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Math. Slovaca 32,1982, No. 2,10S-116 

T-REGULATOR AND 77-REGULATOR 
OF A LATTICE ORDERED GROUP 

FRANTISEK SIK 

Let a representable /-group G be isomorphic to a subdirect sum of linearly 
ordered groups {G*:jte9t}, G = (G*: *e9t). We endow the set 9t with the 
so-called induced topology whose base for closed sets is given by the set 
g = {Z( / ) : / eG} , where Z(f) = {xedi: f(x) = 0}, [6] sec. 7, [8] I 1.5. The 
corresponding topological space is denoted by (9t, G). It is well-known that there 
exists a one-to-one correspondence y associating with 9t a realizer (9t, (J) ° ' &- By 
a realizer of G there is meant a set 9t together with a mapping \J: x e 9t-» [Jx into 
the set of all prime ideals of G fulfilling C\{\Jx:x e 91} = {0} ([8] II 3; [10] 11.1). 
The property /(x) = 0 means fe\Jx.'The set g = {Z(/): feG}, where Z(f) 
= {xe9t: fe[Jx} is thus a base of closed sets for a topology on the set 9t. The 
corresponding topological space is denoted by (9t, G). The mapping y is evidently 
a homeomorphism of the topological spaces (9t, G) and (9t, G). 

We obtain a generalization of the notion of the topological space (9t, G) 
replacing the realizer by the so-called regulator. The notion of a regulator can be 
obtained from that of a realizer by replacing prime ideals by prime subgroups in the 
definition. Introducing the topology on a regulator in a similar way as above we 
extend the domain of applicability of the induced topology from the class of 
representable /-groups to the class of all /-groups. A number of results concerning 
topologies induced by representable /-groups [5—9] can be generalized to arbitrary 
/-groups (see [10]). As it is clear from above, topologies will be studied on indexed 
systems of prime subgroups restricted by the condition of zero intersection. We can 
meet with another approach to this problem in [1] by S. Bernau. He supposes that 
the prime subgroups of the system are z-subgroups and does not suppose the zero, 
meet of the system. 

1. The purpose of the present paper is to examine the F-regulator and the 
77' -regulator of an /-group, their mutual relations and especially various degrees of 
amalgamation of these regulators. We may give a more detailed description of 
results after introducing necessary terminology and notations (see the beginning of 
sec. 2). 

1.1 Definition. Let G be an /-group, 9t =£ 0 a set and (J :x e 9t -» |J* € &(G) a 
mapping of 9t into the set &(G) of all prime subgroups of G. The pair (9t, U) -s 
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called a regulator of G if H { U ^ : xedt} = {0}. A regulator (9t, (J) i s s a i d t o b e 

standard if [JJC-^ G for every .re9t, [8] II 3. A regulator (91, | J ) f ° r which 
U ^ I I U y whenever x, ye9 t , *=£ v, is called reduced. A reduced regulator of an 
/-group G ^ {0} is evidently standard. The mapping U defines a partition 9t on 9t 
and an injection U of $t into SP(G). The pair (9t, U ) is clearly a regulator of G ; it 
is called the simplification of (9t, U)- A regulator (9t, U ) *s sa*d t o be completely 
regular if there holds: xe$l, fe G, / e U * ^ there exists g eG such that fdg, 
g e [Jx (where fdg means that | / | A | g | = 0, the disjointness of / and g). A regulator 
(9t, U ) °f G is called a realizcr if (JJC is a prime ideal of G for every x e 9 t ([10] 
i i . i ) . 

In every /-group G^{0} there exists a standard (even reduced completely 
regular) regulator while the existence of a realizer characterizes representable 
/-groups. 

Instead of (91, U ) w e often write 9t supposing tacitly that the mapping U *s 

given. 
We say that two regulators (9tx, {Jt) and (9t2, U-) °f Gf are equal and we write 

(9ti, UO = (9^2, U-) ^ a bijection cp of 9ti onto 9t2 exists such that \J2q>x = ( J i^ 
for every *€9t i . 

