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A NOTE ON TWO COMPARABILITY GRAPHS 

C S. JOHNSON, Jr.—F. R. McMORRIS 

The comparability graph of the partially ordered set (poset) P is the graph whose 
vertex set is P and such that xy is an edge if and only if JC and y are comparable 
elements in the poset P. Wolk [2] called a graph G = (V, E) a D-graph if and only 
if for distinct JCI, JC2, X3, x4e V, XiX2, x2x3, x3x4eE imply xxx3eE or JC2JC4GE. He 
showed that a graph is a D-graph if and only if it is the comparability graph of 
a tree poset. Jung [1] generalized this by calling a graph G = (V, E) a D*-graph if 
and only if for distinct JCX, JC2, JC3, x4e V, JCiJc2, JC2JC3, JC3JC4GE imply jCiX3eE or 
JC2JC4 6 E or JCIJC4 e E. It was shown that a graph is a D*-graph if and only if it is the 
comparability graph of a multitree. 

In this note we restrict the above definitions as follows (we assume that all graphs 
and posets are finite and our graphs have no loops or multiple edges): A graph 
G = (V, E) is a strong D-graph (strong D*-graph) if and only if for distinct xu JC2, 
JC3, JC4 e V, JCIJC2, JC2JC3, JC3JC4 e E imply JCIJC3 e E and JC2JC4 e E (imply JCIX4 e E). Clearly 
a strong D-graph is a strong D*-graph. Before proving our characterizations of 
these graphs recall that a poset is fan if and only if the is a zero and every non-zero 
element is maximal, and a poset P is a complete bipartite poset if and only if there 
exist disjoint non-empty subsets X and Y with X u Y = P and JC < y for all xeX, 
y eY with no comparabilities in X or in Y. 

The free sum of the posets P and Q is the set P u Q with JC < y in the free sum if 
and only if JC, y eP and JC <y in P, or JC, y e Q and JC <y in Q. That is, the Haase 
diagram of the free sum of P and Q is obtained by placing the Hasse diagrams of P 
and O side by side. 

Theorem 1. A graph G = (V, E) is a strong D-graph if and only if G is the 
comparability graph of a free sum of fans and chains. 

Proof. The comparability graph of a fan with n + 1 elements is KUn which is 
a strong D-graph, while the comparability graph of a chain is a complete graph, 
which is also a strong D-graph. Hence the comparability graph of a free sum of fans 
and chains is a strong D-graph. 

Assume G = (V, E) to be a strong D-graph. Since G is a strong D-graph if and 
only if every component of G is a strong D-graph, we assume further that G is 
connected. It then suffices to show that G is K-, n for some n or that G is complete. 
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From a lemma of Wolk [2, p. 108] there exists ceV such that vceE for all v e V, 
v £ c. If G is not complete, then there exist x,yeV\{c} such that xy IE. Suppose 
there is vertex z=£ c such that -JC e E. Then zjccy is a path and the strong D-graph 
condition gives xy e E, a contradiction. If there exist vertices z and w distinct trom 
JC, y and c such that zwe£ , then the path wzcx gives xzeE and we are back in the 
first case. Hence G is KUn for some n. 

Theorem 2. A graph G = (V, E) is a strong D*~graph if and only if G is the 
comparability graph of a free sum of chains and complete bipartite posets. 

Proof. The comparability graph of a chain or a complete bipartite poset is easily 
seen to be a strong D*-graph. 

As in the proof of Theorem 1, assume G to be connected but not complete. Then 
there exist JC, y e V such that xy & E. Let A = {z e V: zx e E} and B = {w e\ . wx 
£ E}. A and B are non-empty and we assert that A, B is a bipartition of V. First 
let z e A, w e B. Then by connectivity, there is some path from w to x. Taking one 
such shortest path and using the strong D* condition, either uzeE or we get 
a path wrxz which gives wz e E. In a similar vein one can show that there are no 
edges between vertices in A (if ZiZ2eE with Zu z2eA apply the strong D* 
condition to xz\Z2y) or between vertices in B (if WiW2 e E with wu w2eB apply the 
strong D* condition to wxw2zx for some z eA). Thus G is a complete bipartite 
graph. One can view G as a poset P by taking z < w for all z e A and w eB. Now G 
is the comparability graph of the complete bipartite poset P. 
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SAME^AHHE O ABYX TPAOAX CPABHHMOCTH 

LJ. U,. HOHCOH—<P . P. MaK-MoppHc 

Pe3K)Me 

rpacji G = ( V , E) Ha3MBaeTca ciporHM D-rpa(}K>M (crporHM D*-rpa(Jx)M) ecjiH AJIH BCHKHX e r o 

neTbipex pa3JiHHHbix BepuiHH JC„ x2, x3 , x*e V H3 xxx2, x2x3, XiX^eE cjieAyeT xxx^eE H X2X4EE 

(cjienye-r xxxAe E). rj,OKa3brBaiOTC5i cnenNrorinie flBa pe3VJibTaTa. fpacj? RBJIHCTCH crporHM D-rpac|>oM 

Torfla H TOJibKO Torfla, Korna OH flBJiaeTCH rpacjxm cpaBHHMocra CBOCJOAHOH cyMMbi BeepoB H ueneH 

FpacJ) HBJiqeTca crporHM D *-rpa4)OM Tor^a H TOJIBKO Torjja, Korfla OH aBJiHeTca rpac}x)M cpaBHHMocrH 

cBorjoflHOH cyMMbi n e n e n H nojiHbrx flBynojibHbix HacTHHHo ynop5moHeHHbrx MHoacecTB 
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