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I'-REGULATOR AND IT-REGULATOR
OF A LATTICE ORDERED GROUP

FRANTISEK SIK

Let a representable /-group G be isomorphic to a subdirect sum of linearly
ordered groups {G.: xeR}, G=(G.: xeR). We endow the set R with the
so-called induced topology whose base for closed sets is given by the set
F={Z(f): fe G}, where Z(f) = {xeR: f(x)=0}, [6] sec. 7, [8] I 1.5. The
corresponding topological space is denoted by (R, G). It is well-known that there
exists a one-to-one correspondence y associating with R a realizer (R, |J) of G. By
a realizer of G there is meant a set R together with a mapping |J: x e R— x into
the set of all prime ideals of G fulfilling [ ){{Jx: x e R} = {0} ([8] 11 3;[10]I 1.1).
The property f(x)=0 means felJx. The set F={Z(f): fe G}, where Z(f)
= {xeR: feUx} is thus a base. of closed sets for a topology on the set R. The
corresponding topological space is denoted by (R, G). The mapping y is evidently
a homeomorphism of the topological spaces (R, G) and (R, G).

We obtain a generalization of the notion of the topological space (R, G)
replacing the realizer by the so-called regulator. The notion of a regulator can be -
obtained from that of a realizer by replacing prime ideals by prime subgroups in the
definition. Introducing the topology on a regulator in a similar way as above we
extend the domain of applicability of the induced topology from the class of
representable /-groups to the class of all /-groups. A number of results concerning
topologies induced by representable /-groups [S—9] can be generalized to arbitrary
I-groups (see [10]). As it is clear from above, topologies will be studied on indexed
systems of prime subgroups restricted by the condition of zero intersection. We can
meet with another approach to this problem in [1] by S. Bernau. He supposes that
the prime subgroups of the system are z-subgroups and does not suppose the zero.
meet of the system. '

1. The purpose of the present paper is to examine the I'-regulator and the
IT'-regulator of an /-group, their mutual relations and especially various degrees of
amalgamation of these regulators. We may give a more detailed description of
results after introducing necessary terminology and notations (see the beginning of
sec. 2).

1.1 Definition. Let G be an /-group, R¥@asetand | J: xeR — |Jxe P(G) a
mapping of R into the set P(G) of all prime subgroups of G. The pair (R, ) is
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called a regulator of G if MN{Ux: xeR} = {0}. A regulator (R, |J) is said to be
standard if | Jx# G for every xeR, [8] II3. A regulator (R, J) for which
Ux||Uy whenever x, yeR, x#y, is called reduced. A reduced regulator of an
I-group G# {0} is evidently standard. The mapping |_J defines a partition it on R
and an injection | of R into P(G). The pair (R, ) is clearly a regulator of G ; it
is called the simplification of (R, |J). A regulator (R, |J) is said to be completely
regular if there holds: xeR, fe G, fe|Jx = there exists g € G such that fdg,
g € Ux (where f5g means that |f| A|g| =0, the disjointness of f and g). A regulator
(R, U) of G is called a realizer if | Jx is a prime ideal of G for every x e R ([10]
11.1).

In every /-group G+{0} there exists a standard (even reduced completely
regular) regulator while the existence of a realizer characterizes representable
l-groups.

Instead of (R, |J) we often write N supposing tacitly that the mapping | is
given.

We say that two regulators (R, ) and (R, |J.) of G are equal and we write
*:, U) = R, L) if a bijection @ of R, onto N, exists such that | J.px = Uix
for every x e R..

In [8] the symbol x(eR) substitutes the associated subgroup | Jx and hence by
a regulator, there is meant there an indexed family of prime subgroups of G whose
meet is {0}.

1.2 Definition. Let (R, | J) be a standard regulator of an /-group G. Define

F={Z(f): fe G}, where Z(f)={xeR: feUx}.

1.3 Theorem. Let (R, |J) be a standard regulator of an I-group G. Then § is
a base of closed sets for a topology on R, ([10] 11.2).

This topology is called the topology induced on i by G. The corresponding
topological space is denoted by (R, G).

