Peter Horák Enumeration of graphs maximal with respect to connectivity

Mathematica Slovaca, Vol. 32 (1982), No. 1, 81--84

Persistent URL: http://dml.cz/dmlcz/136286

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

ENUMERATION OF GRAPHS MAXIMAL WITH RESPECT TO CONNECTIVITY

PETER HORÁK

The notions and symbols not defined here will be used in the sense of [4].

One of the most important goals of the theory of k-vertex (edge) connected graphs is to construct all k-vertex (edge) connected graphs. This task has been accomplished for vertex connectivity by Dirac [2] and Plummer [7] for k = 2, by Tutte [9] for k = 3, by Slater [8] for k = 4 and by Chaty and Chein for 2-edge connected graphs [1]. For $k \ge 5$ this problem seems be very difficult. Therefore minimal k-vertex (edge) connected graphs are investigated. The dual question of maximal k-connected graphs has been studied by Gliviak [3].

The aim of this paper is to determine the number of maximal k-vertex (edge) connected graphs.

Let us denote, as usual, by $\varkappa(G)$ the vertex connectivity, by $\lambda(G)$ the edge connectivity of a graph G. Let G be a non-complete graph. Then following [3] G is called \varkappa_n -maximal if $\varkappa(G) = n$ and $\varkappa(G+x) > \varkappa(G)$ holds for every edge $x \in E(\bar{G})$. Analogically G is called λ_n -maximal if $\lambda(G) = n$ and $\lambda(G+x) > \lambda(G)$, for every edge $x \in E(\bar{G})$. Further, let the symbol A(G; n) denote the class of graphs that arose from graph G by adding n new edges.

Let graphs G_1 and G_2 have disjoint vertex sets V_1 and V_2 and disjoint edge sets E_1 and E_2 , respectively. Their union is the graph $G = G_1 \cup G_2$, which has the vertex set $V = V_1 \cup V_2$ and the edge set $E = E_1 \cup E_2$. Their join $G_1 + G_2$ consists of $G_1 \cup G_2$ and all edges joining V_1 with V_2 .

Theorem 1. ([3]) Let G be a graph and n, r, s be natural numbers. Then G is

- a) \varkappa_0 -maximal iff $G \simeq K_r \cup K_s$;
- b) \varkappa_n -maximal iff $G \simeq K_n + (K_r \cup K_s)$;
- c) λ_0 -maximal iff $G \simeq K_r \cup K_s$;
- d) λ_n -maximal iff $G \simeq A(K_r \cup K_s; n)$, where either $r = 1, s \ge n+1$, or $s, r \ge n+2$.

From Theorem 1 it is easy to see:

Theorem 2. Let p, n be natural numbers, $p \ge n+2$. Then the number of \varkappa_n -maximal graphs with p vertices is equal to $\left\lceil \frac{p-n}{2} \right\rceil$.

The number of λ_n -maximal graphs will be determined by applying Polya's Enumeration Theorem.

Let G be a graph. Then the symbol $\Gamma(G)$ denotes the vertex-group of G and $\Gamma_1(G)$ denotes the edge-group of G. Following [5] we shall say that $G_1, G_2 \in A(G; n)$ are similar if there is $\varphi \in \Gamma(G)$ such that $\varphi: G_1 \to G_2$ is an isomorphism. If G_1, G_2 are not similar, they are called dissimilar.

Theorem 3. Suppose that G_1 , $G_2 \in A(K_s \cup K_r; n)$, where $s, r \ge n+2$. Then G_1 and G_2 are similar iff $G_1 \simeq G_2$.

Proof. Let $G_1, G_2 \in A(K_s \cup K_r; n)$, where $s, r \ge n + 2$. As $G_1, G_2 \in A(K_s \cup K_r; n)$ we have $V(G_1) = V(G_2) = V(K_s \cup K_r) = V(K_s) \cup V(K_r)$. To express it more clearly let us denote $V(G_i) \cap V(K_s) = A_i$, $V(G_i) \cap V(K_r) = B_i$, for i = 1, 2. Obviously $A_1 = A_2, B_1 = B_2$. It is well known that $\varphi \in \Gamma(K_s \cup K_r)$ iff the components of graph $K_s \cup K_r$ are invariable with respect to φ , for $s \ne r$, and $\varphi \in \Gamma(K_s \cup K_s)$ iff either the components of this graph are invariable with respect to φ or φ maps any vertex of one component onto a vertex from the other component.

The necessity of the condition is straightforward. Let now $G_1 \approx G_2$. We shall show that G_1 and G_2 are similar. We shall prove it indirectly.

