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HYPERINVARIANT SUBSPACE LATTICE OF SOME 
Co-CONTRACTIONS 

MICHAL ZAJAC 

1. Introduction 

Let £> be a separable Hilbert space. Denote by ¥(&) the set of all subspaces of & 
(As usual, a subspace means a closed linear manifold). If 9fti, Tt2 are from 5f(£>), 
then by 9Kiv9W2 we mean the smallest subspace of £> containing Wli and SJk. 
3Kin9W2 denote their intersection. Together with these operations 5f(£>) forms 
a complete lattice. Let T be a bounded linear operator on £>. We denote by 
hyperlat (T) the lattice of all SWe Sf(Q) that are invariant under each operator that 
commutes with T. In [5] it was proved: 

Theorem 1.1. For a linear transformation T on a finite-dimensional complex 
vector space V hyperlat (T) is the smallest sublattice of Sf(V) which contains all 
subspaces that are either the kernel or the range of a polynomial in T. 

The purpose of the presented paper is to show some generalizations of this result 
for some contractions on the separable Hilbert space. 

We shall use the functional calculus for Hilbert space contractions developed by 
Foias and Sz.-Nagy [6, chap. III.]. H°° and H2 will denote the corresponding 
Hardy classes. A contraction T on Q is of class Co if there exists a function m e H°° 
such that m(T) = 0. By mT we denote the minimal function of T, mT is always an 
inner function and it can be factored into a Blaschke product and a singular 
function (For details see [6, chap. III.]. 

In what follows the range of an operator T will be denoted by rng T, the closure 

of rng T by rng T and the kernel of T by ker T. The basic lattice-theoretic 
terminology and results may be found in [4]. 

Definition 1.2. Let T be a completely non-unitary contraction. We say that 
Thas the property (L) if and only if hyperlat (T) is the smallest complete sublattice 

ofy(&) which contains all subspaces that are of the form ker u(T) or rng v(T) for 
u and v from H°°. 

Pe iYuanWu[10] has proved that every operator Te Co and of finite defect 
indices has the property (L). In section II we shall use methods similar to the 
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method of [5] to prove that some contractions of class Co with not necessarily finite 
defect indices have the property (L) too. 

In section III we shall prove that the property (P) introduced by Hari 
Bercovici [2] implies (L). Consequently every weak contraction of class Co has 
the property (L). 

II. 

In this section we assume that T e Co and that mT is a Blaschke product. 

1. For every complex number a: 0 < | a | < l 

set 

Mz) = ^f^-
a 1 - az 

and 
b0(z) = z 

Let 

mT = f\bn
a$ (2.1) 

i = l 

(|a(i) |<l, Sn(i)(l- |a(i) |)<oo), [6,(111.1.12)]. 

The natural number n(i) is the multiplicity of a(i) as a zero of mr. 
Setting for every natural nimber i 

<&i = kerbS((;,)(T) (2.2) 

we have [6, propositions 111.7.1, III.7.2] 

£=&+V& (2-3) 

( + denotes the direct, non-necessarily orthogonal, sum.). 

Theorem 2.1. Let T be a contraction of class Co, let mT satisfy (2.1) and 
T, = T |£ , (i = l, 2, ...). Then 

(i) For every SRehyperlat (T) there holds 

WlnQiE hyperlat(T) (i = l ,2 , ...) 
and 

m=ywin&i), 
i = l 

(ii) each & is the range of <p.(T) where qp, is a suitable function from H~. 
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Proof. Let maa) = mT/baU). According to [6, sec. III.7.1] there exist ut, vt from 
H°° such that 

M((oM. + m«(ou« = 1 

and it follows that if P, is the projection onto £), along V&i and if ma(j)Vj = yh then 

Pj = cp,(T), thus (ii) is proved. 
Let 2ft e hyperlat (T) and let Si be a bounded linear operator on £>» commuting 

with T. Clearly the operator S = S,Pi commutes with T. 2ftn£>i e hyperlat (T) 
implies 

Si(WlnQi) = S(mn§i)czmnQi9 

thus WlnQi e hyperlat (T). 
T|2ft is a Co-contraction whose minimal function is a Blaschke product. 

According to [6, proposition III.7.2] 2ft is generated by characteristic vectors of T 
that belong to 2ft. On the other hand the characteristic vectors of T associated with 

CO 

the characteristic value a(i) belong to £*, thus 2ft cz V (2ftn£>i). The other inclusion 
i = l 

is obvious, and so (i) is proved. 
Theorem 2.2. Let T be a Co-contraction with finite defect indices and let 

mT = b: (\a\<l). (2:4) 

Then T has the property (L). 
Proof: T is quasisimilar [3] to an operator 

S = S(bi)®...@S(blr), 
where n = ii.^i2 = ... = im>l. 