1.4 Definition. Denote by I'(G) the Boolean algebra of all polars of G. By the
symbol K’ we mean the complement in the algebra I'(G) of KeI'(G), by the
symbol IT'(G) the set {f': fe G} of all dual principal polars of G and by II(G) the
set {f': fe G} of all principal polars of G. Here f' = {f} = {ge€G: fég},
f'=(f") and fég = |f|A|g|=0. Thus K'={g e G: fég for every fe K}.

1.5 Definition. An antifilter on a lattice = is a nonempty subset x c = fulfilling::
1. Kex,LeE,L<K > Lex;2. K,Lex > KvLex;3. The greatest element
of Z (provided it exists) does not belong to x. A maximal antifilter (with regard to
the inclusion) is called an ultraantifilter. The set of all ultraantifilters on = will be
denoted by U(Z).

1.6 The sets.11(E) where Z is I'(G) or IT'(G) or II(G), play a significant role in
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the theory. If, in this case, x €lI(Z) holds, we define | Jx = |J{K: Kex}. If
Ux+ G, we speak of a standard ultraantifilter, [8] 11 4.10. Every x e I(IT") is
standard, [8] II 4.11, while x € l1(I') is standard iff x~IT’' #@, [8] II 4.12. The set of
all standard ultraantifilters on I'(G) is denoted by U,(I).

For x el1(£E), where £E=TI(G) or IT'(G) or II(G), | Jx is a prime subgroup
of G; (U,(IN, J) and UUT"), ) (briefly R+(G) and R (G) or Rr and Ry only)
are standard regulators of G. The latter is reduced and completely regular, [8]
II 4.15 and 4.16 (see also [10] II 1.5(1)). Rr or Ry is called the I'-regulator or the
IT'-regulator, respectively.

1.7 Definition. On the set 11, where 11 = u,(I) or U(Z) (£ a lattice), we define
a topology whose base for open sets is given by

'={Uf": feG) or T={UUK: Ke E}, where IK={xell: Kex},

[511.9;[7] IV 1.10. (In the case I =U,(I") in [5] the symbol Bf’ is used instead of
Uf’, which is reserved for another notion.)

If necessary, the notation is specified by 11f’ in the former case and by ll=K in
the latter. We shall apply the definition for Z=IT'(G) or =II(G).

1.8 Theorem. The topological spaces (1,(I'), ') and (Rr, G) are homeomor-
phic and the topological spaces (W(IT'), ) and (Rn, G) are homeomorphic.
See [5] 2.1, [8] II 4.18. Both assertions follow easily from the following lemma.

1.9 Lemma. For xeW(I') or xeU(IT') and fe G we have

flex=felUx.
[7) Lemma 1, [8] II 4.6.

1.10 Definition. Let G and R be nonempty sets and | J: R— exp G a mapping.
We define a binary relation (a polarity) o< G X R by the rule fox=fe|Jx.
Define
Y(A)= {fe G: fox forevery xe A} (Bc AcR),

Z(P)={xeNR: fox for every fe P} (Ac P< G).

As A={x} or P={f}, we have ¥({x})=Ux or Z({f}) = Z(f), respectively,
(Definition 1.2). Instead of ¥({x}) we put W¥(x). Wand Z are dual isotone
mappings between the sets exp R and exp G.

A straightforward computation shows that the following lemmas are true (see

[10] 2.2, 2.3 and 2.4).
1.11 Lemma. For every 3c AcR and @< P< G there holds
Y(A)={U=x: xe A}={fe G: Z(f)2 A},
Z(P)=M{Z(N): feP}={xeR: Ux2P}.
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1.12 Lemma. Ac Bc R implies W(A) 2 W(B),
Y(A)=G=Ac{xeM:Ux=G}; PR)=N{U=x: xeR};
Pc Q< Gimplies Z(P)=2 Z(Q),
Z(P)=R=Pc{Ux: xeR}, Z(G)={xeR: Ux=G};
ZY(A)2 A, PZP(A)=P(A) (AcR)
YZ(P)2 P, ZWZ(P)=Z(P) (P< G).

