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DECOMPOSITION OF COMPLETE GRAPHS 
INTO FACTORS OF DIAMETER TWO 

STEFAN ZNAM 

We say that the system Fl9 ...,Fm of factors of a graph G presents an edge 
decomposition of G if every edge of G belongs to exactly one of the factors F<. Let 
f{k) be the smallest such natural that the complete graph Kf(k) of f{k) vertices can 
be decomposed into k factors of diameter two. The problem of consideration of the 
number f{k) has been introduced in [4], where also /(2) = 5, /(3)= 12 or 13 are 
proved. In [3] it is shown that f{k) is finite for any ki_-.2 and that f{k)^4k—1 
holds for k^3. IV. Sauer showed in [5] thatf{k)^7k for k^2. In [2] J. Bosak 
showed that for every k S 2 we have 

6k-52^f{k)^6k. 

Finally B. Bollobas in [1] proved that for k§6 we have 

f{k)^6k-9. 

In our article we prove that for k 1^664 the inequality /(£) =6k — 7 holds. It is 
very probable that using very similar methods as here (however considering more 
precisely) the inequality f{k)^6k-6 can be proved. 

By the neighbourhood of a set 5 of vertices in a graph we mean the set of all 
vertices not belonging to 5 but adjacent to some vertices of S in this graph. 

Now suppose that for a k^664 the complete graph K6k-8 is decomposed into k 
factors of diameter two. Then there exists at least one factor F containing at most 

(6A:-8)(6 fc-9)j = m _ 5 1 

edges. We shall state some properties of the factor F. 

Lemma 1. The neighbourhood of any two vertices x, y in F is of cardinality at 
most 5k - 8 . 

Proof. Suppose, the cardinality of the neighbourhood of two vertices x, y in F 
is at least 5 k —7. Then in the remaining k -1 factors there exist at most 

( 6 k - 1 0 ) - ( 5 k - 7 ) = k-3 
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paths of the length 2 between x and y . This is a contradiction with the fact that all 
factors are of diameter two. 

Corollary F does not contain any vertex of degree < 3 . 

Lemma 2. The maximal degree of vertex in F is at most 3k — 6. 
Proof. A vertex v is of degree at least 3 in all the remaining k — 1 factors, hence 

we have 

3 ( k - l ) + d e g F t > S 6 k - 9 

and our assertion follows. 

Lemma 3. Let v be a vertex of degree 3 in F and let it be adjacent to vertices 

x,y,z. Suppose 

degF x SdegF y ̂ degF z. 

Then : 

a) x is of degree at least 2k — 3 ; 

b) y is of degree at least — (3k - 3); 

c) a11 three are of degree at least k — 2. 
Proof. F is of diameter two, hence every vertex of F belongs to the neighbour

hood of {JC, y, z}; therefore it has to contain v and 6k — 12 other vertices and so x 
must be of degree at least - (6k — 12) + 1 and the assertion a) follows. Owing to 

Lemma 2 the vertex x is of degree at most 3k — 6, therefore the neighbourhood of 
the set {z, y } in F contains v and at least (6k - 12) - (3k - 7) = 3k - 5 vertices. 
Both y and z are adjacent to v, hence the sum of degrees of y and z is at least 
3k — 3 and the assertion b) follows. 

The neighbourhood of the set {x, y} is (according to Lemma 1) of cardinality at 
most 5k — 8 and v belongs to this neighbourhood. Hence there exist at least 
( 6 k - 1 2 ) — ( 5 k - 9 ) = k-3 vertices connected with u by a path of length 
2 containing z. Therefore z is of degree at least k — 2. The proof is complete. 

Lemma 4. Let v be a vertex of degree 4 in F adjacent to the vertices x, y, z 
andt. Suppose 

deg x =deg y =deg z =deg t. 

Then: 
a) degy i ^ k - 1; 

b) d e g z ^ ( k - 4 ) . 

Proof. Owing to Lemma 2 there exist at least (6k - 13) - (3k - 7) = 3k - 6 
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vertices connected with v by a path of length 2 containing one of the vertices y, 
z, t. Hence the sum of degrees of these three vertices is at least 3k —5 and a) 
follows. 

