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ELONGATION IN A GRAPH 

BOHDAN ZELINKA 

In [1] the concept of the elongation of two vertices in an undirected graph is 
defined. 

Let u, v be two vertices of a finite undirected grapT. G. If «=£ v and u, v belong 
to the same connected component of G, then the elongation ela(u, v) of the 
vertices u, v is the maximum of the lengths of all paths in G connecting u and v. If 
u = v, then ela(u, v) = 0. If u, v belong to distinct connected components of G, 
then ela(u, v) = °°. Instead of ela(u, v) we shall write el(u, v) if it does not cause 
a misunderstanding. 

It is well known that the elongation ela is a metric on the vertex set of a finite 
connected graph G. 

Proposition 1. The elongation in a finite graph G is equal to the distance in G for 
any two vertices of G if and only if G is a forest. 

The proof is left to the reader. 
We shall define some concepts related to the elongation. 
The elongation diameter ed(G) of a finite connected graph G is the maximum of 

elG(u, v) taken over all the pairs u, v of vertices of G. The inner elongation 
diameter ined(G) of G is the minimum of ela(u, v) taken ever all the pairs u, v of 
distinct vertices of G. An elongation centre of G is a vertex u of G for which 

max ela(u, v) attains the minimum; this minimum is called the elongation radius 

of G and denoted by er(G). 

Proposition 2. The elongation diameter of a connected graph G is equal to I. if 
and only if G = K2. 

Proposition 3 . The elongation diameter of a connected graph G is equal to 2 if 
and only if either G = K3 or G is a star. 

Proofs are straightforward. 

Theorem 1. Lef u, v be two adjacent vertices of a finite connected graph G with 
n vertices. Then the equality ela(u, v) = ed(G) implies ed(G) = n-l. 

Proof. Suppose that ela(u, v) = ed(G) holds. Evidently always ed(G) = n-\, 
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where n is the number of vertices of G. If ela(u, v)— 1, then ed(G)— 1 and by 
Proposition 2 the graph G is isomorphic to K2, hence n~2 and ed(G) — n 1. 
Suppose 2 = elG(u, v) < n 2. Let P be a path of the length ela(u, v) connecting 
u and v. The path P does not contain the edge uv; otherwise it would have the 
length 1. Therefore P together with the edge uv forms a circuit C of the length 
ed(G)+\. We have ed(G)+ \<n 1 and therefore there exists at least one 
vertex w of G not belonging to C. As G is connected, there exists a vertex z of C 
such that there exists a path P, connecting tv and - and having no common vertex 
with C except z ; let its length be ptt. Let y be a vertex of C such that yz is an edge 
of C The union of P„ and the path obtained from C by deleting the edge yz is 
a path connecting y and z and having the length pn+ eh,(u v) which is at least 
el(,(u, v)+ 1. This is a contradiction. 

Corollary 1. For a //n/fe connected graph G the equality ined(G) — ed(G) 
implies that G is Hamiltonian connected (i e. any two distinct vertices of G are 
connected by a Hamiltonian path). 

Corollary 2. In a finite connected graph G any two distinct vertices have the same 
elongation if and only if G is Hamiltoman-connected. 

Theorem 2. Let a, b be positive integers, a<b. Then there exists a finite 
connected graph G such that ined(G) a, ed(G) b. 