Let us consider the case $s \neq r$. Let $\varphi: G_1 \rightarrow G_2$ be an isomorphism and let $\varphi \notin \Gamma(K_s \cup K_r)$. Thus there is a vertex $u \in A_1$ such that $\varphi(u) \in B_2$. Put

$$A = \{u ; u \in A_1, \varphi(u) \in B_2\}, \\ B = \{u ; u \in B_1, \varphi(u) \in A_2\}.$$

Obviously |A| = |B|. Let |A| = p (as $\varphi \notin \Gamma(K_s \cup K_r)$, in the case of s = r there must be p < s). Let $u, v \in A_1$ and $\varphi(u) \in A_2$, $\varphi(v) \in B_2$. Since $uv \in E(G_1)$, and φ is an isomorphism, $\varphi(u)\varphi(v) \in E(G_2)$. As $\varphi(u) \in A_2$, $\varphi(v) \in B_2$, the edge $\varphi(u)\varphi(v)$ does not belong to $E(K_s \cup K_r)$. Analogously for $z, w \in B_1, \varphi(z) \in A_2$ and $\varphi(w) \in B_2$ we have $\varphi(z)\varphi(w) \in E(G_2)$ but $\varphi(z)\varphi(w) \notin E(K_s \cup K_r)$. Therefore

$$n \ge (r-p)p + (s-p)p.$$

On the other hand, for $r > s \ge n+2$, $1 \le p \le s$ (is the case of s = r, $s \ge n+2$, $1 \le p \le s-1$) there holds

$$(r-p)p+(s-p)p>n$$

and we have a contradiction. Thus $\varphi \in \Gamma(K_s \cup K_r)$. Q.E.D.

Let us denote, as usual, by Z(H) the cycle index of the permutation group H. The polynomial Z(H, 1+x) is determined by substituting $1 + x^k$ for each variable s_k in Z(H). **Theorem 4.** Let p, n > 0 be natural numbers, $p \ge n + 2$. Then the number of λ_n -maximal graphs with p vertices is

a) 1 for
$$n+2 \le p \le 2n+3$$
,

b) the coefficient of x^n in

$$x^n + \sum_{i=n+2}^{\lfloor p/2 \rfloor} Z(\Gamma_1(K_{i,p-i}, 1+x) \text{ for } 2n+4 \leq p,$$

where $K_{s,r}$ denotes the complete bipartite graph.

Remark 1. The cycle index of the edge group of $K_{s,r}$ can be found in [6].

Remark 2. As the graph G is λ_0 -maximal iff G is \varkappa_0 -maximal, the number of λ_0 -maximal graphs is given in Theorem 2.

Proof. Let G be a graph with p vertices. Suppose that $n+2 \le p \le 2n+3$. From Theorem 1 it follows that G is λ_n -maximal iff $G \in A(K_1 \cup K_{p-1}; n)$. As $|A(K_1 \cup K_{p-1}; n)| = 1$, there is only one λ_n -maximal graph. Now, let $2n + 4 \le p$. According to Theorem 1 G is λ_n -maximal iff either $G \in A(K_1 \cup K_{p-1}; n)$ or $G \in A(K_s \cup K_{p-s}; n)$, where $s, p-s \ge n+2$. Let $G_1 \in A(K_s \cup K_{p-s}; n)$, $G_2 \in A(K_r \cup K_{p-r}; n)$, where $r \ne s \ne p - r$. Then G_1 cannot be isomorphic to G_2 because $|E(G_1)| \ne |E(G_2)|$. Thus the number of λ_n -maximal graphs is equal to

$$1 + \sum_{i=n+2}^{\lfloor p/2 \rfloor} |A(K_i \cup K_{p-i}; n)|.$$

From [5] it follows that the number of dissimilar graphs in A(G; n) is the coefficient of x^n in $Z(\Gamma_1(\bar{G}), 1+x)$. By Theorem 3 we have that the number of dissimilar graphs in $A(K_s \cup K_r; n)$ is equal to the number of nonisomorphic graphs in this class, for $s, r \ge n+2$. Thus the number of λ_n -maximal graphs is the coefficient of x^n in

$$x^{n}+\sum_{i=n+2}^{\lfloor p/2\rfloor}Z(\Gamma_{1}(\overline{K_{i}\cup K_{p-i}},1+x)).$$

However, $\overline{K_p \cup K_q} = K_{p, q}$, and the proof is complete.

REFERENCES

- [1] CHATY, G.—CHEIN, M.: Minimally 2-edge connected graphs. J. Graph Theory, 3, 1979, 15–22.
- [2] DIRAC, G. A.: Minimally 2-connected graphs. J. Reine Angew. Math., 197, 1967, 204-216.
- [3] GLIVIAK, F.: Maximal graphs with given connectivity and edge connectivity. Mat. Cas., 25, 1975, 99-103.
- [4] HARARY, F.: Graph Theory. Addison-Wesley, Reading, Mass. 1969.
- [5] HARARY, F.: The number of dissimilar supergraphs. Pacific J. Math., 7, 1957, 903-911.

- [6] HARARY, F.: On the number of bicolored graphs. Pacific J. Math., 8, 1958, 743-755.
- [7] PLUMMER, M. D.: On minimal blocks. Trans. Amer. Math. Soc., 134, 1968, 85-94.
- [8] SLATER, P. J.: A classification of 4-connected graphs. J. Combinatorial Theory Ser. B, 17, 1974, 281-298.
- [9] TUTTE, W. T.: A theory of 3-connected graphs. Indag. Math., 23, 1961, 441-455.

Received February 4, 1980

Katedra matematiky a deskriptívnej geometrie Stavebnej fakulty SVŠT Radlinského 11 813 68 Bratislava

ЧИСЛО ГРАФОВ, МАКСИМАЛЬНЫХ ОТНОСИТЕЛЬНО СВЯЗНОСТИ

Петер Горак

Резюме

В работе определено число графов, максималшных отностиельно вершинной (реберной) связности.