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ORIENTABILITY OF TOTAL SPACES OF FIBRE 
BUNDLES OVER RPn 

MILOS B02EK 

1. Introduction 

There are two well-known results on orientability of topological manifolds: 

Theorem A. Any open submanifold of orientable manifold is orientable. 

Theorem B. The product-manifold is orientable if and only if both factors are 
orientable. 

Theorem A can be reformulated in the following way: 

Theorem A'. Every manifold containing an open non-orientable submanifold is 
non-orientable. 

The part "if" of Theorem B fails for total spaces of fibrations as the Klein bottle 
shows regarded as a total space of the standart fibration over S1 with the fibre S1. 
On the other hand, the part "only if" of Theorem B remains valid for a large class 
of fibrations(1). 

Theorem 1. The total space E of a locally trivial fibration % = (E, p, B) with 
a non-orientable fibre F is non-orientable. 

Proof. By Theorem B, every manifold f /xF , UczB open, is non-orientable. 
This means that E contains a non-orientable open submanifold, thus by 
Theorem A' E is non-orientable. 

Let RPn~1 be a hyperplane in the n-dimensional real projective space RPn. The 
main result of this paper is the following 

Theorem 2. Let % = (E, p, RPn), n IS2 be a fibre bundle with a compact 
connected and orientable fibre F. Then the total space E of § is orientable if and 
only if the manifold E' =p~1(RPn~l) is non-orientable. 

For every k = 0, 1, ..., n we define the kth derivative of the fibre bundle 
% = (E,p, rpn) as the manifold J**> = p-\RPn~k). Clearly &0) = E and E0 0 is 

(1) In this paper all fibrations belong to the category of topological manifolds and continuous maps. 
Under a fibre bundle we mean a fibration associated with a locally trivial principal fibration [2, Chap. 4]. 
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homeomorphic to F. For every manifold Mput co(M) = 1 or 0 if Mis orientable or 
non-orientable, respectively. The next Theorem is an easy consequence of 
Theorem 2. 

Theorem 3. Under the assumptions of Theorem 2 we have 

co(E)^o)(E^k)) + k (mod 2) 

for all k = l, ..., n — 1. 
Theorem 2 will be proved in Section 3. An application of Theorems 1 and 2 will 

be given in Section 4. 

2. Very strong deformation retracts 

In the proof of Theorem 2 we shall make use of some special kind of 
deformation retracts. 

A very strong deformation retraction of a topological space X to a subspace A is 
a retraction r: x-+A for which there exists a homotopy ht: X—>X, tel=[0, 1] 
with the following properties : 

(i) Ao = lx, 
(ii) hi = ior, where i: A-+X is the inclusion map, 
(iii) ht\A = lA, 
(iv) roht = r 

for all tel. 
A subspace A of X is called a very strong deformation retract of Xif there exists 

a very strong deformation retraction of X to A. 
Clearly every very strong deformation retraction (retract) is a strong deforma

tion retraction (retract) in the usual sense cf. [4, p. 30]. . 
Example 1. Let there be given a topological space X consisting of all points 

(x, y) of R2 such that O^x, y = l and x = l or y = 0 or y = l and let A be 
a subspace of X given by y = 0 (see Fig. 1). Then the map r: X^>A defined by 
r(x, y) = (x, 0) is a strong deformation retraction of X to A but it is not a very 
strong deformation retraction. However, .A is a very strong deformation retract of 
X under another retraction r': X-+A defined by r'(x, y) = (l, 0) if y>0 and 
r'(x, y) = (x, y) otherwise. 

Problem. Is every strong deformation retract a very strong deformation 
retract? 

Example 2. Let (x0, Xi, ..., x„) be homogeneous coordinates in RP". Let us 
consider the following five subspaces of RP": 

RP°:x1 = ...xn=0; RPnl
:xo = 0; 

Sn-1:x0
1-x2

1-...-x
2

n = 0; Xl = RPn-RP"1; 

X2 = RPn-RPp. 

168 



Then RP°, RP"'1 and S""1 are very strong deformation retracts of Xu X2 and 
X3 = X1nX2, respectively. The corresponding homotopies hi, / = 1, 2, 3, te I, are 
defined by 

h\(xo, xu ..., xn) = (xo, (l-t)xu ...,(l-t)xn), 
h t(Xo, Xi, ..., x„) = ((1 — t)Xo, Xi, ..., xn), 
h%x0, Xi, ..., xn) = (cxo, (t + c(l - t))xi, ..., (t + c(l - t))x,), 

where c -4-XJ+...+X2n 
xl ' 

The next Proposition will explain the reason of introducing the notion "very 
strong deformation retract". 