For any inner function m &(m) denotes the orthogonal complement in the 
Hardy space H2 of the subspace mH2 and S(m) is the projection of the unilateral 
shift onto £>(m) (see [6, p. 369]). Here and in the rest of this paper ® denotes the 
orthogonal sum. 

For all k S(b«) is fc-dimensional [6, p. 369 and proposition III. 7.3]. Hence both 
S and T are finitedimensional and according to theorem 1.1 they have the property 
(L) 

Theorem 2.3. Let T be a contraction of class Co and let mT be a Blaschke 
product (2.1). Let T (see theorem 2.1) have finite defect indices. Then Thas the 
property (L). 

Proof: From theorems 2.1 and 2.2 it follows that hyperlat (T) is the smallest 
complete sublattice of &(!&) which contains all subspaces that are of the form 
ker u(Tt) or rng u(Tt) for some u from H°° and T* = T|rng qpi(T), where cp, is an 
H00 function. We have for every ueH°° and i = 1, 2, 3 , . . . 
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ker u(T) = ker u(T)nrng q>i(T) 

and 

mgu(Ti) = u(Ti)cpi(T)$ = u(T)(pi(T)$ = Tng(u(pi)(T). 

This concludes the proof of our theorem. 

Example 2.4. Let m = n &«<o ^e a Blaschke product (each zero of multiplicity 
i = l 

one). Denote by &(i) the orthogonal sum of i copies of £>(ba(o) and by S(i) the 
orthogonal sum of i copies of S(bfl(o). 

Set 

© = ® £ ( 0 and T = ®S(i). 
i = l i = l 

It is obvious that mT = m. We use [7, theorem 1] to find the Jordan model of T. 
Using the same notation as in [7] we have 

® = diag (bad)', ba(2), bfl(2); &flp), bao), ba^)\ . . .) 

Q = diag (Bi; B2, B2; B3, B3, B3; ...) 

where B, = ml bad) • ip = m. 

Then it is easy to compute that 

Er(Q) = ba(\)ba(2) . . . ba(r-l)) 

and the Jordan model of T is 

®s(n&.(-,), 
r=\ \i=r 

and so T has not finite defect indices. On the other hand T obviously satisfies the 
assumptions of theorem 2.3. 

III. 

We shall consider bounded operator-valued analytic functions as matrices over 
H°° of the type nxn ( l^n^oo). Let {mt}7=i be a (finite or infinite) sequence of 
inner functions such that mi+i divides m, for all i: \=\i<n. Then the matrix 
diag (mi, m2, ...) is called normal. An operator is called a Jordan operator if it is of 
the form S(M) with a normal matrix M (see [7], [8]). Hl = H2(En) will denote the 
Hardy—Hilbert space of En -vector valued analytic functions in the unit disc, En 
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means the n-dimensional Euclidean space. The following theorem was proved in 
the case n < oo in [10], the same proof will do for n = oo. 

Theorem 3.1. Every Jordan operator has the property (L). 
Proof: We assume n = oo. Let M = diag(mi, m2, ...) be a normal matrix. 

A subspace 2 of H„QMH„ = ®H2QmlH
2 is hyperinvariant for S = S(M) if and 

i = l 

only if there exist normal matrices 

0 = diag(#i, #2, ...) and <J> = diag (qpi, qp2, ...) 

such that M = 0 0 and 

2 = (н„e ФHІ)=© щн2 <pfí2) • r 2 \ _ 

i = l 

This was proved in [9, theorem 3] for n < oo, but the same proof works for n = oo. 
We claim that 

2=Vker(p,(S)nrngi?i(S) 
i = l 

Denote Si = S(mi); then S = ®Si 
i = l 

fif = &(H20(pH2) = ker <p,(S.) = rng ft(&). 

Setting fi« = {0} for &j and S« = 2, 

and 

m=©fi„ 

we have 

Wli cker qp,(S)nrng ft(S),' 

hence 

2czVker(p l(S)nrng*(S). 
i = l 

To prove the other inclusion fix; and let x = ®x< be in ker (p,(S) n rng #,(S). 
i - l 

Let {y„ = ©Xm.}n-i be a sequence of vectors (in H»0MH„) such that 
i - l 

lim di(S)yn=x 
n-»» 
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(in norm topology). Then for all i 

lim^(Sj)y,n = Xi (3.1) 

xeker <p,(S) ismplies Xieker <?,(&), and so 

lim<pj(Si)^(Si)j/iB = 0. 
n—»oo 

If i<j, then <p,#j divides <##, and so 

limcpi(S,)&i(S,)y,n = 0; 
n—>oo 

then (3.1) implies 

q)i(Si)Xi = 0. 