Owing to Lemma 1 there exist at least (6k - 13) - (5k - 9 ) = k - 4 vertices 
connected with v by a path of the length 2 containing z or t and b) follows. 

Lemma 5. Let v be a vertex of degree 5 in F. Then v is adjacent to a vertex of 

degree at least k — 2 and to three vertices of degree at least — (k — 4). 

The proof is very similar to that of Lemma 4. 

Theorem. / ( k ) ^ 6 k - 7 for k^664. 
Proof. We shall show that K6k-8 cannot be decomposed into k factors of 

diameter 2. Namely we prove the impossibility of the existence of a factor F having 
the properties stated in Lemmas 1—5 with at most 1 8 k - 5 1 edges. 

Suppose F is such a factor of K6k-H. Denote by A the set of all vertices of degree 

3,4 or 5 in F , \A | = a ; by B the set of all vertices of degree 6, 7, ..., - ( k - 5) , 

\B\ =b ; by C the set of all vertices of degree at least - (k —4), \C\ =c. 

If c=^55, then the sum of degrees in F is at least 

i ^ a ^ 5 5 ^ ii\ 1 0 9 , v 7 8 7 
3 ( 6 k - 8 ) + y ( k - 1 3 ) = — k - — , 

which is a contradiction with the fact that the number of edges is at most 18k — 51. 
Hence we have c ^ 5 4 . 

Now there exist at least 3a edges between the sets A and C (see Lemmas 3—5). 
To every vertex of A choose three edges starting from it to the set C and denote 
this set of edges by U. Every vertex from B contributes to the sum s of all degrees 
in F by at least 6 (hence the set B by at least 6b), the contribution of edges of U is 
6a and further we have some other edges incident with the vertices of degree 4 or 
5 but not considered above. 

First suppose there exist at least 325 vertices of degree 4 or 5 in F . Then we have 

s ^ 6 a + 6b + 325 >6(a + b + c) = 6(6k - 8) = 36k - 48. 

However, this is a contradiction, because the factor F has at most 18k — 51 edges. 
Now we shall consider the more complicated case if in F there exist less than 325 

vertices of degree 4 or 5. Denote by D the set of vertices of degree 6, 7 , . . . , k - 3 in 
F, \D\=d and by E the set of vertices of degree at least k-2, | F | = e. 

Obviously e ^ c ^ 5 4 . Suppose e g 19. Then the sum of degrees in F is at least 
c ( k - 2 ) -h 3 ( 6 k - 8 - 5 4 ) = (18k + ck) - 2c - 186, which is for k^ 664 a 
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contradiction considering the fact that F contains at most 18k — 51 edges. Hence 
c^l8. 

However, we shall show that e = 12. 
We shall distinguish two cases, again. 
If d = 2k, then the sum of degrees in A and D is at least 3(6k — 26) + 3d = 

24k — 78. Therefore the sum of degrees in E is at most (36k — 102) — (24k - 78) 
= 1 2 k - 2 4 . Hence c^l2. 

If d = 2k% then we prove first e = \4. In this case the number t of vertices of 
degree 3 in F is at least 

6k - 8 - d - 18 - 324 = 6k - d - 350. 

The sum of degrees in E is at most 36k — 102 — 3 ( 6 k - 2 6 ) — 3d = 18k — 3d 

— 24 = H\ hence there exist at most 11 vertices of degree at least - (3k — 3) = m 

i n F . 
On the other hand, according to Lemma 3 at least 2t edges from vertices of 

degree 3 go into vertices of degree at least m. Hence the sum of degrees of vertices 
of E having degree smaller than m is at most 

w - It = (18k - 3d - 24) - 2(6k - d - 350) = 6k - d - 676. 

Hence there exist in E at most 5 vertices of this kind. 
Now if the number of vertices of degree at least m in E is = 8, we get e = 14. 

However, if the number of vertices of degree at least m is n = 9 , 10, 11, then the 
sum of degrees of vertices with smaller degree in E is at most 

w - « m = ( 1 8 k - 3 d - 2 4 ) - ^ ( 3 k - 3 ) = ( l 8 - | n\k -3d- 24 + | n ; 

3 
hence there exist at most 1 8 - - n vertices of this kind. Therefore, the number of 

n 
vertices in E is at most 18 — - , which is less than 14. 