1.13 From 1.12 it follows that the mapping Z¥: exp H—exp R is a closure
operation in }. The ZW¥-images of the elements of exp N (i.e. the subsets of
closed under ) are exactly the closed sets of the topological space (R, G). Then
the system of all closed sets of the space (R, G), N(R, G) is given by

RNRER, G)={ZW(A): AcR}={Z(P): PcG}= {fDPZ(f): Pc G} ,

[10]12.9. :
Similarly, the mapping ¥Z: exp G—exp G is a closure operation in G. The
system of all subsets of G closed under g is denoted by (R, G). Thus we have

QR, G)={WZ(P): Pc G}={W(A): Ac_:?ﬁ}={rlll’(x): Ang},

[10]12.11.

1.14 Theorem. The mappings ¥ and Z are (mutually inverse) dual isomorph-
isms of the systems Q(R, G) and N(NR, G) ordered by inclusion.
[10]12.12. (Indeed, by ¥ or Z there is meant the restriction of ¥ or Z on
NN, G) or Q(R, G), respectively.)

1.15 Denote by (R, G) or O(R, G) (briefly W or Ox) the lattice of all regular
closed sets or all clopen sets of the space (R, G), respectively and by I'(R, G)
(briefly I'n) the lattice of all ambiguous polars of G, i. e. polars K e I'(G) with the
property xe R, Kc|Jx = K’ £|Jx. Then there holds

Z() =M, ¥ Dw) =T, Z(Iw)=0n, WY(Ox)=TIn,

[10]I12.18 and II 2.2.

2. The aim of the present paper is to eastablish relations between the I'-reg-
ulator and the IT'-regulator of an /-group, especially various degrees of amalgation
of these regulators. The results are contained in Theorems 3.1, 4.1 and 4.2. In
Theorem 3.1 there are described conditions under which the simplification of the
I'-regulator is equal to the IT'-regulator and in Theorem 4.1 conditions under
which the I'-regulator itself is equal to the IT'-regulator. In both cases the
conditions are classified according to the describing objects, which are: the
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regulators, the ultraantifilters, the topology induced on U,(I"), U(IT"), U(IT), Rr or
N, the structures in G, the relations between the structures in G and the topology
induced in Rr. In Theorem 4.2, the same problem as in Theorem 4.1 is examined
on the supposition that the /-group contains a weak unit. This supposition is of
much importance in 3.1.

2.2 Lemma. Let G be an I-group and x € 1.(I'). Then the following condi-
tions are equivalent.

(1) xnIT en(n).

(2) Ur=U(xnIT).

(3) There exists y e W(IT') such that |Jx=UJy (i.e. Ux is a minimal prime
subgroup of G). '

4) yel,(I), y2xnIT' implies ynIT =xnIT'.

(See [5] 2.24).
Proof. 1 = 3. By 1.9 there holds

feUx > flfex > fexnIl' > fe J(xnIT'),

thus Ux cUJ(xnIT’). The converse inclusion holds as well. Hence we can take
xNIT for y.|Jx is a minimal prime subgroup of G by [8] III 7.2 or [2] 3.4.15.
3 = 2. Pick y e U(IT’) such that [ Jx=Jy. Then y=xnIT' for

fexefelUr=Uy=fey

by 1.9, and so y=xnIT’ and thus Ux=Uy=U(xnIT").

2 > 4. Fix yell,(I) with yoxnIT'. Then ynIT'2xnIT’, hence Jy 2
UnIT) 2 U(xnIT) = Ux. Thus Uy 2(Jx and by [8] 11 4.13 ynIT' < xnIT'
holds. Finally ynIT' = xnIT'.

4 = 1. Choose z € U(IT') with zoxNIT' and y e 1,(I) such that y o z. Then

y2xnIT', thus z=ynII' = xnIT', i.e. xnII' eUIT").

2.3 Definition. Let P be a topological space. We define an equivalence on P,
Rs by the rule
xRyy=x=y, where the bar indicates the closure in P. The partition on P
corresponding to the equivalence will be denoted by R, as well. We call the atoms
of the system of all closed subsets of P (ordered by inclusion) trivial closed subsets
(of P). Similarly for open and clopen sets.

2.4 Lemma. If all blocks of a partition R on P are trivial closed sets, then
R= Rb.
Proof. If TeR and xe T, then @+ f< T=T. From the minimality of T it
follows that £ = T. Thus, if x, y € T then X =T =y, i.e. xR,y. Conversely, if xR,y
and xe Te R, then Xx=y and, as above, ¥x=T. Hence yey=x=T.
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3. Let G be an /-group and (R, |J) a standard regulator of G. Denote by

O0.(R, G) the family of all compact clopen sets of the space (R, G).