Proof. \i2a — b then let G be a graph consisting of two blocks (with a common 
vertex) which are both complete graphs, one with a + \ vertices, the other with 
b a + \ vertices. Any two distinct vertices belonging to the first block have the 
elongation a, any two distinct vertices of the second block have the elongation 
b a, because they are connected by a Hamiltonian path of the corresponding 
block and each path connecting them must be contained in this block. The 
elongation of two vertices not belonging to the same block is b, because they are 
connected by a Hamiltonian path of G. We have a — b a<b, therefore 
ined(G)- a, ed(G) = b. If a<b<2a, take a complete graph G0 with a + \ 
vertices, choose two vertices u, v of it and connect them by a path P of the length 
b — a + 1 whose inner vertices do not belong to G0; denote the resulting graph by 
G. Each path connecting u and v in G either is P, or is contained in G0. A 
Hamiltonian path connecting u and v in G0 has the length a; this path is the 
longest path connecting u and v in G0 and is longer than P, hence elc,(u, v) = a. 
The supposed inequalities imply that the length of P is at least 2 and therefore the 
vertex w of P adjacent to u is distinct from v. There exists a Hamiltonian path of G 
connecting u and w; it is the union of a Hamiltonian path of G( connecting u and v 
and the path obtained from P by deleting the vertex u and the edge uw. Hence 
ela(u, w) = b. Evidently the elongation of any two distinct vertices of G lies 
between a and b, therefore ined(G) = a, ed(G) = b. If a b, then the required 
graph is a complete graph with a + \ vertices. 
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Proposition 4 . Let a, b be two positive integers, a = b. Then there exists a finite 
connected graph G with the diameter a and the elongation diameter b. 

Proof. If a = \, then a complete graph with 6 + 1 vertices has the required 
property. If a = 2, we take a complete graph with b — a + 2 vertices and a path of 
the length a — 1 disjoint with it and identify one terminal vertex of this path with an 
arbitrary vertex of this complete graph. The graph thus obtained has the required 
property. 

Theorem 3 . For the elongation radius and the elongation diameter of a finite 
connected graph G the inequalities 

ed(G) = ed(G) = 2er(G) 

hold. If a, b are two positive integers such that a = b=2a, then there exists a finite 
connected graph G such that er(G) = a, ed(G) = b. 

Proof. Let a finite connected graph G be given. The inequality er(G)%ed(G) 
follows immediately from the definition of er(G) and ed(G). Let c be an 
elongation centre of G. Let u, v be two vertices of G such that ela(u, v) = ed(G). 
Then elG(c, u) = er(G), ela(c, v) = (G). From the triangle inequality we have 

ed(G) = elG(u, v) = ela(c, u) + ela(c, v) = 2er(G). 

Now let two pos tive integers a, b be given such that a = b=2a. If a = b, then for 
a complete graph G with a + 1 vertices er(G) = ed(G) = a = b. If a<b, take 
a graph G with two blocks (with a common vertex) which are both complete 
graphs, one with a + 1 vertices, the other with b — a +1 vertices. This graph has 
a Hamiltonian path, therefore ed(G)=b. The cut vertex of G is evidently an 
elongation centre of G and a maximal elongation of a vertex of G from this vertex 
is a, hence er(G) = a. 

Proposition 6. Let a, b be two positive integers, a = b. Then there exists a finite 
connected graph G such that ined(G) = a, er(G) = b. 

Proof. Let G be a graph with two blocks (with a common vertex) which are 
both complete graphs, one with a + 1 vertices, the other with 6 + 1 vertices. The 
elongation of any two vertices of the first (or second) block is a (or 6 respectively). 
The elongation of two vertices not belonging to the same block is a + b. Hence 
ined( G) = a. The cut vertex of G has the elongation a (or 6) from each other vertex 
of the first (or second, respectively) block, while to each other vertex there exists 
a vertex having the elongation a + b from it. Hence the cut vertex of G is an 
elongation centre of G and er(G) = b. 

When we study some numerical invariants of a graph, it is usual to relate them to 
other numerical invariants. In the sequel we shall relate the invariants concerning 
the elongation with the vertex connectivity, the domatic number and the Hadwiger 
number of a graph. Obviously it would be possible to relate them also to other 
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invariants However, for example for the chromatic number of a graph it seems that 
the results would not be interesting. By subdividing each edge of a graph by one 
vertex we obtain a bipartite graph, i.e. a graph with the chromatic number 2. 
Therefore we may have graphs with the chromatic number 2 and arbitrary large 
values of ed(G), er(G), ined(G). 

