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NEAR LATTICES 

DIETMAR SCHWEIGERT 

In order to describe the posets by algebraic structures which are similar to lattices 
we introduce the near lattices with two binary operations denoted by A and y . In 
comparison with lattices only weaker forms of the associative and the commutative 
laws hold and also the correspondence between posets and near lattices is not 
unique. We discuss the axioms and show that a near lattice is a lattice if and only if 
the commutative laws hold. Furthermore we characterize the minimal non trivial 
subvarieties of the variety of near lattices. Finally we study the associative 
distributive near lattice and describe the simple algebras of this variety. 

1. Near lattices and posets 

Definition 1.1. The algebra (V; A , y ) is called a near lattice if the following 
equations are fulfilled: 

1) xA(yAz) = (xAy)A(yAz) 1') (xyy)yz = (xyy)y(yyz) 
2) xA(xAy) = x/\y 2') (xyy)yy = xyy 
3) XAX = X 3') xyx = x 
4) xAy = xA(yAx) 4') xyy = (yyx)yy 
5) *A(;cy_y) = ;t 5 ) xy(xAy) = x 
6) (_yyjc)Ajr = .* 6') (yAx)yx = x 

Proposition 1.2. In every near lattice (V; A, y) the following laws 6b) 
XA(yyx) = x and 6'b) (jrAy)yjt = Jt hold. 

Lemma 1.3. To every near lattice (V; A , y ) these corresponds a poset (V; = ) 
defined by a^b iff b Ka = a. 

Proof. Reflexivity a = a because a Aa = a by 3). Antisymmetry a = b and b=a. 
We have bha = a and aAb = b; 

b = by(bAa) = bya a = aA(bya) = aAb = b. 

Transitivity a — b and b = c. We have bha = a, b = chb 

cAa = cA(bAa) = (cAb)A(bAa) = bKa = a. 
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R e m a r k 1: We note that b A a a iff by a — b. 
R e m a r k 2: As the operations A and y are not commutative one has to define 

the antiautomorphism of a near lattice (V; A, y) in the following way: The 
bijective map o: V—» Vis called an antiautomorphism if o(xAy) o(y)yo(x) and 
o(xyy) = o(y)Ao(x). 

Proposition 1.4. IfxAy^y, then the element x Ay is the infimum of x, y and has 

the property xAy = yAx. 

Proof We have yA(xAy) xAy and by 4) yA(XAy)— yAX. Since 
XA(xAy) — xAy we have XAy^x and XAy is a lower bound of x, y. If r is another 
lower bound, then xAr= r = yAT. We have r (xA(yAr) (xAy)A(yAT) 
= (xKy)Ar. Therefore r XAy. 

We notice that from x < x y y it follows that x y y is the supremum of x, y and has 

the property xyy—yyx. 

Theorem 1.5. To every poset (V; <J there corresponds a near lattice (V; A , y) 
which has this poset as order relation. 

Proof : 
We define 

y < * , = [У if 
l x t 
1 - else 

and 

(x if xvy = { x^ y 
y else 

The axioms can be verified by direct computation. We prove here only the axiom 1) 
XA(yAz) — (xAy)A(yAz). Consider the cases la) yAz — y and xAy = x. Then 
A=xA(yAz) = x and B = (xAy)A(yAz) - XAy~x. lb) yAz =y and x Ay =y ; 
then A = y = B. lc) yAz = z and x AZ~ z; then B — z for xAy — x or *A_V — y. Id) 
VAZ = Z and XAZ~X\ then B~z for rAy = x. For xAy=y we have z = x and 
therefore x = z. 

Proposition 1.6. The following weak associative laws hold in a near lattice: 

lb) (xAy)Az = (xAy)A(zAx) lb ') xy(yyz) = (zyx)y(yyz) 

Proof. 

(xAy)Az~(xAy)A[zA(xAy)] by 4) 
-(xAy)A[(zAx)A(xAy)] by 1) 
-(xAy)A(zAx) by 4). 