I

II.

We shall consider the following conditions (*), (**) and (1a) to (4f).
(*) 0#ae G implies that there exists b € G with {0} #b'ca".
(**) G has a weak unit.

. (1a) The simplification of the I'-regulator is equal to the IT'-regulator (i.e.

{Ux: xell (N} = {Uy: yel(r))).

(1b) The simplification of the I-regulator is a reduced regulator (i.e.
x, y €1L,(I), Ux#Uy implies Ux ||Uy)-

(1c) The I'-regulator is completely regular.

(2a) xel (I implies xNIT e U(IT").

(2b) x el (I) implies Ux=UJ(xnIT").

(2¢) x el (I) implies that there exists y € U(IT") such that Jx =y (i.e. Ux
is a minimal prime subgroup of G).

(2d) x, yell,(I'), y2xnII' implies ynIT' =xnIl'. ™

(3a) The trivial closed subsets of the space (U.(I'), ') form a partition of
u.(n). _

(3b) The blocks of the partition R, on the space (11.(I'), X") are (trivial) closed
sets.

(3c) The space (1.(I"), =') has a base for open sets formed by closed sets.

(3d) U,f" is a closed set of the space (U,(I"), X’) for every fe G.

(3e) The space (I(IT'), X) is compact.

(3f) The space (1(IT), X) is compact and G fulfils the condition (*).

(3g) U (D\If €2’ for every fe G.

(3h) The space (R, G) is compact.

(3 l) U(Ean, G)= oc(mn', G).

(4a) I1(G)=1IT'(G).

(4b) The lattice IT(G) is a Boolean algebra.

(4c) The lattice IT'(G) is a Boolean algebra.

(4d) ¥[O.(Rn, G)=1I(G).

(4e) IR, G)=II(G).

4f) rRn, G)=1IT(G).

The following theorem deals with the above mentioned conditions.

3.1 Theorem. Let G be an I-group # {0}. Then the conditions of sec. I are

equivalent. The conditions of sec. II are equivalent as well. Each of them implies

the conditions of sec. I and the existence of a weak unit in G. If G has a weak unit,

all the conditions (1a) to (4f) are equivalent.
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Scheme of the proof.

i e B :
I. fa—1p lc—-2 16 —= 28w 2b2n2c e=2d 38 ==3b<—3c~—3d
[ S ——')

e

II. 3i-=dde- ﬁ”u“u.—.x ~-de=-dh~de—dr g

The equivalence of (2a) to (2d) follows from 2.2. Furthemore, we shall prove the
following implications : (2b) A (2¢) = (1a) = (1b) = (2a), (1a) = (1c) = (2a)
> (3d), (3a) < (3b) = (2d), (3d) = (3c) = (3b). Thus the equivalence of the
conditions of sec. I will be verified.

The equivalence of (4a), (4b), (4c), (3e) and (3f) follows from [10] I 1.9,
(3e) <> (3h) by [10] 1 1.7 and (4a) <> (4d) <> (3i) from [10] IT 2.6 (see also 1.15
and 1.14). If we show (3g) <> (4a), (3h) => (4¢) = (4a) and (4e) > (4f), the
equivalence of the conditions of sec. II will be established.

(4a) evidently implies (**). The implication (3g) = (3c) follows directly from
the definition of the base X', hence II = L. It suffices to prove that (2a) A(**) >
(3e) for the equivalence of all the conditions (1a) to (4f) to be verified, provided
that G has a weak unit.

(2b)A(2¢c) = (1a). From (2c) there follows the inclusion < between the
compared sets in (1a) and from (2b) the converse inclusion, because for y € 11(IT’)
and x € I,(I') with x o y there holds y =xnIT’, hence | Jx = J(xnIT") = Jy.

(1a) => (1b) follows from [8] II 4.16.