In [8] the symbol jc(e9t) substitutes the associated subgroup \Jx and hence by 
a regulator, there is meant there an indexed family of prime subgroups of G whose 
meet is {0}. 

1.2 Definition. Let (9t, U ) b e a standard regulator of an /-group G. Define 

S = { Z ( / ) : / e G } , where Z( / ) = {*e9t: fe{jx}. 

1.3 Theorem. Let (9t, U ) De a standard regulator of an l-group G. Then g is 
a base of closed sets for a topology on 9t, ([10] I 1.2). 

This topology is called the topology induced on 9t by G. The corresponding 
topological space is denoted by (9t, G). 

1.4 Definition. Denote by F(G) the Boolean algebra of all polars of G. By the 
symbol K' we mean the complement in the algebra T(G) of KeT(G), by the 
symbol II'(G) the set {/': fe G} of all dual principal polars of G and by J7(G) the 
set {f:feG} of all principal polars of G. Here / ' = {/}' = {geG:fdg}, 
f = ( / ' ) ' and fdg = \f\ A\g\ = 0 . Thus K' = {ge G: fdg for every feK}. 

1.5 Definition. An antifilter on a lattice S is a nonempty subset x c S fulfilling: 
1. Kex, LeS, L^K --> Lex;2. K, Lex -=> KvLex; 3. The greatest element 
of S (provided it exists) does not belong to x. A maximal antifilter (with regard to 
the inclusion) is called an ultraantifilter. The set of all ultraantifilters on S will be 
denoted by VL(S). 

1.6 The sets.U(.S') where S is r(G) or II'(G) or 77(G), play a significant role in 
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the theory. If, in this case, xeVi(E) holds, we define | J * = \JiK' K^x}. If 
\Jx£G, we speak of a standard ultraantifilter, [8] 114.10. Every x 611(77') is 
standard, [8] II 4.11, while x e 11(7") is standard iff xnll' =£ 0, [8] II 4.12. The set of 
all standard ultraantifilters on r(G) is denoted by 11-(F). 

For XGVL(E), where E==T(G) or II'(G) or 11(G), \Jx is a prime subgroup 
of G ; (11,(0, U ) and (11(77'), U ) (briefly dlr(G) and mn(G) or 3t r and 3irr only) 
are standard regulators of G. The latter is reduced and completely regular, [8] 
II 4.15 and 4.16 (see also [10] II 1.5(1)). 9t r or 9t/r is called the T-regulator or the 
Fl'-regulator, respectively. 

1.7 Definition. On the set II, where 11 = VLS(V) or 11(5') (E a lattice), we define 
a topology whose base for open sets is given by 

Z' = {]lf:feG} or X={VLK: KeE}, where VLK={xeVl: Kex}, 

[5] 1.9; [7] IV 1.10. (In the case U = Vis(r) in [5] the symbol 93/' is used instead of 
11/', which is reserved for another notion.) 

If necessary, the notation is specified by VLrf in the former case and by USK in 
the latter. We shall apply the definition for S' = 77'(G) or = 77(G). 

1.8 Theorem. The topological spaces (lls(r), 2") and (3t r, G) arehomeomor-
phic and the topological spaces (11(77'), Z) and (9th, G) are homeomorphic. 

See [5] 2.1, [8] II 4.18. Both assertions follow easily from the following lemma. 

1.9 Lemma. For xeU(r) or x e 11(77') and feG we have 

fex^fejx. 

[7] Lemma 1, [8] II 4.6. 

1.10 Definition. Let G and 9t be nonempty sets and ( J : dt—> exp G a mapping. 
We define a binary relation (a polarity) p c G x 9 l by the rule fgx=fe\Jx. 