Theorem 1.7. The near lattice (V; A, y) is a lattice if and only if the 

commutative laws hold. 
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Proof. We have only to show that the associative laws hold 

xA(yAz) = (xAy)A(yAz) by 1) 
= (yAx)A(zAy) by commutativity 

= (yAx)Az by lb) 
= (x Ay) A z by commutativity 

2 . Subvarieties of near lattices 

N o t a t i o n s . D2 is the two-element lattice. By D2 we denote the algebra (0, 1; 
A, Y) defined by 

A 0 1 Y 0 1 
0 0 0 and 0 0 1 
1 

e: 

1 1 

- Іì 

1 0 

D2 ° ° 
0 1 

1 

The Hassediagrams are 

Theorem 2.1. Every near lattice with more than one element has at least D2 or 
D2 as a subalgebra. 

Proof. If (V; A, Y ) has two comparable elements a, b with a<b, then a, 
b generates D2. We have bAa = a, bya = b and aAb = aA(bAa) = a, ayb = 
(bya)wb = byb = b. 

If (V; A, y ) consists only of incomparable elements, then we consider a,beV. 
We have aAb = a and hence aAb = a. Similarly we have bAa = b. We have 
b=ayb and hence b = ayb. Similarly bya = a. 

Definition 2.2. A near lattice is called distributive if the following laws hold: 

6a) *A(.yyz) = (;tA_y)Y(jrAz) 6a') xy(yAz) = (xyy)A(xyz) 
6b) (A:y>J)Az = (jrAz)v(>'Az) 6b') (JCA>')YZ = ( ^ Y Z ) A ( > ' Y Z ) 

Lemma 2.3. / / (V; A, y) is a associative distributive near lattice, then 
f(x) = (aAx)yb is an endomorphism. 

Proof. 
f(xAy) = [aA(xAy)]yb 

= [(aAx)Ay]yb by associativity 
= [(aA(xAa))Ay]yb by 4) 
= [(aAx)A(aAy)]yb by associativity 
= [(aAx)yb]A[(aAy]\/b by distributivity 

= / ( * ) A / O 0 

f(xyy)=f(x)yf(y) in a similar way. 
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Lemma 2.4. A simple associative distributive near lattice cannot contain a chain 
with more then two elements or a chain with two elements a, b and an element 
incomparable to a, b. 

Proof. Assume that C is a chain with 3 elements a<b<c. The congruence 
relation 6 defined by (x, y)ed iff (b/\x)ya = (bAy)ya is not trivial. 

Assume that C is a two-element chain a, b and c an element incomparable to a, 
b, a<b. Again we have (b/\c)va = (bya)A(cya) = ftA(cya) — b. On the 
other hand we have f(a) — (b/\a)ya = a and f(b) = (b/\b)ya = bya = b. 
Therefore 6 is not trivial 

Theorem 2.5. The associative and distributive near lattice V is simple if and only 
if V is isomorphic to D2 or D2. 

Proof. Obviously D2 and D2 are simple. We have to show that D2 is associative 
and distributive. As the following equations hold x/\y = x and xyy = y, we have 
XA(yAz) = (xAy)AZ- Furthermore xA(yyz) = (x Ay)y(xAz) and (xyy)Az 
— (x Az)y(y A z)- On the other hand we have by lemma 2.4 that V is isomorph to 
D2 if V has two comparable elements. But V is only simple if V has only two 
elements. 
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ПОЧТИ РЕШЕТКИ 

Дитмар Швеигерт 

Резюме 

В статье вводится понятие почти решетки с двумя бинарными операциами л, V с целью 
описать частично упорядоченные множества как алгебраические структуры, похожие решеткам. 
В почти решетках имеют место только более слабые ассоциативные и коммутативные законы, 
а также взаимное соответствие между частично упорядоченными множествами и почти решет­
ками не однозначно. Кроме того дана характеризация минимальных не тривиальных подмного-
образиий многообразия почти решеток. Приведено тоже описание простых алгебр много­
образия ассоциативных дистрибутивных почти решеток. 
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