E, f, s) where V=2Z,, i.e., the
set of residue classes of Z modulo 3, E =Z, X% {0}, f([z], 0)=[z] and s([z], 0)=
=[z +1] for all ([z], 0)eE. Finally define p: D—D by pz : =[z] for all zeV
and p(z, 0) : =([z], 0) for all (z, 0)e E. Then p is a covering projection from D
onto D. In Figure 1 a picture of this situation is shown.

(]
-1
o, @ @p [ (o [)
([21,0)
Fig. 1

In general in such figures we omit the labels and assume that vertices (arcs) of D
drawn above a vertex x (arc e) of D are mapped by p onto x(e).
In the following we keep the notations introduced in Definition 3.

Proposition 1. Let D be a cover of the weak digraph D with covering projection
p. Then all cardinalities |p~'x|, xe V, and |p~'e|, e € E, are equal.
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Proof. Let e € E be arbitrary and x =fe, y =se. From Property (C) it follows
that for every x’ € p ~'x there exists exactly one e’ € p ~'e with fe’ =x'. This implies
|p~'x|=|p~'e|; similarly we have |p 'y| = |p ~'e| and therefore [p~'x|=|p~'y|. A
simple inductive argument using the weak connectedness of D yields the asser-
tion. O

The common cardinality of the fibres p~'x, x € V, and p ‘e, e € E, is called the
multiplicity of the cover D of D.

It is possible to define covers of digraphs D € C, by applying Definition 3 to each
weak component of D and adding the condition that all fibres p "'x, x € V, and
p ‘e, e € E have the same cardinality. This means that for each component we have
the same multiplicity of the respective cover.

2. Connectivity classes

e

We consider the question: for which pairs (G, G), i, j=0, 1, 2., 3, of
connectivity classes does exist a cover p: D — D such that DeC, and DeC;?

Theorem 1. Let p: D — D be a covering projection and D € C;, D € C,. Then
i=j.

Proof. If W': x4, e}, x1, ..., e., x\ is a walk (semiwalk) in D, then the sequence
pW' : =W: px,, pei, pxi, ..., pe., px. is a walk (semiwalk) in D. O

The examples in Figures 2—11 show that in fact all ten combinations D € C,
D e G, with 0<i, j<3, i=j, can occur.

o © Din Co ~
D in Co
O—p—O0—a—0
o © Din Cg o——o—<— D in C4
Fig. 2 Fig. 3

In two of the examples (Fig. 9 and 10) the multiplicity of the cover D is infinite.
We show in the next theorem that this must be the case because these two
combinations of connectivity classes cannot occur for finite multiplicity. The proof
of the first lemma is omitted as it is immediate.

Lemma 1. If x, y € V belong to different strong components of D, then x' e p~'x
and y' e p~'y belong to different strong components of D. [
Remark. The converse statement is not true as is shown by the example in

Fig. 12.
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Lemma 2. Let p: D — D be a covering projection of finjte multiplicity and W : x,,
€1, X1, €2, ..., €, Xn @ closed~walk in D. Then for every xoe P'x, there exists
a unique closed walk W’ in D containing x, with pW' =W

ﬁ in Cq O———o0
D in Co
O——p—0
o—ap—o Din G
Fig. 4 Fig. 5
5 in C1 ~
Din Cp

>0 G T pin ¢
n 2

Fig. 6 _ Fig. 7
S ’//
D inCo DinCy
\\
. //
DinC .
N 3 > vinc,
. Fig. 8 Fig. 9

Proof. Choose an arbitrary xg€ p ~'x,. Let e be the unique arc in p ‘e, with
fe; =xoand let x{ =§ei; elet then e; be the unique arc in p ‘e, with fe, = x| and let
X; = $es. Proceed in this way until all arcs in the walk W have been used. Then
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a vertex x§ € p~'x, has been reached. If x§ = x; then take as W' the obtained walk
in D. Otherwise start again from x§ as above from x}. Since the multiplicity is finite
after a finite number of repetitions, one must reach xo and W’ is the resulting

walk. O
N B in C3
DinC, X

Dl.l'l C3

Fig. 10 Fig. 11

<>

v

Fig. 12

Remark. Since a strong digraph contains a closed walk which runs through all
vertices, Lemma 2 immediately implies that: If S is a strong component of D and
Scp™'S is a strong component of D, then pS=S§.

Lemma 3. Let p: D— D be a covering projection of finite multiplicity. If S is
a strong component of D and if S,, S, are two different strong components of p~'S,
then there is no arc in D connecting a vertex of S, with a vertex of S,.
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Proof. Let e’ ep e, e an arc of S, be an arbitrary arc in p~'S. Then there is
a closed walk W in S containing e. From Lemma 2 follows the existence of a closed
walk W' in D containing e’ and therefore e’ belongs to a strong component of
-1
p-S. O

Theorem 2. Let D be a cover of D of finite multiplicity. If D € Cs then D € C, or
D e Cs.