If G is not a complete graph, then the vertex connectivity of G is the minimal 
number of vertices by whose deleting from G a disconnected graph is obtained. If 
G is a complete graph with n vertices, then its vertex connectivity is by definition 
n-\. 

Theorem 4 . The elongation radius of a finite connected graph is greater than or 
equal to its vertex connectivity. 

Proof. Let G be a finite connected graph, let c be its elongation centre, let u be 
a vertex of G such that el0(c, u) = er(G). Let P be a path of the length er(G) 
connecting c and u. If P is a Hamiltonian path of G, then G has er(G) + 1 vertices 
and its vertex connectivity is at most er(G). If P is not a Hamiltonian path of G, 
then there exists a vertex w of G not belonging to P. Let G0 be the graph obtained 
from G by deleting all vertices of P except u ; suppose that G0 is connected. Then 
there exists a path P0 in G0 connecting u and w. The paths P, P0 have no common 
vertex except u, therefore their union is a path in G connecting c and w and having 
the length at least er(G) + 1, which is a contradiction with the assumption that c is 
an elongation centre of G. Hence G0 is not connected and the vertex connectivity 
of G is at most er(G). In the case of a complete graph the equality occurs. 

The domatic number d(G) of a graph G is the maximal number of classes of 
a partition of the vertex set of G, all of whose classes are dominating sets in G. (A 
dominating set in a graph G is a subset D of the vertex set V(G) of G with the 
property that to each xe V(G) — D there exists yeD adjacent to x.) 

Theorem 5 . For the elongation radius er(G) and the domatic number d(G) of 
a finite connected graph G we have 

er(G) = d(G) 1. 

Proof. Let G be a finite connected graph, let its domatic number be d. Then 
there exists a partition {D\, ..., Dd} of the vertex set V(G) of G such that D, for 
i = l, . . , d are dominating sets in G. Let u be a vertex of G; without loss of 
generality we may suppose that ueD,. Now we construct a sequence of vertices 
v , ..., Vd- We put v\ = u, hence v,eD,. If v, is constructed for some i = d — 1 and 
v, e D,, then as D,+\ is a dominating set in G and D,nD, + \ — 0, there exists at least 
one vertex of D,+i adjacent to v,. Choose one of them and denote it by v,+ t. Then 
the vertices v„ ..., vd are vertices of a path of the length d 1, one of whose 
terminal vertices is u. As u was chosen arbitrarily, we have er(G) — d— 1. In the 
case of a complete graph the equality occurs. 
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The Hadwiger number (or contraction number) n(G) of a connected graph G is 
the maximal number of vertices of a complete graph onto which G can be 
transformed by successive contractions of edges. The vertex set of G can be 
partitiones into 17(G) classes such that each class induces a connected subgraph of 
G and to any two of them there exists at least one edge joining a vertex of one of 
them with a vertex of the other. 

Theorem 6. The elongation radius er(G) of a finite connected graph G is greater 
than or equal to 17(G) — 1, where 17(G) is the Hadwiger number of G. 

Proof. Instead of 17(G) we shall write only 17. Then there exists a partition 
{V,,..., V,} of V(G) with the above described properties. Let u be a vertex of G; 
without loss of generality we may suppose u 6 V,. We shall construct a finite 
sequence vu wu v2, w2, ..., vn-u wn-u u,. Put v\ = u. If we have constructed v, for 
some J' = n — 1 and v, e V, then choose a vertex w, e V. which is adjacent to a vertex 
of V,+i, this vertex of V,+i will be denoted by v,+\. By P, denote the path 
connecting v, and w, in the subgraph of G induced by V, for 1 = 1, ..., 17 — 1. Now 
take a path consisting of edges w,v,+\ for i = 1,..., 17 — 1 and paths P,. This is a path 
outgoing from u and having the length at least 17 — 1. As u was choosen arbitrarily, 
er(G) =S 17 — 1. For a complete graph the equality occurs. 