Define 
W(A) = {/€ G: fgx for every x e A} ( 0 c A c m ) , 

Z(P) = {x G »l: fgx for every / e P} (0g: P c G ) . 

As A = {x} or P = { / } , we have V({x}) = \Jx or Z({/}) = Z(f), respectively 
(Definition 1.2). Instead of ^({x}) we put W(x). ^ a n d Z are dual isotone 
mappings between the sets exp 9t and exp G. 

A straightforward computation shows that the following lemmas are true (see 
[10] 2.2, 2.3 and 2.4). 

1.11 Lemma. For every 0g: A c 9 t and 0cP^G there holds 

^ ) = n { U ^ ^ A } = { /6G:Z( / )DA}, 

Z(P) = r\{Z(f):feP} = {xem:\Jx^P}-
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1.12 Lemma. A c B c f f t implies W(A)z2W(B), 

W(A) = G = Acz{xedl:\Jx = G}; ^(9t) = H { U * : * e 9 t } ; 

PczQczG implies Z(P)z>Z(Q), 

Z(P) = 9t = Pczri{U^-^e9ft}, Z(G) = {x€M:\Jx = G}; 

ZW(A)z>A, WZW(A)=W(A)(Aczm) 

WZ(P) zo P, ZWZ(P) = Z(P) (PczG). 

1.13 From 1.12 it follows that the mapping ZW: exp 9t—>exp 9t is a closure 
operation in St. The Z^-images of the elements of exp 9t (i.e. the subsets of 9t 
closed under g) are exactly the closed sets of the topological space (9t, G). Then 
the system of all closed sets of the space (3t, G), 9c(sJt, G) is given by 

9l(fft, G) = {ZW(A): Ac:W} = {Z(P):P^G} = \c\Z(f):Pc:G\, 

[10] I 2.9. 
Similarly, the mapping WZ: exp G—>exp G is a closure operation in G. The 

system of all subsets of G closed under g is denoted by Q(dt, G). Thus we have 

Q(M, G) = {WZ(P): Pc:G} = {W(A): A^m} = \r\V(x)'. A^m\, 

[10] I 2.11. 

1.14 Theorem. The mappings W and Z are (mutually inverse) dual isomorph­
isms of the systems £2(di, G) and 9l(?fi, G) ordered by inclusion. 
[10] 12.12. (Indeed, by W or Z there is meant the restriction of W or Z on 
5R(9i, G) or *2(3t, G), respectively.) 

1.15 Denote by 9W(St, G) or 0(m, G) (briefly SK» or ft,) the lattice of all regular 
closed sets or all clopen sets of the space (9t, G), respectively and by r(9t , G) 
(briefly Jin) the lattice of all ambiguous polars of G, i. e. polars KeT(G) with the 
property xe% Kcz\Jx -=> K'^LU- Then there holds 

z(r)=%, ^(%)=r, z(r») = ft,, *F(<%O=A, 

[10] 12.18 and II 2.2. 
2. The aim of the present paper is to eastablish relations between the /"-reg­

ulator and the IT'-regulator of an /-group, especially various degrees of amalgation 
of these regulators. The results are contained in Theorems 3.1, 4.1 and 4.2. In 
Theorem 3.1 there are described conditions under which the simplification of the 
JH-regulator is equal to the /T-regulator and in Theorem 4.1 conditions under 
which the P-regulator itself is equal to the IT -regulator. In both cases the 
conditions are. classified according to the describing objects, which are: the 
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regulators, the ultraantifilters, the topology induced on Us(-T)> K(/T'), VL(TT), 9tr or 
din, the structures in G, the relations between the structures in G and the topology 
induced in 9tr. In Theorem 4.2, the same problem as in Theorem 4.1 is examined 
on the supposition that the /-group contains a weak unit. This supposition is of 
much importance in 3.1. 