Proof. Let D € C;and D ¢ C°. Then D contains at least two strong components.
By Lemma 3 there are no arcs connecting vertices in different strong components
of D and therefore D € C,. O

If one does not consider the (more or less trivial) case D eC,thenfor DeC, D
may be in C, or in C, whereas for i=1, 3 D e G, iff D € C,. The next theorem
decides which of the two possible cases for finite D € C, occurs.

Definition 4. A strong component S of a weak digraph D in C,uG, is called
a sending component if there is no arc e in D with fe ¢ S, se € S. Similarly a strong
component is called a receiving component if there is no arc e in D with fee S,
se¢S.

Remark. Every finite digraph in CyuUC, contains sending and receiving
components ; we have D € C, iff these components are uniquely determined. For
a proof see [4].

Theorem 3. Let D € C, be finite and D ¢ C, be a cover of D of finite multiplicity.
Denote by S the unique sending component of D and by R the unique receiving
component of D. If p™'S € C, or p~'R € C, then D € C,. Otherwise D € C,.

Proof. Without loss of generality let p~'SeC,. Then p~'S contains two
different strong components $,, S,, such that no arc of D connects a vertex of S,
with a vertex of S,. But S, and S, are sending components of D, because S is
a sending component of D. Therefore there is no walk connecting a vertex of S,
with a vertex of S, i.e., D € C,. For the converse assume p 'S ¢ Co, so that p~'S
must be strong because of Theorem 2. Lemma 1 implies that p~'S is a strong
component of D. Furthermore p~'S is the unique sending component of D.
Similarly follows that p 'R is the unique receiving component of D. From this we
now have D e C,. O

Unsolved Problem. Simple examples show that all possible combinations of
DeC and DeC, 0<i, j<3, i=j, can occur for infinite multiplicity. It appears
rather difficult to find conditions characterizing each of the possible cases.

3. Operations on digraphs

In this section we consider several operations on digraphs which transform
covers into covers.
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Definition 5. Let D=(V, E, f, s) be a digraph. Then the line digraph
L(D)=(V., E., fi, s.) is defined as follows: V. =E, E. ={(e,, e)e,, e:€E,
se;=fe,} and f. (e, e;)=ey, s.(ey, e;)=e, for all (e, e;) € E;.

Theorem 4. If p: D — D is a covering projection, then there exists a covering
projection p.: D, »D; .

Proof. LetD=(V,E,f,s)and D=(V, E, f,§)suchthat D, = (V,, E., f., §.).
We define p, :D,—D, by: p.|V. :=pl|E, p.(ei, ez) = (pei, pe;) for
(e}, e5) € E. . First we show that p, is a homomorphism: pifi(el, e3) = peel = pe;
= f.(pel, pes) = f.p.(e}, e3) for all (e}, e3) € E. . Similarly for the second vertices.
Next we show that Property (C) holds. Let e € V. = E be arbitrary and e’ e p;'e.
Assume there exist different elements (e’, e}) and (e’, e}) in E. with p.(e’, e})=
p.(e’, e2). From this we have (pe’, pei) = (pe’, pe:) and therefore pe; = pe;. Since
fei = fes this contradicts p being a covering projection. By this we have shown that
p. is injective on the set {(e’, e})|(e’, e}) € E_} ; similarly p, is injective on the set
{(ei, e")|(ei, e")|(el, e') e EL}. It remains to show that p, restricted to these sets is
onto {(e, e,)|(e, e:) e E.} and onto {(ey, e)|(es, e) e E.}, resp. This follows from
the fact that p restricted to {ei|fei=3§e’} and to {e}|5e;=fe'}, respectively, is onto
{ei|fe,=se} and onto {e,|se,=fe}, respectively. O

Remark. From the definition of p, follows that the covers D of D and D, of D,
have the same multiplicity.

Definition 6. Let D, =(V,, E, f;, s:), i =1, 2, be two digraphs. Then the direct
product D,(XD, is the digraph (V, X'V, E; X E,, fi®fa, s:X)s.) with

(fl®f2)(el, ez)= (flel, fzez): (S1®S2)(el9 ez)= (Sxel, Szez)

This operation is also called Kronecker product or conjunction.
Example. See Fig. 13.

Theorem 5. Let p;: D,— D, be a covering projection for i =1, 2. Then there
exists a covering projection p,@p:: D,®D,—D,®D.,.

