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ON REPRESENTATIONS OF LOGICS 

SYLVIA PULMANNOVA 

In [12] an embedding of a logic L into a lattice of all /-closed subspaces Lf( V) of 
a vector space V with the Hermitian form / was found. In the presented paper it is 
shown that Lf(V) has the Hilbertian property (M + M±=V for all MeLf(V)) if 
and only if the supremum ave exists in L for any aeL and any atom eeL. 

1. Basic concepts 

Let L be an orthomodular a-orthoposet, i.e. L is a partially ordered set with the 
first element 0 and the last element 1, with the orthocomplementation ± : L—>L 
such that 

(i) (a±)± = a, aeL 
(ii) a^b^>a±^b±, a, beL 

(Hi) ava± = l, aeL. 
We say that a is orthogonal to b (alb), a, beLif a^b^- and we suppose that 

(iv) va,eL for any sequence {a,} of mutually orthogonal elements of L. 
Finally, we suppose that L has the orthomodularity property, i.e. 
(v) a^b implies that there is deL, dla such that b = avd. 
A partially ordered set L with the properties (i)—(v) is called a logic. 
A state on L is a map m: L—>[0, 1] such that 
(i) m ( l ) = l , 

(ii) m ( v a,) = 2 m (a,) for any sequence { a,} of mutually orthogonal elements of 
L. 

A state m on L is pure if it cannot be written as a convex combination of other 
states, i.e. if the equality m( •) = cmi( •) + (1 — c)m2( •), 0< c < 1 implies m = mx = 
m2. 

Let L be a logic and P a set of pure states on L. For a e L let us put Pa = {pe P: 
p(a) = l), and for peP let us put Lp = {aeL: p(a) = l). 

Definition 1 [2]. We say that the pair (L, P), where L is a logic and P is a set of 
pure states on L, is a quantum logic if 
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(i) PaczPb^a^b, a, beL, 
and 

(ii) LpczLq^>p = q, p , qeP. 

Definition 2 [13]. Let MczP. We say that a state m is a superposition of states of 
MifM(a) = l impliesm(a) = I, whereM(a) = \ means thatp(a) = 1 forallpeM. 

Let us put M={peP: M(a) = 1 =>p(a) = 1}, i.e. M is the set of all pure 
superpositions of states in M. 

Definition 3 [12]. We say that S cz P is a subspace if {p, q}~ czS for any p, qeS. 
If S is a subset of P, we denote by A(S) the smallest subspace of P containing S. 

Definition 4 [12]. We say that SczP is a closed subspace of P if S = S. 
We denote by L(P) the set of all subspaces of P and by F(P) the set of all closed 

subspaces of P, i.e. 

L(P) = {SczP:S = A(S)} 
and 

F(P)={Sc=P: S = S}. 

It can be easily seen that F(P)czL(P). 

Definition 5 [3]. We say that p eP is a minimal superposition of the set SczP if 
peS and p^Q for any QczS, QJ=S. 

Definition 6 [3]. We say that the minimal superposition postulate (MSP) holds in 
the quantum logic (L, P) if for any finite set S = {su ..., sn}czP and any minimal 
superposition p of S there holds {p, Si}"nS29-0 for any partition {Su S2} of 
S (i.e. such sets Si and S2 that SiuS2 = S and SinS2 = 0). 

Definition 7 [10]. We say that the superposition principle holds in the quantum 
logic (L, P) if {p, q}~^{p, q} for any different states p, qeP. (Compare with 
[6]-) 

Proposition 1 [11]. If the MSP holds in the quantum logic (L, P), then 
(i) peA{r, q} => reA{p, q}, qeA{r, p} for any mutually different states p, 

q, reP. 
(ii) A(S) = S for any finite subset SczP. 
The states pi, ..., pn are independent if p, £ A {p.: j±i}, i , / = l , 2, ..., n. The set 

{pi, ..., pn} is a basis of an element SeL(P) if p1? ..., pn are independent and 
S = A{pi, ..., pn}. If SeL(P) has a finite basis [pu ...,pn}, then by (ii) of 
Proposition 1 S e F(P). In this case we say that S is finite-dimensional. 

An element aeL is the support of a state seP (in symbols: a=supps) if 
s(b) = 0ob±a (beL). If a=supp s , then Ls = {beL: b^a}. If a state s has 
a support, we say that s is supported. 
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Proposition 2 [4]. Let (L, P) be a quantum logic such that all states in P are 
supported. Then 

(i) supp s is an a torn of L for any seP and there is a one-to-one correspondence 
between states in P and atoms of L. 