2.2 Lemma. Let G be an l-group and xeUs(T). Then the following condi­
tions are equivalent. 

(1) xnJTe 11(17'). 
(2) \Jx = {J(xnIIf). 
(3) There exists yeU(II') such that \Jx = \Jy (i.e. \Jx is a minimal prime 

subgroup of G). 
(4) yeUs(r), y^xnTT implies ynil' =xnIJf. 

(See [5] 2.24). 
Proof. 1 --> 3. By 1.9 there holds 

fe[Jx --> f ex -» f'exnll' --> fe\J(xnII'), 

thus \Jx^\J(xnIT). The converse inclusion holds as well. Hence we can take 
xnIT for y. \Jx is a minimal prime subgroup of G by [8] III 7.2 or [2] 3.4.15. 

3 :-> 2. Pick yeVi(nf) such that U * = Uy- Thcn y = xnll' for 

f'exofe\Jx = \Jyof'ey 

by 1.9, and so y = xnIT and thus \Jx = \Jy = \J(xnn'). 
2 :-> 4. Fix yells(r) with y^xnlT. Then ynll'^xnTT, hence IJy 2 

\J(ynII') 2 U ( * ^ ' ) = l > . Thus Uy-=-l> and by [8] II 4.13 ynll' c xn /7 ' 
holds. Finally vn/T' = xnTT. 

4 --> 1. Choose zeU(/T) with z^xnll' and >>eU5(r) such that y ^ z . Then 
y^jcn/T', thus z = ynI7' = Jcn/I', i.e. *n7T' e tt(JT'). 

2.3 Definition. Let P be a topological space. We define an equivalence on P, 
Rb by the rule 

xRby = x = y, where the bar indicates the closure in P. The partition on P 
corresponding to the equivalence will be denoted by Rb as well. We call the atoms 
of the system of all closed subsets of P (ordered by inclusion) trivial closed subsets 
(of P). Similarly for open and clopen sets. 

2.4 Lemma. If all blocks of a partition R on P are trivial closed sets, then 
R = Rb. 

Proof. If TeR and xeT, then 0-£jtc T= T. From the minimality of T it 
follows that x = T. Thus, if x, y e Tthen x=T=y, i.e. xRby. Conversely, if xRby 
and xeTeR, then x = y and, as above, x=T. Hence yey = x=T. 
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3. Let G be an /-group and (9t, U) a standard regulator of G. Denote by 
€c(dt, G) the family of all compact clopen sets of the space (3t, G). 

We shall consider the following conditions (*), (**) and (la) to (4f). 
(*) O^aeG implies that there exists b e G with {0} ̂ = b' ca". 
(**) G has a weak unit. 

I. (la) The simplification of the /"-regulator is equal to the II'-regulator (i.e. 
U>:*6ii,(r)} = iUr.yen(n')}). 

(lb) The simplification of the JT-regulator is a reduced regulator (i.e. 
x, y e Us(r), I)** Uy implies U* II Uy)-

(lc) The /"-regulator is completely regular. 
(2a) xeUs(r) implies xnfT eU(II'). 
(2b) xeUs(r) implies U* = U(*^J7')-
(2c) xeUs(r) implies that there exists y e U(II') such that U * = Uy ( ie- U* 

is a minimal prime subgroup of G). 
(2d) x, yeUs(r), y^xnfT implies ynIT=xnII'.-^ 
(3a) The trivial closed subsets of the space (Us(r), 2') form a partition of 

iL(r). 
(3b) The blocks of the partition Rb on the space (Us(r), 2') are (trivial) closed 

sets. 
(3c) The space (US(T), 2') has a base for open sets formed by closed sets. 
(3d) Urf is a closed set of the space (U5(r), 2') for every fe G. 