Fig. 1 

Proposition 1. Let <f = (-E, p, B) be a fibre bundle and let B be a very strong 
deformation retract ofB. Then E=p~l(B) is a strong deformation retract ofE. 

Proof. Let i: B-+B and i ' : J5—>J5 be inclusion maps and let r: J3—>JB be 
a very strong deformation retraction and ht, tel its corresponding homotopy. 
Finally, let % be the restriction of the fibre bundle «f to B. It is known that there 
exists a canonical isomorphism r*<f .s(/0r)*.f in the category BunB of all fibrations 
over B. As i©r is homotopic to the identity map 1B it is ( ior)*§s§. Hence there 
exists an isomorphism u: r*<f=f. It is easy to show that u~x(E) 
= {(b, x)er*E\beB) and the map r: r*E^>u~l(E) given by f(b, x) 
= (r(b), x) for all (b, x) e r*E is a well-defined retraction. The equality roht = r 
implies that there is a homotopy ht: r*E-+r*E defined by ht(b, x) = (ht(b), x) 
for all (b, x) e r*E, tel. The properties (i), (ii), (iii) of ht yield the corresponding 
properties for ht.\X means that u~l(E) is a strong deformation retract of r*E and, 
going back to <f via the isomorphism u: r*«f=§, we see that E is a strong 
deformation retract of E. 
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Remark. In fact we have proved that E is a very strong deformation retract 
ofE. 

3. Proof of Theorem 2 

Throughout this paragraph the symbols § = (B, p, B), n, F, RPn and RP"'1 are 
assumed to satisfy the assumptions of Theorem 2. In addition the homogeneous 
coordinates (xo, Xi, ..., x„) in RP~ are arranged in such a way that the hyperplane 
RP"'1 is given by the equation x0 = 0. Finally, let .RP0, S""1, Xu X2 be subspaces of 
RP" as in Example 2. 

Proposition 2. There is a long exact sequence 

(1) ...^Hq(F)@Hq(E')^I%(E)^Hq-n(F)^ 
^Hq-,(F)@Hq-,(E')->:.. 

for all q = n. 
Proof. Using the results of Example 2 and Proposition 1 we get the following 

homotopy equivalences 

(2) p-1(X1)~p-1(RP») = F, 

(3) p-1(X2)~p-1(Rp--1) = E', 

(4) p - ^ n X ^ - p - 1 ^ - 1 ) . 

Recall that the base Xi of the restricted fibre bundle §|Xi is contractible. By 
[1, Theorem 4.9.9] the fibre bundle § | X- is trivial, therefore the subbundle § | Sn_1 

of §|Xi is trivial as well, hence there is a homeomorphism a:p_1(Sn_1) » 
S"'1 x F. Now, the sequence (1) follows from the Mayer—Vietoris sequence of the 
excisive triad (.E;P_1(Xi), p_1(X2)) and from the natural isomorphism 
P:Hq-1(S

n~1xF) = Hq-n(F). 
Let us denote m = dimF. Then diml? = n + m and dim E' = n + m — 1. 

Further, dim F < dim E—l because of n =2. Putting q = n + m in (1) we obtain 
the first assertion of the following 

Proposition 3. (a) There is an exact sequence 

( 5 ) 0— Hn+m(E)^> Hm(F)Z Hn+m-,(E'). 

(b) If the manifold E' is orientable, then q> is injective. 
Proof. Let r: X2-*RPn~1 be the retraction hi from Example 2, i.e. r(x0, xu ..., 

xn) = (0, JCI, ..., xn) and let f: p-\X2)-+E' be the "lift" of r given by 
Proposition 1..Finally let f=r|p"1(Sn"1). 
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First we prove 

(6) ker <p s ker f., „+m_i. 

From the construction of the sequence (1) we have 

<P = ( f o/o Io a)*, n+m-lof}~ 

where i: p"1(S'"1)->p"1(XinX2) and /: p"x(XinX2) -> p_1(X2) are inclusion 
maps. Obviously fo/oi = f, therefore <p = f*,-+m-ioa*,-+m-ioj3"1, which implies 
(6). 

Now we are going to prove that 

(7) f: p'^S"'1) -* E' is a double covering. 