(ii) a = v{suppp: pePa} for any a eL. 
Let us define the following binary relation on P: 
p±q if there is aeL such that p(a)=l and q(a) = 0 (see [2]). 
If p± q, we say that p is orthogonal to q. It can be easily seen that the relation ± 

is symmetric and antireflexive. If all states in P are supported, then p±q iff 
supp p ± supp g. 

For Sc rP let us write S± = {seP: s±S}, where s±S means that s±p for any 
peS. 

Proposition 3 [4], If (L, P) is a quantum logic such that all states are supported, 
then S±J- = S for any S c P. 

For Sa c P , aeA let us set 

V sa = (\jsa), 2sa=A(usa) 
a e A VaeA / a e A VaeA / 

Proposition 4 [2, 4, 12]. 
(i) The set F(P) is a complete lattice with the operations v and A = n 

(set-theoretical intersection). If all states are supported, then S>-*S± is an 
orthocomplementation in F(P). 

(ii) The set L(P) is a complete lattice with lattice operations 2 and A = n . If the 
MSP holds, then Si + S2 = {p eP: p eA{r, q}, reSu qeS2}. The singleton subsets 
{p} of P are atoms in both F(P) and L(P). 

Proposition 5 [4]. Let (L, P) be a quantum logic such that all states in P are 
supported. Then PaeF(P) for any aeL and the map a*-+Pa: L—>F(P) is an 
orthoinjection, i.e. preserves ordering and orthocomplementation. 

The following representation theorem was proved in [12]. 

Theorem 1. Let (L, P) be a quantum logic such that the superposition principle 
(SP) and minimal superposition postulate (MSP) hold in it. Let there be at least 
four independent states in P. Then there is a division ring K and a vector space 
V over K such that L(P) is isomorphic to the set L(V) of all linear subspaces of 
V (i.e. there is a bijection between them that preserves the ordering). 

If, in addition, all states in P are supported, then there is an involutorial 
anti-automorphism *: A •-> A * in K and a Hermitian form f: V x V—> K such that 
the set F(P) is isomorphic to the set Lf(V) of all f-closed subspaces of V (i.e. there 
is a bijection between them that preserves ordering and orthocomplementation). 
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2. Hilbertian property of Lf ( V) 

A question may arise if the lattice Lf(V) from Theorem 1 has the Hilbertian 
property, i.e. if M + M x = V for any M e Lf(V) (Mi + M2 denotes the least linear 
subspace of V containing both Mi and M2). 

It is known [8, (33.4) and (29.13)] that M + M±=V holds iff Lf(V) is 
orthomodular. By Theorem 1, Lf( V) is orthomodular iff F(P) is orthomodular. As 
there is a one-to-one correspondence between atoms of L and elements of P, p±q 
iff supppJL suppg, and the set of all atoms is join-dense in L, the set F(P) is 
isomorphic to the completion by cuts L of the logic L ([7, Th. 2.4 and 2.5]. See also 
the remarks at the end of [5]). The orthomodularity of L under somewhat different 
assumptions was studied in [1]. The proof of the following theorem requires 
a refinement of the technique of [1]. Before stating the theorem, we shall need 
some lemmas. In the sequel we suppose that (L, P) is a quantum logic such that all 
states are supported and MSP holds. 

Lemma 1. For any S e F(P) and any finite-dimensional Q e F(P) we have 
SvQ = S + Q. 

Proof. (The technique of the proof is similar to [9, p. 55].) It is enough to show 
that Sy {p} = S + {p} for any p e P, p £ S. By Theorem 1 in [12], the set L(P) has 
the covering property, i.e. S + {p} covers S. But then S x covers (S + { p } ) \ and 
there exists qeP such that (S + {P})x + {q} = S"L. Similarly we have that 
(S + {P})x± covers [(S + {p})x + {q}V = S±J- = S in L(P). From this it follows that 
S + {p} = (S + {p})^ = Sv{p}. 

Lemma 2. Let L have the following property: 

for any a e L and any atom e e L, aveeL. (*) 

Then the following statements are equivalent 
(i) a^x^ave implies x = a or x = ave for any aeL and any atom eeL 

(covering property), 
(ii) if e, f are atoms in L and aeL, aAe = 0, then e^avf implies thatf^ave 

(atomic exchange property). 
Proof. ( i ) - -Xii) : If aAe = 0 and e^avf, then a/\f = 0, because if not, then 

f^a, which implies e^a, a contradiction. Since a^ave^avf, by (i) ave = 
avf^f. 

