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AN OPTIMAL CONTROL PROBLEM FOR 
AN ELLIPTIC VARIATIONAL INEQUALITY 

IGOR BOCK—JAN LOVlSEK 

We shal be dealing with an optimal control for an elliptic variational inequality 
with controls involved both in the operator of the problem and in the right hand 
side. A similar problem with controls only in the right hand side has been solved in 
the book [2]. 

1. The Existence Theorem 

Let U with a norm || • || v be a reflexive Banach space of controls, Uad c U a set of 
admissible controls. We assume Uad be convex, closed and bounded in U. 

We assume further a reflexive Banach space V with a norm || • || and a convex 
closed subset Kcz V. V* means a dual space of V with a norm || * ||* and a duality 
pairing [•,•] between V* and V. 

Let {A(e)}, A(e): K-+ V* for every e e Uad, be a family of operators satisfying 
the following assumptions: 

( i ) 
A(e) is for every ee Uad strongly monotone i.e. 
[A(e)u — A(e)v, u — v]>0 for every u, veK, uj=v, ee Uad 

A(e) is for every ee Uad hemicontinuous i.e. 

(2) lim [A(e)(u + t(v - u)), w] = [A(e)u, w] 

for every ee Uad, u, veK, weV 

( . {A(e)} is uniformly bounded i.e. 
( 3 ) \\A(e)v\\*^C, if I M I i / ^ G and | | t ; | | ^ G 

{A(e)} is uniformly coercive i.e. there exist such v0eK and a real function 
(4) r: [0, oo)--> R, lim r(t) = oo, that 

[A(e)v, v — v0]^\\v\\r(\\v\\) for every veK 

A()v: Uad-* V* is for every veK strengthenly continuous i.e. 
^ ' en-^e0 (weakly) in U implies A(en)v—>A(e0)v (strongly) in V*. 
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Let the operator B: Uad-± V* be strengthenly continuous and feV*. Under the 
assumptions (1), (2), (3) the operator A(e): K—• V* is pseudomonotone for every 
e e Uad (def. in [3]) and then due to the theorem from [3] there exists a unique 
solution u(e)eK of a variational inequality 

(6) [A(e)u(e)9v-u(e)]&[f + B(e),v-u(e)] 
for every v e K 

Our aim is to solve the following optimal control problem: 

Problem P. To find a control e0 e U„d which fulfills : 

(7) [A(eo)u(e0), v-u(e0)]^\J'+B(e0), v-u(e0)] 
for every veK 

(8) \\Cu(eo)-Zi\\it=rmtt \\Cu(e)-Zd\\l, 
ee Uad 

where u(e)eK is a solution of (6), W is a Hilbert space, CeL(V, ffl) is a linear 
control operator, zd e ffl is a fixed element. 

Theorem 1. There exists at least one solution e0e Uad of Problem P. 

Proof. We have J(e) = \\Cu(e) - zd\\le^O for every ee Uad. Hence inf J(e)^ 
ee Uad 

0. Let (en)n=i be the minimizing sequence for a functional / ( • ) i.e. 

(9) \\mJ(en)= inf J(e) 
n-*<*> e e Uad 

As the set Uad is convex and closed in the reflexive space CI it is weakly closed in U. 
Then there exist such a subsequence of (en)n=i (we denote it again by (en)n=i) and 
the element e0 e Uad that 

(10) en—*e0 (weakly in U) 

Denoting un = u(en)e K, n = 1, 2, ... we have 

(11) [A(en)un,v-un]^[f+b(en),v-un] 
for every veK, n = 1, 2, ... 

Inserting v0eK in (11) we arrive at 

(12) [A(en)unj un-v0]^[f + B(en), un-v0] 

Using the uniform coerciveness of a system {A(e)} and the streghten continuity of 
B we obtain 

(13) Ikllrflkll^C.lkll + G 

As lim r(t) = oo we have 
/—»oo 
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(14) | k | | ^ C , ri = l , 2 , . . . 

We can now extract such a subsequence of (un)n=1 denoted again by (w„)"-i that 

(15) un—*u (weakly in V) 

Moreover ueK, because uneK, /i==l, 2, . . . and K is weakly closed in V. 
As a family of operators {A(e)} is uniformly bounded (see (2)) we have 

||A(e„)M„||*^C for n = 1, 2, . . . Then there exists an element xe ^* such that 

(16) A(en)un-^x (weakly in V*) 

Mono tonicity of A(en) implies 

(17) [A(en)un-A(en)v,un-v]^0 
for every veK, n = 1, 2, ... 