If i^j, m, = (p.#. divides <?,•#,•. For all n 

mi(Si)Yin = 0 

and so 

(Pi(Si)USi)Yin = 0, 

hence (3.1) implies 

q)i(Si)Xi = 0. 

We have x, e ker qp.(S,) = 2, for all i. This finishes the proof of our theorem. 
Bercovic i [2] has studied the operators T of class Co having the following 

property: 
(P) Any injection X commuting with T is a quasi-affinity. He proved [2, 

proposition 4.8] that if T has the property (P) and S is its Jordan model, then 
hyperlat (T) and hyperlat (S) are isomorphic; namely he proved the following: 

Theorem 3.2. Let T and V be two quasisimilar operators of class Co acting on 
:jp, £ ' , respectively, and having the property (P). Let us define 

£: hyperlat (T) ->hyperlat (V) 
r\: hyperlat (V) —» hyperlat (T) 

by 

g(SR)= V XTl (3.2) 
X e I ( T \ T) 

r)(9l)= V Y31 (3.3) 
Y e I ( T , T ) 

(I(T' T) means the set of all operators £>-»£>' satisfying VX = XT). 
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Then 

(i) For any quasiaffinities 

AeI(T', T), BeI(T, T) 

§(SW) = (ASK)" = B ' X 9KG hyperlat (T) 

(ii) | is bijective and rj = §_1. 

Now we use this theorem to prove: 
Theorem 3.3. Every operator Thaving the property (P) has the property (L). 
Proof: Let S be the Jordan model of T. According to [2, corollary 4.3] S has 

the property (P) and from theorem 3.2 there exist quasi-affinities AeI(T, S), 
B e I(S, T) such that for every 2 e hyperlat (S) 

?(2) = (A2)- = B-1(a) 

and the mapping § is a bijective lattice isomorphism from hyperlat (S) onto 
hyperlat (T). Now for every cpeFT TA = AS implies qp(T)A = Acp(S), 

this implies 

<|(ker cp(S)) = (A ker (p(S))"cker cp(T) 

and 

S (Sg <p(S)) = (A(cp(S)£>)T = (A<p(S)&r = (<p(T)A&)- c 5 £ <p(T). 

Similarly (p(S)B = Bqp(T), and so 

ker (p(T)c=B_1 ker <p(S) = g (ker cp(S)) 

and 

FSi (p(T)cB-1 r7ii cp(S) = § ( S i qp(S)). 

We claim that 

§ (ker cp(S)) = ker (p(T) 
and 

g (^cp(S) ) = rng<p(T) 

and this together with theorem 3.1 gives that T has the property (L). 
Corollary 3.4. Every weak contraction of class Co has the property (L). 
Proof: Every weak contraction of class Co has the property (P) (see [1, 

corollary 2.8]). 
The converse of theorem 3.3 is not true because every Jordan operator has the 

property (L) but need not have the property (P). It suffices to take the orthogonal 
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sum of infinitely many copies of S(m) with an arbitrary nonconstant inner function 
m. This follows easily from theorem 4.1 of [2]. 
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РЕШЕТКА ПОДПРОСТРАНСТВ, ГИПЕРИНВАРИАНТНЫХ ДЛЯ НЕКОТОРЬьХ 

СЖАТИЙ КЛАССА С0 

Михал Заяц 

РЕЗЮМЕ 

В статье изучаются условия, при которых сжатие Т класса Со имеет следующее свойство: 
(V) Решетка подпространств, гиперивариантных для Т — порождена подпространствами, 

являющимися нуль-пространством или замыканием области значения оператора м(Т), где и 
любая функция из Н°°. 
Показывается, что свойство (Ъ) имеет место, если минимальная функция оператора Т 

является произведением Бляшке (2.1) и у операторов Т. = Т |ф. (смотри (2.2)) конечные 
дефектные индекси. Показывается тоже, что любой оператор Жордана обладает свойством (Ъ) и 
что свойство (Р) (Если X — коммутирующий с Т линейный оператор и кег X = 0, то кег X* = 0) 
введенное Берковичем, влечет за собой (Е). 
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