Proof. Let D,=(V,, E, f, §), i=1, 2. Define p.®p.: D,®D.—D,®D,
componentwise, i.e.,

(P ®p2)(xi, x3): =(puxi, paxs) for (xi,x3)eVixV,

(P1®p2)(ei, eé): = (pl;a pzeé) for (e, eé)GE~1 XE2-
The following calculation shows that p,Qp, is a homomorphism:
(0:@p)(Fi®F:)(el, €3)) = (PR p2)(frei, fe3) =

=(p: (flel) p2(f2e2)) (fl(plel) fzwzez)) (fl@fz)(l’lel, Pze£)=
=L ®f)(p.@p.) (e, 32)) for (ei, e3)e EiXE,.

Similarly one shows that for

and
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(ei, eé)eE.l XEZ,
(P1®p2)((5:®5,)(ei, €3))=(5:®s52)((P. @ p>)(ei, e;)).

Immediately from the definition we see that p,&Xp, is onto. Finally we show
Property (C) for p; & p.. There is a bijection between the set A of arcs in D, XD,
with first (second) vertex (x,, x,) and the cartesian product of the set B of arcs in
D, with first (second) vertex x, and the set C of arcs in D, with first (second) vertex

D2 D1® D2

04
Fig. 13

x2. An analogous statement holds for D, ®D, and a vertex (x}, x}) with sets A, B,
C. If now px,=x, i=1, 2, then p, is a bijection from B onto B and p: is
a bijection from C onto C and so p,®p. a bijection from A onto A. This is
Property (C) for p,®p,. O

Definition 7. Let D, =(V,, E,, f,, s:), i = 1, 2, be two digraphs, where V,nV.=0
and E,nE,=@. The cartesian product D,XD, is the digraph (V,XV,,
ViXE,UE, XV, fXf,, s:Xs,) with

(fi X f2)(x1, €2) = (x4, fre2) for (xi, e;)€ ViXE,
(f1 X f2)(ey, x2) = (f1e1, x2) for (e, x2)e E\ XV,
(s1 X 82)(x1, €2) = (x4, 52€2) for (x, e.)e V,XE,
(sy X 5.)(ey, x2) = (5163, x2) for (e, x2))eE, XV,

Example. See Fig. 14.

Theorem 6. Let p,: D,— D, be a covering projection for i =1, 2. Then there
exists a covering projection py X p,: D, X D,— D, X D,.
Proof. Let D,=(V,, E, f., s:), i=1, 2. Define p, X p, as follows:

(P1X pa)(xi, x3) : =(puxi, pax3) for (xi,x3)e Vi X ‘:/2
(P X p2)(xi, €3) : =(pixi, p2ez) for (xi,e;)e ViXE,
(p1 X p2)(ei, x3) : =(piei, pox3) for (ef, x})eE,x V,.
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First we show that p; X p, is a homomorphism :

(pIXPZ)((flez)(xf, eé)) (anpz)(xl,fzez)—‘
= (p:x1, pa(f2e2)) = (puxi, fo(p2e3)) = (fs Xf2)(pixi, Pzez) =
=(f, sz)((Pl X p.)(xi, e3)) for (xi,e3)e Vi X E,.

Analogously one proceeds for (ef, x3)e E; X V, and for §,, §, instead of fi, f>.
Surjectivity of p, X p, follows from its definition. There is a bijection between the

D2 Dy x D2

~

n
w1

Fig. 14

set A of arcs in D, X D, with first (second) vertex (x,, x,) and the union of the set B
of arcs in D, with first (second) vertex x, and the set C of acrs in D, with first
(second) vertex x,. An analogous statement holds for D, X D, and a vertex (x}, x3)
withsets A, B, C.If now px|=x,,i =1, 2, then p, is a bijection from B onto B and
p- is a bijection from C onto C and so p, X p, is a bijection from A onto A . But this
is Property (C) for p, X p,. O

Remark. If in Theorems 5 and 6 the cover D, of D, has finite multiplicity n;,
i=1,2, then the constructed covers D,®D, of D,®D, and
D, x D, of D,x D, have multiplicity n,n,. This follows 1mmed1ate1y from the
definition of the respective covering projections.

4. Universal cover

In algebraic topology (compare [5]) it is well known that under certain conditions
for a topological space X a universal cover U exists which has the property that
every cover of X is a continuous image of U. In this section we show a similar
theorem for digraphs. For this we need some definitions.

Definition 8. Let p;: D,— D, i=1, 2, be two covering projections onto D. A
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homomorphism ¢: D,—D, is a cover-homomorphism if p,¢ =p,. A cov-
er-izomorphism is a bijective cover-homomorphism.

Lemma 4. Let p: D— D be a covering projection and x,€ V, xy€p 'x,. For
a semiwalk W in D with first vertex x, there exists a unique semiwalk W’ in D with
first vertex xo and pW'=W.

Proof. The construction of W' proceeds along similar lines as used in the proof
of Lemma 2. The uniqueness of W' follows frem Property (C).