(ii)^(i): Let aAe = 0 and a ^ J t ^ a v e , a±x. As L is atomistic, there is an 
atom f^x, f^a. From / A a = 0 we get by (ii) that ave = avf. Since avf^x^ 
ave, we get x = ave. 

Lemma 3. F(P) has the covering property. 
Proof. We show that F(P) has the atomic exchange property. It can be shown as 
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in the proof of Lemma 2 that this is equivalent to the covering property. Let 
S e F(P), p,qeP,p$S,p eSv{q}. By Lemma 1, S v {q} = S 4- {q}, i.e. there is 
seS such that p e {s} + {q} (Proposition 4 (ii)). By Proposition 1 (i), 4 6 {p} + 
{s}, which means that qeSv{p}. 

Theorem 2. Let (L, P) be a quantum logic such that MSP holds and all states are 
supported. Then the lattice F(P) is orthomodular if and only ifL has the property 
(*) of Lemma 2. 

Proof. I. Let L have the property (*). By Lemma 3, F(P) has the covering 
property. As a>-+Pa is an orthoinjection from L into F(P), L has the covering 
property as well. Indeed, if a A b exists in L, then PaAb = Pac\Pb = Pa/\Pb. From this 
it follows that if avb exists in L, then Pavb = P(a--Abx)J. = (pa-AP£)-L = P a vP h . If 
a ^x^ave, then Pa^Px^Pave = Pav{p}, where p = supp_1e. The last inequality 
implies that Px = Pa or Px = Pav{p} =PaVe. It follows that JC = « or jc = ave. Since 
L is orthomodular, it has the Varadarajan property: if a e L with 0 < a < 1 and if e 
is an atom of L, then there exist two atoms JC and y such that e^xvy,x^a,y^a± 

(see [8, (30.7)]). 
For MeF(P), let BM denote the maximal set of orthogonal states in M. Such 

a set exists by Zorn's lemma. We show that M = BM. Clearly, BM c M. Let seM, 
s$BM. It can be shown that for any p e BM s ( s u p p p ) ^ 0 only for at most 
a countable subset {pu p2, ...} of BM. Hence sip for p ^ {pu p2, ...}. Put 

a = V suppp,. Using the Varadarajan property we show that there is an atom e e L, 
1 = 1 

e^a± such that avsupps = ave. Let qr=supp_1e. Then q~[\/{Pi}) r\M, i.e. 

qlp,, / = 1, 2, ... Let p~BM, p £ {pu p2, . . . } . Then e^a v supp s^ ( suppp) x , 
hence q±p for all p e BM, which contradicts the maximality of BM. Hence there is 
no atom in M\BM and since F(P) is atomistic, this implies that M = BM. Now let 
Mi czM2, Mi, M2 e F(P). Let Bx be the maximal orthogonal set of states in M-. It 
can be extended to the maximal orthogonal set B2 in M2. Let B3 = B2\Bt and 
B3 = M3. Then B3 ~zBt = Bf = Mf and thus M3 = B 3 c M , \ In addition, MxvM3 = 
(MxuM3)~ = (B,uB 3 )" = (B!uB3)" = B2 = M2. This proves the orthomodularity of 
F(P). 

II. Let F(P) be orthomodular. Then F(P) has the Varadarajan property and 
hence L has it, too. Let aeL, a^0,l and e be an atom of L. Then there exist 
atoms x^a, y^a± such that e^jcvy^avy.It can be easily seen that supp-1jc = 
(Pa

Lv{supp"1e})APa, supp_1y = (Pav{supp~1e})APa" in F(P). Now let c^a, e. 
Then supp_1y = (Pav{supp_ 1 e})APa^PcAPa^Pc, i.e. y ^ c and thus c^avy. 
We have shown that ave = avy and this completes the proof. 
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O ПPEДCTABЛEHИЯX ЛOГИK 

Sylvia Pu l rnannová 

P e з ю м e 

B [12] noкaзaнo влoжeниe лoгики L в peшeткy вcex /-зaмкнyтыx noдnpocтpaнcтв LДV) 

линeйнoгo пpocтpaнcтвa V c гepмитoвoй фopмoй /. B npeдлaгaeмoй cтaтьe пoкaзaнo, чтo LД V) 

имeeт кaчecтвo Гильбepтa M-ł-M± ==V для вcex MeLf(V) тoгдa и тoлькo тoгдa, кoгдa ŰVЄ 
cyщecтвyeт в L для вcex aeL и вcex aтoмoв eeL. 
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