Hence, in all cases we have e^l4. Further we can consider starting from this 
new information and show that e ^ l 2 . 

Because e = \4, the sum of degrees in E is at most 

36k - 102 - 3(6k - 8 - 14) - 3d = 18k - 36 - 3d. 

Under these conditions there exist at least 6k— 8 - 3 2 4 —2k —14 = 3k —5 
vertices of degree 3 in F , thus due to Lemmas 2 and 3 in E at least two vertices of 
degree at least 2k —3 = r exist. We shall deal with two cases. 

1. Suppose there exist exactly two vertices of degree at least r. Any vertex of 
degree 3 is connected with at least one of them. There exist at least 5 vertices of 
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degree smaller than r but not smaller than m in F . Choose 5 vertices of this kind. 
Thus the sum of degrees of remaining vertices of E (without those two vertices and 
the chosen 5 vertices) is at most 

\%k-3d-36-t-5m^ 

S 1 8 k - 3 d - 3 6 - ( 6 k - d - 3 5 0 ) - y k - y = 

= 4 , 5 * - 2 d - 3 2 1 , 5 . 

Hence, according to the condition k ^ 664 we get that E contains at most 4 further 
vertices and in this case we have e^ll. 

2. If E contains at least 3 vertices of degree at least r and at least 4 further 
vertices of degree at least ra, then the sum of degrees of 7 vertices with the greatest 
degree in F is at least 3r + 4m = 12k —15, hence the sum of the degrees of the 
remaining vertices in E is at most 18k — 3d — 36 — 12k + 15 = 6k — 21 — 3d 
< 6(k —2). Therefore, there exist at most 5 further vertices i n F . Hence in all 
cases we have e^l2. 

All the vertices of degree 3 are connected with 3 vertices of F , all the vertices of 
degree 4 with at least 2 vertices of E and every vertex of degree 5 is adjacent to 
some vertex in E. If we denote Fx the factor of F which arises deleting the edges 
connecting two vertices of E from F , then the sum of degrees of vertices in Fx is at 
least 

( 6 k - 8 - e ) 6 = 3 6 k - 4 8 - 6 e . 

For e ^ 8 this gives a contradiction, because for such an e we have 36k — 48 — 6e > 
3 6 k - 1 0 2 . 

Suppose e i^9. Let v0 be a vertex of degree 3 in F . Then every vertex of E not 
adjacent to v0 is adjacent to at least one vertex of the neighbourhood of u0. Hence 
there exist at least e — 3 edges with both endopoints in E and the sum of degrees in 
F is at least 

( 3 6 k - 4 8 - 6 e ) + 2 ( e - 3 ) = 3 6 k - 4 e - 5 4 

which is for e = 9, 10, 11 more than 36k —102. 
Suppose e = 12. If there exist at least 10 edges with both endpoints in F , then we 

get a contradiction again. Suppose, there exist exactly 9 such edges. Denote by H 
the factor of F induced by the set E. Let V= {vu v2, v3} be the neighbourhood of 
v0 in F and let 

deg„ v! ^ deg„ v2 g deg« v3. (I) 

Then we have the only possibility: 

degn vx + degn v2 + deg^ v3 = 9 (II) 
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and all the vertices not belonging to V are of degree one in H. We supposed 
d ^ 2k, hence t > 3k - 6. Thus due to Lemma 2 there exists a vertex u4 of degree 
3 in F not adjacent to vx. Let {v5, v6, v7} be the neighbourhood of v4 in F. Then due 
to (I) and (II) the sum of degrees of vertices v5i v6 and v7 is at most 7 in H, which is 
a contradiction, because then the diameter of F would be greater than 2. Thus, 
according to Theorem 1 of [4], the proof of out theorem is complete. 
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РАЗЛОЖЕНИЕ ПОЛНОГО ГРАФА НА ФАКТОРЫ ДИАМЕТРА ДВА 

Штефан Знам 

Р е з ю м е 

Доказывается, что полный граф с 6к — 8 вершинами невозможно разложить на к факторы 

диаметра 2, если к 1=^664. 

Пользуясь теми же методами, но рассуждая точнее, вероятно возможно показать: полный 

граф с 6к — 7 вершинами тоже невозможно разложить на к факторы диаметра 2. 
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