As usually r* E' = {(&, JC) € X2 x E' \ r(b) =p(*)}. The retraction r: X2 -> RPnl 

is a homotopy equivalence, therefore there is a homeomorphism u: p~l(X2) —» 
r*l~' such that poii~1(b,x) = b and fow"x(6, JC) = u~l(r(b), x) for all 

(&,jt)er*"j'. Hence 

u(p~\Sn~x)) = {(6, JC) € S""1 x J"" | r(b)=p(x)} 

and fou~\by x) = (r(6), JC) for all (6, x) e w(p~1(Sn~1)). Qearly, the 
map r\Sn~1: Sn~l -> iJP""1 is the standart double covering and (7) follows. 

Let us return to the proof of the part (b) of Proposition 3. If E' is orientable, 
then (7) yields that p~1(Sn~1) is orientable, too, and that r*,n+m-i is injective. The 
assertion (6) implies injectivity of <p, which concludes the proof of Proposition 3. 

We can now easily prove Theorem 2. By our assumptions regarding F we have 
Hm(F) = Z. Further Hn+m-i(E') = Z or 0 if E' is orientable or non-orientable, 
respectively. The second statement of Proposition 3 says that ker <p = 0 or Hm(F) 
in the corresponding cases. Theorem 2 follows then from the exact sequence (5). 

4. Orientabffity of the incidence manifold of RPH 

In paper [3] E. Ruzicky studied the submanifold F(n) of the product-manifold 
JRP~ X Gi(KP")(2) consisting of all couples (JC, y) for which x e y. He has proved 
that for all n odd F(n) is non-orientable. This result can be strengthened in the 
following way. 

Theorem 4. The manifold F(n) is orientable if and only if n is even for all n S 2 . 
Proof. Let us consider the fibre bundle £=(F(n), p, RP") where p(jc, y) — x 

for all (JC, y) e F(n). The fibre F of £ is homeomorphic to ""P""1, thus F is 
non-orientable for n odd. In virtue of Theorem 1 F(n) is non-orientable for n odd. 

(2) Gi(RPn) or Gi(En) is the first Grassmannian of the projective space RP" or the euclidean space 
J~", respectively. 
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From now on let us assume that n is even, which implies that the fibre F is 
orientable. With respect to Theorem 2 we have to prove that the manifold F(n)' 
— p'x(RPn~1) is non-orientable. According to Theorem A' to prove this it is 
sufficient to show that the open submanifold M(n) of F(n)' consisting of all the 
elements (x, y) of F(n) for which x e RP"'1 and yet RP""1 is non-orientable. Since 
ynRP"'1 = {x} for all (x, y) e M(n), M(n) is homeomorphic to the Grassmannian 
Gi(En). The rest of the proof of Theorem 4 is a consequence of the following 

Lemma. If n is even, then G\(En) is non-orientable. 
Proof. If n = 2 , then Gi(E2) = Gi(RP*) - {RP1} « RP2 - RP°, therefore 

Gi(E2) is homeomorphic to the (open) Mobius band, and so Gi(E2) is 
non-onentable. 

If n > 2 , choose a point o of En and denote by Gi(En) the open submanifold of 
Gi(En) consisting of all lines in En not passing through o. Consider the fibre 
bundle <f ~(Gi(En), p, En — {o}) wheie p(y) is the orthogonal projection of the 
point o into the line y for all yeGi(E"). The fibre F of f is homeomorphic to 
RP'~2 , thus F is non-orientable. A direct application of Theorems 1 and A' 
concludes the proof of Lemma. 
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OPHEHTHPyEMOCTb TOTAJILHLIX nPOCTPAHCTB PACCJIOEHHLLX 
IIPOCTPAHCTB HAA RP" 

MHJIOUI EbaceK 

Pe3K>Me 

OCHOBHLIMH pe3VJIbTaTaMH paSOTbl XBJIHJOTCfl: 1) TOTaJIbHOe npOCTpaHCTBO JIOKaJlbHO TpHBHaJIb-
Horo paccjioeHHH c HeopHeHTHpyeMWM cjioeM «BJi5ieTC5i HeopHeHTHpyeMtiM MHoroo6pa3HeM; 2) TO-
TajitHoe npocTpancTBO paccjioeHHoro npocTpaHCTBa % = (E, p, RP'), n^2, KOMnaKTHbiM cB«3HbiM 
opHeHTHpyeMLiM cjioeM F opneHTHpyeMo Tor^a H TOJIBKO Torfla, Kor^a MHoroo6pa3He E' = 
p~1(RPn~l) HeopHeHTHpyeMo. B KanecrBe npHJio«:emi5i peineH Bonpoc o6 opHeHTHpyeMocTH 
MHoroo6pa3HH F(n), TOMKEMH KOToporo aBJiaiOTCfl Bee napbi (jr, y) € RP" x Gi(RP"), AJIH KOTopux 
xey. 
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