(1b) =>((2a). If xeU,(I") and the antifilter xnIT' (#@ by [8] I1 4.12) on IT' is
not maximal, then there exists ze U(IT') with zoxNIT' and z# xNIT'. Choose
yel,(I') such that yoz. Then ynIT' 2xnIT’, thus by [5] 2.8 or [8] I14.6
Uy cUx. By supposition | Jy =|Jx, hence by [5] 2.8 again, we have z=ynIT’
= xnIT', a contradiction. ‘

(1a) > (1c). Since the IT'-regulator is completely regular ([8] Il 4.16), the
I'-regulator is completely regular.

(1c) = (2a). Fix xel,(I') and for some fe G, let f'exnIT’. By 1.9 felUx
holds and by supposition, there exists g € G such that f8g and g € | x. By 1.9 there
holds g’ e x and fég implies f'vrg' = G. Thus xnIT' e U(IT').

(22) = (3d). [5] 2.16.

(32) > (3b). Lemma 2.4,

(3b) = (3a). Since the blocks of the partition R, are closed sets, for every
zel(IN), Z is a block of the partition R,. Indeed, for Te R, and u, z€ T there
holds Z& T=T and ue =1z, hence z=T. Every block Z of the partition R, is
trivial closed, for there holds Acl,(I, @+Acz, xeA > FcAci >
i=A=1Z.
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(3b) = (2d). For every zell,(I), 7 is a block of the partition R, (as in the
above paragraph). Pick x, yell,(I") such that yoxnIT'. Then ynIT' 2xnIT,
hence x € y (see [5] 1.11). It follows that y = % and y € %, which implies (by [5] 1.11
again) ynIT' c xnIT'. Hence the required equality.

(3d) = (3¢c) is evident.

(3c) = (3b). [8] IV 9.2.

(3g) = (4a). [5] 2.7.

(3h) = (4e). By [10] II 2.6 and 2.2 we have II(G) = W[ORn, G)]
= 'R, G).

(4e) > (4a). By the definition of an ambiguous: polar there holds
KeI(Rn, G) > K'eI'Rn, G), hence from II(G) = I'NRrr, G) it follows that
IT(G) ¢ 'R, G) and IT'(G) < I1(G). Consequently IT'(G) = II(G).

(4€) > (4f). This is an immediate consequence of the fact just proved, viz.
(4e) > (4a).

(4f) > (4e). In a similar way as in (4e) = (4a) we prove (4f) => (4a) and
hence (4e).

(2a)a(**) > (3e). @: xel,(I') - xnII' is a mapping onto 1(IT’), because
for yeU(IT') and x € l1,(I) such that x o y there evidently holds xnII' =y. The
space (11,(I"), 2") is compact by [5] 3.3, thus it suffices to prove that ¢ is continuous
and for this it suffices to prove ¢ '(Urf’) = Urf’ for every fe G. Since ¢~ (Unrf')
= {xel,(IN): f € xnIT'}, there holds ¢~ '(Ur-f') = Urf’, completing the proof of
Theorem.

4. Let G be an I-group. Denote

I. (1a) The I'-regulator of G is equal to the IT'-regulator of G.
(1b) The I'-regulator of G is completely regular and reduced.
(1c) The I'-regulator of G is reduced.
(2a) (1,(I), ') is a T;-space.
(2b) (U, (I, =') is a Hausforff space.
(2c) (U, (I), 2") and (U(IT’'), X) are homeomorphic spaces.
(3a) xell,(I') = xnIT'eU(IT’) and x is a unique uiltraantifilter on I'(G)
containing xNIT'. '
II. 3b) xel.(I), Kex > there exists fe G with f' ex, f'o K (this is the
condition (p) introduced in [5] 2.22).
(3c) xell,(I") => there exists no K € I'(G) such that KUK’ <x.
(3d) xell,(IN, KeI'(G), KcUJx > Kex.
(3e) xell, (N, KeI'(G), Kex => there exists fe G such that f' e x, Kv f' =
G. ’
(4a) The space (Rr, G) is extremally disconnected (i.e. closures of open sets
are open).
(4b) The lattice IM(NRr, G) is a sublattice of the lattice N(NRr, G).
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(4c) O(Rr, G)=D(Rr, G).

(4d) For the complement A’ in the lattice (R, G) of an arbitrary element
A eD(Rr, G), there holds AnA’'=0.

(5a) The lattice I'(G) is a sublattice of the lattice Q(Rr, G).

(5b) ¥ and Z are bijections of the sets O(Rr, G) and I'(G).