II. (3e) The space (U(JT'), 2) is compact. 
(3f ) The space (U(II), 2) is compact and G fulfils the condition (*). 
(3g) Us(r)\Urf e2' for every fe G. 

x (3h) The space (St/r, G) is compact. 
(3i) €(mn; G) = Cc(Vln>,G). 
(4a) n(G) = II'(G). 
(4b) The lattice 11(G) is a Boolean algebra. 
(4c) The lattice 11'(G) is a Boolean algebra. 
(4d) W[Cc(mn', G)] = iT(G). 
(4e) iXVtir, G) = II(G). 
(4f) r(mn,G)=n'(G). 

The following theorem deals with the above mentioned conditions. 

3.1 Theorem. Let G be an l-group =£{0}. Then the conditions of sec. I are 
equivalent. The conditions of sec. II are equivalent as well. Each of them implies 
the conditions of sec. land the existence of a weak unit in G. If G has a weak unit, 
all the conditions (la) to (4f) are equivalent. 
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Scheme of the proof. 

П 
I. 1a — 1b ? c - ~ 2 a — 2b —-2c — 2d Зa -~3b-~-Зc--.—Зd 

г<-,> 1 
II . З i — 4 d — 4 a ~ 4 b — 4 C — З . Г ~ 3 e — З h — 4 e — 4f 

The equivalence of (2a) to (2d) follows from 2.2. Furthemore, we shall prove the 
following implications: (2b) A (2C ) => (la) => (lb) => (2a), ( la) => ( lc ) => (2a) 
=> (3d), (3a) o (3b) => (2d), (3d) => (3c) => (3b). Thus the equivalence of the 
conditions of sec. I will be verified. 

The equivalence of (4a), (4b), (4c), (3e) and (3f) follows from [10] I 1.9, 
(3e) <=> (3h) by [10] 11.7 and (4a) o (4d) <*> (3i) from [10] II 2.6 (see also 1.15 
and 1.14). If we show (3g) o (4a), (3h) => (4e) => (4a) and (4e) => (4f), the 
equivalence of the conditions of sec. II will be established. 

(4a) evidently implies (**). The implication (3g) => (3c) follows directly from 
the definition of the base 2", hence II => I. It suffices to prove that (2a) A ( * * ) => 
(3e) for the equivalence of all the conditions (la) to (4f) to be verified, provided 

that G has a weak unit. 
(2b) A (2c) => (la). From (2c) there follows the inclusion c between the 

compared sets in (la) and from (2b) the converse inclusion, because for y eU(IT) 
and x e VLs(r) with x =2 y there holds y = Jtn77', hence [Jx = {J(xnTI') = [Jy. 

(la) => (lb) follows from [8] II 4.16. 
(lb) =>((2a). If xeVLs(r) and the antifilter jtn/7' (-£0 by [8] II 4.12) on 77' is 

not maximal, then there exists z e 11(77') with z=2*n77' and z^xnJJ'. Choose 
yeUs(r) such that y^z. Then yn77'=2*n77', thus by [5] 2.8 or [8] II 4.6 
U y c L I * . **v supposition Uy==UJC> hence by [5] 2.8 again, we have z = ynIJ' 
= xnTI', a contradiction. 

(la) => (lc). Since the 77'-regulator is completely regular ([8] 114.16), the 
F-regulator is completely regular. 

( lc) => (2a). Fix xeVLs(r) and for some / e G , let fexnll'. By 1.9 fe\J* 
holds and by supposition, there exists g e G such that fdg and g e [Jx. By 1.9 there 
holds g' ex and fdg implies / ' v r g ' = G. Thus *n77' e 11(77'). 

(2a) => (3d). [5] 2.16. 
(3 a) => (3b). Lemma 2.4. 
(3b) => (3a). Since the blocks of the partition Rb are closed sets, for every 

z e VLs(r), z is a block of the partition Rb. Indeed, for TeRb and u, zeT there 
holds z^T=T and u e u = z, hence z = T. Every block z of the partition Rb is 
trivial closed, for there holds A c l l ^ r ) , 0 = £ A c £ , xeA => i c A c f => 
x = A = z. 
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(3b) --> (2d). For every zeVLs(r), z is a block of the partition Rb (as in the 
above paragraph). Pick x, yeVLs(r) such that yzixnll'. Then ynlJ' zoxnll', 
hence xey (see [5] 1.11). It follows that y = x and yex, which implies (by [5] 1.11 
again) ynJJ' gzxnll'. Hence the required equality. 