Definition 9. A semiwalk W: x,, e,, x1, €5, X3, .., e., X, is called to be of normal
form, if XoF X1, X1 F X2y ooy X1 F Xn, C1F €2, €2F €5, ..., Cn1 F€p.

Remark. In a walk of normal form, by the last condition loops are not allowed
to occur. Thus in connection with covers, no restriction results since by Property
(C) arcs in p~'e are loops if e is a loop where p is a covering projection. So there
would even be n~ loss of generality in restricting ourselves to digraphs without
loops. Finally a digraph is weak iff every two vertices are connected by a walk of
normal form.

Let D=(V,E, f, s) be a weak digraph. We define a digraph U= U(D)=(Vy,
Ey, fu, su) in the following way. We choose a fixed vertex x,€ V and take V, as
the set of all semiwalks of normal form in D with first vertex x,. Ey consists of all
ordered pairs (W,, W,), W,, W, e V,, where W, results from W, by deleting the
last vertex and last arc from W,. Finally we define for (W,, W,) € Ey:

fu(W,, W,):=W, and sy (W,, W,):=W,if the first vertex of the last arc of W,
is the last vertex of Wi,

fu(W,, W,): =W, and sy (W,, W,):= W, if the first vertex of the last arc of W,
isthe last vertex of W,.

Remark. A simple consideration using the weak connectedness of D shows that
also U is weakly connected. Further it can be seen immediately that U does not
contain a closed semiwalk of normal form, i.e., U is in some sense simply connected
(without nontrivial circuits).

Theorem 7. Let D be a weak digraph and U as defined above. The digraph U is
a universal cover of D in the sense that every weakly connected cover D of D is the
image of U under a cover-homomorphism .

Proof. Let p: D— D be a covering projection including the possibility D = D.
Let xo e V be the fixed vertex used in the definition of U and choose a fixed vertex
x4€p~'x,. The map @ is defined on V, as follows. Let W € V,, be a semiwalk of
normal form in D with first vertex x, and denote by W’ the unique semiwalk in D
with first vertex x4 and pW’' =W (see Lemma 4). Clearly W’ is also of normal
form. Then @W is defined as the last vertex of W' On Ey the map g is defined in
the following way. Let (W,, W) € Ey and denote by e € E the last arc of W,. If
fu(W,, W2)= W, then define ¢(W,, W) as the unique arc e’ep 'e with first
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vertex @Wisif fu(W,, W2) = W, then define ¢ (W,, W,) as the unique arc e’ e p ‘e
with first vertex @W,. So by this definition we have @(fo(W,, W,))
= f(p(W,, W,)) for all (W,, W,)eE, and it is immediate that also holds
@(su(W,, W2)) = §(@p(W,, W,)) such that ¢ is a homomorphism. Surjectivity of @
follows from the weak connectedness of D. Now we show Property (C) to hold for
@.Let We Vy and (W, W,) e Ey, i =1, 2, be arcs with f,(W, W;)= W. Denote by
e; € E the last arc of W,. Assume (W, W,) = @(W, W,). From this follows e, = e,
and since W,, W, are of normal form this further implies W, = W,. The analogous
consideration with sy instead of f, shows the injectivity of @ on the respective sets
of arcs. Surjectivity is clear, so Property (C) holds for ¢. We have shown that ¢:
U—D is a covering projection. Taking D =D and as p the identity on D we
obtain that U is a cover of D ; denote the corresponding covering projection by py.
With respect to this covering projection the homomorphism @: U— D is a cover
homomorphism since po@ = py. This accomplishes the proof of the theorem.
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ITOKPBINIKHX TPAPOB
Bunu6ann Joapdnep, Ppank Xapapu, Nourep Manne
Pesrome

[MoHsiTHE NOKPBIIKH MOXHO ONPENeTUTh A1 oprpacdoB TaK XKe, Kak U A rpacoB U runeprpacos.
[TepBas rpynna pe3ynbTaToOB PacCMaTPUBAET COOTHOLIEHHS MEXNY KJ1aCCaMH CBA3HOCTH oprpada H ero
noxpaiBaiowmx oprpacgos. IToka3biBacTcd, 4TO HEKOTOPBIE YHapHble M GMHApHbIE ONEpaLyH, Onpeae-
JIEHHble Ha KJacce Bcex oprpacdoB, Npeo6pa3oBbIBAalOT MOKPBHILIKH B MOKpbIWKK. Hakoweu, mis
cnaboro oprpacda D f0Ka3aHO CyUIECTBOBAHHE YHHBEPCAILHOM MOKPBIKK U, T.€. TaKOH MOKPBILLKH
U oprpacda D, uTo Besikast c1aGo cBs3Has MoKpbliika D oprpacda D SBNSeTCS NOKPIIKOBO-TOMO-
mMopdHbIM 06pa3oM oprpada U.
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