(5¢) I'(G)=r(Rr, G).

(6a) I'(G)=1II(G).

(6b) I'(G)=1I1'(G).

Note. We may replace the space (U,(I'), ') or (U(IT’), X) in (2a), (2b) and (2c¢)
by the spaces (Rr, G) or (R, G), respectively (1.8).

4.1 Theorem. Let G be an l-group #{0}. Then the conditions of sec. I are
equivalent. The conditions of sec. II are equivalent as well. Each of them implies
the conditions of sec. I and the existence of a weak unit in G.

Note. It is not true, in contrast to Theorem 3.1, that all the conditions (1a) to
(6b) are equivalent as soon as G has a weak unit. We give an example of an /-group
G which fulfils (1c) and does not fulfil (6a). (This example is due to J. Jakubik.)

Let I be an infinite set, for each i € I let H, be a linearly ordered group, H;+ {0}
and H=Z{H;: ieI}. Let C be the additive group of integers (with the natural
order) and G = C. H, where o is the symbol of the lexicographic product. Then G
has a weak unit and (6a) does not hold. We shall prove that (1c) is true in G. It
suffices to verify that H fulfils (2c) because evidently I'(G)\{G} = I'(H)\{H}.
Now let x, yeU,(I'), Kex and K< Jy. Then a set A of elements of y covers K,
thus \/ A =K. The lattice I'(H) is compactly generated (because G has a base
— see [11], Satz 3) thus there exists a finite subset B of A with \/B= K. However,
K=VBey, and so | Jxc|Jy implies xcy and therefore x=y. Finally, x#y

implies Ux ||Uy-
Scheme of the proof.

1. 3a e 2ce2beo2ae 1lco 1b o la

)
Sce>4d & 4b o 4a © 4c o S5a < 5b

> (**)

The equivalence of (1c), (2a), (2b), (2c) and (3a) is proved in [5] 2.18. If we
show the equivalence of (1a), (1b) and (1c), the equivalence of all the conditions of
sec. I will be verified. :

The equivalence of (3b), (3c), (3d) and (3e) is shown in [5] 2.23, that of (4a),
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(4b), (4d) and (5c) in [10] I 2.12, and that of (4a), (4¢), (5a) and (5b) in [10] II 2.5.
As far as we prove (4d) <> (3c), we have got the equivalence of the conditions (3b)
to (5¢). The claims (6a) <> (6b) and (6b) = (3b) are evident. Furthermore, we
shall show that (3b) implies (**), the existence of a weak unit in G. This enables us
to prove the implication (5b) = (6a). Thus the equivalence of the conditions of
sec. II will be established. The evident implication (6b) = (1a) means that II = L
This completes the proof of Theorem 4.1.

(1c) <> (1b) <> (1a). The assumption (1c) implies the condition 3(1b), hence
3(1a), and this together with (1c) implies (1b) (for the IT'-regulator is completely
regular) and (1a). The implication (1b) = (1c) is evident, (1a) = (1c) follows
from (8] II 4.16.

(4d) < (3¢c). If (3¢c) is not true, then xell,(I") and KeI exist such that
KUK'c|Jx. Hence for Z=Zz, we have xe Z(|Jx) = Z(K)nZ(K'). Conse-
quently the meet of the complementary elements Z(K) and Z(K') of the lattice
M(Rr, G) is nonempty, i.e. (4d) does not hold. Conversely, if (4d) does not hold,
then the meet of some pair of complementary sets A, A’ e D(Rr, G) is nonempty.
If xe AnA’ for some x € 1,(T), then Jx = ¥(x) o W(A)uW¥(A"), hence (3c)
is not true, for W(A) and ¥(A') are complementary polars of G.

(3b) > (**) (the existence of a weak unit of G). There holds U,(I") =1U(TI),
because for x e W(I") xNIT' +@ ([8] I1 4.12). The equality U,(I")=U(I) is equiva-
lent to the existence of a weak unit in G ([8] V 12.6).