(3d) => (3 c) is evident. 
(3 c) => (3b). [8] IV 9.2. 
(3g) o (4a). [5] 2.7. 
(3h) z> (4e). By [10] II 2.6 and 2.2 we have 77(G) = W[€(Sln, G)] 

= r(3t,r, G). 
(4e) => (4 a). By the definition of an ambiguous polar there holds 

Ke r(din', G) --> K'e r($in>, G), hence from 77(G) = r(mn>, G) it follows that 
77'(G) c r(din>, G) and 77'(G)c 77(G). Consequently 77'(G) = 77(G). 

(4e) --> (4f). This is an immediate consequence of the fact just proved, viz. 
(4e) => (4a). 

(4f) => (4e). In a similar way as in (4e) --> (4a) we prove (4f) --> (4a) and 
hence (4e). 

(2a)A(**) --> (3e). <p: xeVLs(r) -> Jtn77' is a mapping onto 11(77'), because 
for ye 11(77') and xe 11,(7") such that x ^ y there evidently holds xnll'—y. The 
space (11,(7"), 2") is compact by [5] 3.3, thus it suffices to prove that q> is continuous 
and for this it suffices to prove q>~l(VLirf) = VLrf for every fe G. Since (p~x(VLnf) 
= {xe VLs(r): f e xnll'}, there holds <p~\Vln'f) = VLrf, completing the proof of 
Theorem. 

4. Let G be an /-group. Denote 

I. ( la) The T-regulator of G is equal to the 77'-regulator of G. 
(lb) The T-regulator of G is completely regular and reduced, 
( lc ) The T-regulator of G is reduced. 
(2a) (11,(I*), 2') is a Ti-space. 
(2b) (VLs(r), -2") is a Hausforff space. 
(2c) (11,(70, 2") and (11(77'), Z) are homeomorphic spaces. 
(3a) xeVLs(r) => xnTI'e 11(77') and x is a unique ultraantifilter on T(G) 

containing JCO77'. 
II. (3b) xe 11,(70, Kex => there exists / e G with fex, fzoK (this is the 

condition (p) introduced in [5] 2.22). 
(3c) xe 11,(70 => there exists no KeT(G) such that KuK'cz[Jx. 
(3d) x e 11,(70, KeT(G), Kcz{Jx --> X G X . 
(3e) xe 11,(70> TCeT(G), 7^€x => there exists / e G such that / ' ex, JKvr/' = 

G. 
(4a) The space (9tr, G) is extremally disconnected (i.e. closures of open sets 

are open). 
(4b) The lattice Wl(mr, G) is a sublattice of the lattice 3l(dir, G). 
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(4c) G(3lr, G)=9K(9ir, G). 
(4d) For the complement A' in the lattice 2W(9ir, G) of an arbitrary element 

AeWl(dir, G), there holds AnA'=0. 
(5a) The lattice JT(G) is a sublattice of the lattice -3(9tr, G). 
(5b) W and Z are bijections of the sets <?(5tr, G) and T(G). 
(5c) r(G) = T(9tr, G). 
(6a) r(G) = H(G). 
(6b) r(G) = /7'(G). 

Note. We may replace the space (U-OO, X) or (It(JI'), .T) in (2a), (2b) and (2c) 
by the spaces (9tr, G) or (9tj-', G), respectively (1.8). 

4.1 Theorem. Let G 6e an l-group ^={0}. 77ie/i tAe conditions of sec. I are 
equivalent. The conditions of sec. II are equivalent as well. Each of them implies 
the conditions of sec. I and the existence of a weak unit in G. 