Inserting v = w in (11) we obtain using (10), (15) and the strenghtened continuity 
of the operator B, 

(18) lim sup [A(e„)un, un - u]^0 

and combining with (16) 

(19) lim sup [A(en)un, un]**[x, u] 

Taking into account relations (15), (16), (17), (19) and the strenghtened continuity 
of the operator A()v: Uad—> V* we arrive at 

(20) [x-A(e0)v, u-v]z*0 for every veK 

Let v = u + t(w-u), te(0, 1), weK. Then we have 

(21) [x-A(e0)(u + t(w-u))y u-w]>0 
for every weK, te(0,1) 

Making use of hemicontinuity of A(e0) we obtain after t—>0 and putting again 
w = v 

(22) [A(e0)u, u-v]*£[x, u-v] for every veK 

Puting v = u in (17) we have [A(en)un, un — u]^[A(en)u, un — u]. The stren
ghtened continuity of A(-)u and the weak convergence un-^u imply immediatly 

lim [A(en)u, u„ — u] = 0 and hence lim inf [A(en)un, u„ — u]^0. Comparing with 
n—•« 

(18) we have 

(23) lim [A(en)un, un-u] = 0 

Relations (16), (22), (23) enable us to estimate 
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(24) [A(e0)u, w - t t ] ^ l i m [A(en)un, un-v] 
n—*<*> 

for every veK 

We are coming now to the conclusion that the element u e K is a solution of 
a variational inequality 

(25) [A(e0)w, u- v]^[/+ B(e0), u-v] for every veK, 

having used (24), (11), (15) and the strenghtened continuity of B. 
Hence we have proved 

(26) u = u(e0), u(en)-^u(e0) (weakly in V) 

what implies 

(27) Cu(en)-^Cu(e0) (weakly in x) 

A functional g: x-*R, g(w) = \\w — Zd\\l, H le^is weakly lower semicontinuous 
and therefore 

(28) J(e0) = \\cu(e0)-Zd\\l^liminf\\Cu(en)-Zd\\l-
= lim inf J(en) =inf J(en) 

which completes the proof of (8) and of the Theorem. 
R e m a r k . It is an opened question to gain further information about the set 

Xcz Uad of solutions of Problem P. We have only verified that X-£ 0. The core of 
the problem is that ve have been solving the control problem governed by the 
variational inequality and hence the minimized functional / with respect to e e Uad 

is not convex. 

2. The Example 

We shall investigate the optimal control problem for the thickness function of 
a thin plate with an obstacle. 

Let Qa R2 be the middle plane of a plate. We assume that Q has the Lipschitz 
boundary dQ = r i u r 2 u r 3 . We suppose that a part rt of the boundary of the plate 
is clamped, a part r 2 is simply supported and a part r 3 is free. An obstacle for the 
deflection of the plate can be described by the function q>: Q^>R satisfying the 
inequality q?(x, y)^0 on r i u r 2 . 

We denote 

(29) V=lveH2(Q)v=0 on r x u r 2 , | ^ = 0 on r ] , 

where ^(Q) is a Sobolev space of all functions from L2(Q) which have the 
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distributive derivatives up to the 2-nd order from L2(Q). The boundary conditions 
are satisfied in the sense of traces ([4]). 

Functions expressing deflections of the plate belong to the set 

(30) K={veV,v(x,y)^cp(x,y) a.g. in Q} 

The thickness functions e: Q-+R play the role of controls. We assume the set Uad 

of admissible controls in the form 

(31) Uad = {eetf2(Q)\\e\\2„>(a)^M, e(x,y)^m>0 on Q} 

Due to the imbedding theorems in the Sobolev space Jf(Q), K is a convex closed 
subset of Vand Uad a convex closed and bounded subset of the space U=H2(Q). 

The operators A(e): K—> V*, ee Uad, of the problem are of the form 

[Me)u, v] = 1 2 ( 1 ^ ) j[f«*(*. .V) [ ( § ? + ,- § $ f p + 

(32) + 2(l-ll) — — + ^ + ^ ^ d x d y , 

ueK, veV, eeUad, jne(0,l) 

The operators A(e) satisfy the assumptions (1)—(5). If the outer force has the 
form of linear bounded functional feV*, then a deflection of the plate u(e) e K is 
a solution of a variational inequality 

(33) [A(e), v - u(e)]^[f,v- u(e)] for every veK 

For simplicity we do not consider the operator B: Uad—> V*. A cost functional can 
be of the form 

(34) J(e)=\\(Tu(e)-Zd)
2dxdy, eeUad, .{[<-. 

where J: V^Lz(Q) is the identity operator, ZdeL2(Q), or 

(35) J(e)=\ (Tu(e)-Zd)
2ds, eeUad, 

where T: V-*L2(r3) is the operator of traces, ZdeL2(r3). The optimality 
conditions for the functionals (34) and (35) mean the minimizing of the distance 
betwean the deflection of the plate u(e) and the priscribed function Zd on Q, or T3. 
Due to the Theorem 1. there exists the optimal thickness function e0: Q-+R which 
minimizes the functional J or J on the set of admissible functions Uad. 

We are greatly indebted to Dr. Kacur for his valuable advice enabling us to 
improve the assumptions of the Theorem 1. 
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OДHA ЗAДAЧA OПTИMAЛЬHOГO УПPABЛEHИЯ 
ДЛЯ ЭЛЛИПTИЧECKOГO BAPИAЦИOHHOГO HEPABEHCTBA 

Igoг Bock—Ján Lovíšek 

Peзюмe 

B paбoтe paccмaтpивaeтcя зaдaчa oптимaльнoro yпpaвлeния для эллиптичecкoгo вapиaциoн-
нoгo нepaвeнcтвa c yпpaвлeниями в oпepaтope и в пpaвoй чacти. Дoкaзывaeтcя cyщecтвoвaниe 
oптамaльнoгo yпpaвлeния. Пoкaзывaeтся пpимep oптамaлизaции тoлпщны тoнкoй плacтины 
c пpeпятcтвиeм. 
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