(5b)A(**) > (6a). By [5] 3.3, the space (U,(I), =') is compact, thus the
homeomorphic space (Rr, G) is compact as well (1.8). Since (3b) = (3a) holds by
[5]2.24, there holds R =R, and so the space (R, G) is compact. By [10] IT 2.8,
Y, maps O(R, G) onto IT(G), hence Wr [O(Rr, G)] = I1(G). By [10] 11 2.6,
from (5b) it follows that Wy, maps O(Rr, G) onto I'(G). Consequently I'(G) =
II(G).

Recall that a subgroup A of an /-group G is said to be a z-subgroup if
feA > f'c A, [2] 3.3.8. A regulator (R, |J) is called a z-regulator if | Jx is
a z-subgroup for every x e R, [10] II 2.23.

4.2 Theorem. Let G be an Il-group #{0}. The following conditions are
equivalent.

(a) G has a weak unit und fulfils one of the conditions of sec. I, Theorem 4.1.
(b) (I, X') is a Hausdorff compact space.

(c) I'Rr, G)=1II(G) and Rr is a z-regulator.

(d) I'Rr, R)=IT'(G) and Rr is a z-regulator.

Proof. a = b. From the condition (la), Theorem 4.1, there follows (1a),
Theorem 3.1, hence the space (1(IT'), X) is compact by Theorem 3.1. Moreover,
from (1a) (=(2c)=(2b)), Theorem 4.1, it follows that (11.(I'), ") is compact and
Hausdorff.
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b = ¢ If (U,(I), ') is a compact Hausdorff space, then by 4.1 ((2b)=(2c)),
(u{r), Z) is compact, hence by 3.1 ((3c)=(4e)), 'R, G) = I1(G). Again by
4.1 ((2b)=(1a)), '(Rr, G) = II(G) and by 4.1 ((2b)=(1b)), Rr is completely
regular, thus by [10] IT 1.4 Z(f") = Z(f) for every fe G (with Z = Zg,). Using [10]
II 2.2a, R is a z-regulator.

c < d follows immediately from the fact that evidently KeI'(R, G) >
K' e I'(R, G) for an arbitrary regulator (R, ).

d = a. cad implies IT(G)=IT'(G), hence G has a weak unit. Write Zy, = Z.
By [10] II 2.2a, Z(f")= Z(f) for every fe G. Then {Z(f): fe G} = Z(II(G))
= Z(I'(Rr, G)) = ORr, G) ([10] I1 2.2). Thus Z(f) is open for every fe G. By
[10] IT 1.4 the I'-regulator is completely regular, which is the condition 4.1 (1b).
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I-PETYIIATOP N IT'-PETYJIATOP CTPYKTYPHO YIIOPSJJOYEHHBIX I'PYIIIT
®panrnmexk Muk

Pesome

Mapa (R, |J) nasbsaetcs perynsropom I-rpymubt G, ecnmu R — muoxectso #0, |J — o106-
paxerne R B MHOXECTBO mMpoCThbIX mOArpymnbl B G u, ecnu Bemonseno [ {Jx: xeR} = {0}.
BaxHsle perynsropsl npeactasnsior MHoXecTBa R =11(Z) Bcex yabTpaaHTHHIBLTPOB Ha CTPYKTYype
E=TI(G) (Bcexnonap B G) unu = IT'(G) (Bcex nyabHbIX INABHBIX MIONAP B G), €CIIH MbI OTIpeNensieM
Ux=U{K: Kex} pns Bcex xeR. Iepsoe u3 mux HaswiBaercsi I'-perynsitopoM, Bropoit — IT'--
peryastopoM. Ileno paboThl — yCTaHOBUTH OTHOLIEHHS MeXAYy I'-perynstopoM u IT'-peryasTopom,
a HMEHHO YCTaHOBHTb Pa3lIHYHbIE CTENEHH CIMAHHSA 3THX peryasTopoB. B teop. 3.1 HaliieHbI yclIOBHS,
NpH BBINOJIHEHHH KOTOPLIX ynpolieHue I'-peryasitopa pasao IT'-perynstopy, a B Teop. 4.1 ycnosus,
npH KoTopbIx cam I'-perynsrop paseH IT'-peryasaropy. B 4.2 pemaercs Ta xe camas npobiaeMa npH
YCIIOBHH CYLIECTBOBaHMs Cl1aGoii efuHMIbl B G. DTO NMPEANONIOXKEHHE HIPaeT BaXHyio pons B 3.1.
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