Note. It is not true, in contrast to Theorem 3.1, that all the conditions (la) to 
(6b) are equivalent as soon as G has a weak unit. We give an example of an /-group 
G which fulfils (lc) and does not fulfil (6a). (This example is due to J. Jakubik.) 

Let Ibe an infinite set, for each iellet H be a linearly ordered group, f£=£ {0} 
and H=2{H: iel}. Let C be the additive group of integers (with the natural 
order) and G= CoH, where o is the symbol of the lexicographic product. Then G 
has a weak unit and (6a) does not hold. We shall prove that (lc) is true in G. It 
suffices to verify that H fulfils (2c) because evidently T(G)\{G} = T(H)\{H}. 
Now let x, y eU,CO> Kex and Xc[Jy. Then a set A of elements of y covers *T, 
thus \/A ^ -K"- The lattice T(H) is compactly generated (because G has a base 
— see [11], Satz 3) thus there exists a finite subset B of A with \/B ^ K. However, 
K = \/Bey, and so (J^-^Uy implies xcy and therefore x = y. Finally, x£y 
implies LMIUy-

Scheme of the proof. 

I. 3a *-* 2c +-> 2b <-> 2a <-> lc <-> lb *-> la 

I II ' 
H. i—3b «-* 3c <-> 3d <r+ 3e 6b «-» 6a« 

i 
5c <-» 4d «-» 4b <r+ 4a <-* 4c «-> 5a <-* 5b 1_| 

>( * * ) ! 

The equivalence of (lc), (2a), (2b), (2c) and (3a) is proved in [5] 2.18. If we 
show the equivalence of (la), (lb) and (lc), the equivalence of all the conditions of 
sec. I will be verified. 

The equivalence of (3b), (3c), (3d) and (3e) is shown in [5] 2.23, that of (4a), 
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(4b), (4d) and (5c) in [10] I 2.12, and that of (4a), (4c), (5a) and (5b) in [10] II 2.5. 
As far as we prove (4d) <=> (3c), we have got the equivalence of the conditions (3b) 
to (5c). The claims (6a) <=> (6b) and (6b) --> (3b) are evident. Furthermore, we 
shall show that (3b) implies (**), the existence of a weak unit in G. This enables us 
to prove the implication (5b) --> (6a). Thus the equivalence of the conditions of 
sec. II will be established. The evident implication (6b) --> (la) means that II :-> I. 
This completes the proof of Theorem 4.1. 

(lc) o (lb) o (la). The assumption (lc) implies the condition 3(lb), hence 
3(la), and this together with (lc) implies (lb) (for the IT -regulator is completely 
regular) and (la). The implication (lb) --> (lc) is evident, (la) => (lc) follows 
from [8] 114.16. 

(4d) o (3c). If (3c) is not true, then xeUs(T) and KeT exist such that 
KuK'c\Jx. Hence for Z = Zjtr we have xeZ(\Jx) c Z(K)nZ(K'). Conse­
quently the meet of the complementary elements Z(K) and Z(K') of the lattice 
2)?(9lr, G) is nonempty, i.e. (4d) does not hold. Conversely, if (4d) does not hold, 
then the meet of some pair of complementary sets A, A' e3Jl(dlr> G) is nonempty. 
If jceAnA'forsomexell^JO^thenU^ = V(x) 2 ^(A)u^(A') , hence (3c) 
is not true, for ^(A) and W(A') are complementary polars of G. 

(3b) => (**) (the existence of a weak unit of G). There holds US(T) = U(T), 
because for x e U(T) xnll' ±0 ([8] II 4.12). The equality US(T) = U(T) is equiva­
lent to the existence of a weak unit in G ([8] V 12.6). 