Concluding the present paper we shall consider the direct product of graphs. 
If G and H are undirected graphs with the vertex sets V(G) and V(H) 

respectively, then their direct product G X H is the graph whose vertex set is 
V(G) x V(H) and in which the vertices [u,, u2], [vu v2] (for u, 6 V(G), u2 e V(H), 
v\ e V(G), v2 6 V(H)) are adjacent if and only if either u, = u, and the vertices u2, 
Vi are adjacent in H, or u2 = v2 and the vertices u,, v, are adjacent in G. 

Theorem 7. Let G,Hbe two finite connected graphs, let uuv\be two vertices of 
G and u2, v2 be two vertices of H. Then 

e*oxH([u,, u2], [vu v2]) = 
= elo(uu V\)-elH(u2, v2) + max(ela(uu V\), elH(u2, v2)). 

Proof. For each vertex x of G let H(x) be the subgraph of G x H induced by 
the set of vertices whose first coordinate is x. For each vertex y of H let G(y) be 
the subgraph of G x H induced by the set of vertices whose second coordinate is y. 
Evidently H(x) = H, G(y) = G for each xe V(G) and y e V(H). Let P be a path 
of the length elo(uu v\) connecting u, and v, in G, let Q be a path of the length 
eln(u2, v2) connecting u2 and v2 in H. Let the vertices of P be u, = Xo, xu ..., xr = v\ 
and let the vertices of <? be u2 =yo, yu ..., y, = v2, where r = ela(uuv\), 
s = elH(u2, u2). Suppose r^s. For 1 =0, 1,..., * let P, be the path in G(y<) whose 
vertices are [jto, yi\, [*u yi\, • • •> [xr, y,]. If s is even, then the vertices and edges of all 
paths P, for 1 = 0 ,1 , ..., s together with the edges connecting [*r, yj] with [xr, y,+1] 
for j even and [xo, yi\ with [xo, y,+,] for 7 odd form a path connecting [u,, u2] with 
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[v,, v->] in Gx H of the length rs + r + s, which is greater than or equal to rs + v 

= ela(u,, v,)el„(u2, v2) + max(elG(u,, v,), elH(u2, v2)). If s is odd, then the 

vertices and edges of all paths P, for / = 0, 1, ..., s 1 together with the above 

described edges form a path connecting [u,, u2] with [v,, v2] in Gx H of the length 

n + s = el0(u,, v,)elH(u2, v2) + max(el0(u,, v,), elH(u2, v2)). This implies the 

inequality. If r>s, we proceed analogously, interchanging G and H. 

Corollary 3. For any two finite connected graphs G, H the following inequalities 
hold: 

ed(G xH)>ed(G) ed(H) + max(ed(G), ed(H)), 

ined(G x H)> ined(G) ined(H) + max(ined(G), ined(H)), 
er(GxH)>er(G) er(H) + max(er(G), er(H)). 

In the further investigation of the elongation it would be interesting to relate it to 
other numerical invariants of graphs (e.g. clique number, thickness) and to apply 
considerations analogous to those for the distance in a graph (e.g. to characterize 
metric spaces which are isometric to the metric space formed by the vertex set of 
a graph and the elongation on it). 
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ПРОТЯЖЕННОСТЬ В ГРАФЕ 

Богдан Зел инка 

Р е з ю м е 

Пусть и, V две вершины конечного связаного неориентированного графа С. Если иФ V. то 
протяженность е1с,(и, V) вершин и, V есть максимум длин всех цепей в С, соединняющих и и V. 
Если и = \), то е1о(и, г>) = 0. Введены понятия диаметра протяженности, внутреннего диаметра 
протяженности и радиуса протяженности и исследованы их свойства. Эти понятия тоже и*-учены 
в связи с другими численными инвариантами графов 
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