(5b) A(**) --> (6a). By [5] 3.3, the space (US(T), 2') is compact, thus the 
homeomorphic space (3tr, G) is compact as well (1.8). Since (3b) --> (3a) holds by 
[5] 2.24, there holds dlr = Vln', and so the space (9tn, G) is compact. By [10] II 2,8, 
Wfnn. maps e(dtn', G) onto TI(G), hence ¥*r[0(dlr9 G)] = 11(G). By [10] II 2.6, 
from (5b) it follows that % r maps 0(dir, G) onto T(G). Consequently T(G) = 
/7(G). 

Recall that a subgroup A of an /-group G is said to be a z-subgroup if 
feA^> fcA, [2] 3.3.8. A regulator (dt, \J) is called a z-regulator if U* is 
a z-subgroup for every xedt, [10] 112.23. 

4.2 Theorem. Let G be an l-group =»-={0}. The following conditions are 
equivalent. 
(a) G has a weak unit und fulfils one of the conditions of sec. I, Theorem 4.1. 
(b) (US(T), Z') is a Hausdorff compact space. 
(c) T(9tr, G) = n(G) and dlr is a z-regulator. 
(d) jT(9tr, R) = TI'(G) and 3tr is a z-regulator. 

Proof, a => b. From the condition (la), Theorem 4.1, there follows (la), 
Theorem 3.1, hence the space (U(II'), 2) is compact by Theorem 3.1. Moreover, 
from (la) (-^ (2c) = (2b)), Theorem 4.1, it follows that (US(T), 2') is compact and 
Hausdorff. 
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b :-> c. If (U5(r), r) is a compact Hausdorff space, then by 4.1 ((2b) = (2c)), 
(Vl(ri'), Z) is compact, hence by 3.1 ((3c) = (4e)), r(mn, G) = /T(G). Again by 
4.1 ((2b) = (la)), r(mr, G) = /7(G) and by 4.1 ((2b) = (lb)), 9ir is completely 
regular, thus by [10] II 1.4 Z(f') = Z(f) for every fe G (with Z = Z*r). Using [10] 
II 2.2a, dtr is a z-regulator. 

c o d follows immediately from the fact that evidently KeT(dl, G) --> 
K' e r(dt, G) for an arbitrary regulator (% \J). 

d --> a. CAd implies 11(G) = TI'(G), hence G has a weak unit. Write Z t̂r = Z. 
By [10] II 2.2a, Z(f') = Z(f) for every feG. Then {Z(f):feG} = Z(/7(G)) 
= Z(r(9t r, G)) = 0(3tr, G) ([10] II 2.2). Thus Z(f) is open for every fe G. By 
[10] II 1.4 the T-regulator is completely regular, which is the condition 4.1 (lb). 
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Г-РЕГУЛЯТОР И Я'-РЕГУЛЯТОР СТРУКТУРНО УПОРЯДОЧЕННЫХ ГРУПП 

Франтишек Шик 

Резюме 

Пара (91, Ц) называется регулятором /-группы О, если д1 — множество Ф0> \^] — отоб­
ражение Ш в множество простых подгруппы в О и, если выполнено П { Ц * : * € ^ } = {0}. 
Важные регуляторы представляют множества д1=ЩЗ) всех ультраантифильтров на структуре 
Е=Г(0) (всех поляр в О) или = 17'(О) (всех дуальных главных поляр в О), если мы определяем 
\^х — \ЛК: Кех} для всех хед1. Первое из них называется Г-регулятором, второй — 17'-
регулятором. Целю работы — установить отношения между Т-регулятором и 17'-регулятором, 
а именно установить различные степени слияния этих регуляторов. В теор. 3.1 найдены условия, 
при выполнении которых упрощение Г-регулятора равно Я'-регулятору, а в теор. 4.1 условия, 
при которых сам Г-регулятор равен Я'-регулятору. В 4.2 решается та же самая проблема при 
условии существования слабой единицы в О. Это предположение играет важную роль в 3.1. 
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