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ON PARTIALLY DIRECTED P-GRAPHS

PAVOL HIC

1. Introduction

P-graphs (undirected, directed or mixed) have been studied in several papers [1,
2, 3, 7]. Bosak [3] has proved that every loopless undirected graph G is a P-graph
if and only if G is a T-graph. In [7] there was found a partially directed P-graph
which is neither a quasitree, nor a graph similar to a T-graph. In the present paper
we shall study directed and, more generally, partially directed P-graphs. We show
that any partially directed P-graph without loops is either a quasitree or
a homogeneous block with a finite diameter.

2. Notation and definitions

Throughout this paper all notions and notations not defined here will be used as
in [3].

The graphs considered in this paper are directed or partially directed.

For a given graph G, V(G) and E(G) denote its vertex set and edge set,
respectively.

Let v be a vertex of a partially directed graph G. Denote by id v [od v] the
number of edges of G incident with v that are either directed to [from,
respectively] v, or undirected. G is said to be a homogeneous graph of valency d if
id v =0d v =d for every vertex of G (where d is a cardinal number).

By a semitrail from u to v in a graph G we mean a finite sequence

O=[v0’ el, vl, CERT] e’l’ vn]7

where n is a non-negative integer (called the length of Q); vo=u, v,, V2, ..., U, =V
are vertices of G; ey, e,, ..., e, are mutually different edges of G (if n=1) and for
every i€ {1, 2, ..., n}vi_, and v; are the end vertices of e;. If, moreover, every e; is
either undirected, or directed from v,_, to v;, then Q is said to be a trail. A
semitrail [trail] whose vertices are mutually different is called a semipath [path].
A semitrail [trail] from u to v is said to be a semicycle [cycle] if its vertices are
mutually different with the exception of u=v. A segment of Q between the
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vertices v, = x and v; = y(i <j) will be denoted by Q[x, y]. If P is a path from u to
v and w € P, then we shall write

P—Pl[u, w]+ P[w, v].

A distance between vertices u and v of G is denoted by o (u, v) and it is the
smallest length of a path from u to v, if any; otherwise we put gg(u, v)=0o. A
graph G is said to be connected [strongly connected] if for every ordered pair
[u, v] of vertices of G there exists a semipath [path] from u to v. The diameter of
G is defined as sup s (u, v), where the supremum is taken through all the ordered
pairs [u, v] of verti e of G.

A vertex v of a graph G is said to be a cutpoint of G if there exist two d'fferent
edges e and f of G such that every semitrail containing e and f contains v between
e and f. A maximal connected subgraph H of G containing no cutpoint of H is
called a block of G.

If H is a subgraph of G, then |E(H)| will denote a number of edges of H. If H is
a path or a cycle, then |E(H)| will denote its length.

Let v € V(G). Denote by I'"(v)[I" "(v)] the set of vertices u € V(G) such that
there exists a trail from v to u [from u to v] of the length n(I''(v) = I'(v)). Thus, if
G has no multiple edges, then |[I['(v)|=od v, | '(v)|=id v and I’(v)={v).

3. Part’ally d'rected P-graphs

A partially directed graph G is said to be P-graph if for each ordered pair
[u, v] of vertices of G there exists in G exactly one path from u to v of a length not
greater than the diameter of G. A P-graph, which is a block, is said to be a P-block.

A graph G is said to be a quasitree if fore each ordered pair [u, v] of vertices of
G there exists exactly one path from u to v.

L mma 1 (Bosdik [3, Theorem 6]). A graph G is a quasitree if and only if G is
connected and every block of G is isomorphic to K, C, or a directed cycle.

A partially directed graph G is said to be a T-graph if for each ordered pair
[u, v] of vertices of G there exi ts in G exactly one trail from u to v of a length not
greater than the diameter of G.

Let G be a partially directed graph. Denote by G° the loopless graph obtained
from G by deleting all the loops of G. Denote by G* the directed graph obtained
from G by replacing each undirected odge by two oppositely directed edges.

Lemma 2 (Bosak [1, Lemma 1]).

(i) A graph G is a P-graph if and only if the loopless graph G° 1s a P-graph.

(ii) A graph G is a P-graph if and only if the directed graph G* is a P-graph.
Lemma 2 enables us to restrict ourselves to directed and loopless P-graphs.
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We obviously have (see Bosik [1, 3]) the following assertions (k is the diameter
of G):

Proposition 1. Let G be a P-graph. Then G has no two edges with the same
initial and final vertices.

Proposition 2. Every quasitree is a P-graph.
. Proposition 3. Every directed edge of a P-graph G lies in a directed cycle with
<k +1 edges.

Proposition 4. No directed edge of a P-graph G can be contained in two cycles
of length <k +1.

Proposition 5. Every block B of a directed P-graph G contains a cycle of length
<k+1.

Lemma 3. Let G be a P-graph. Then for each v € V(G)

idv=odv.

Proof. By Propositions 3 and 4 every edge directed from v lies in exactly one
directed cycle with <k + 1 edges. In each of the cycles there is an edge directed to
v so that od v <id v. Analogously, the inequality id v<od v can be proved.

Hence id v=o0d v.
Q.E.D.

Lemma 4. Every loopless directed P-graph is either a quasitree or a block with
a finite diameter.

Proof. Let G be a loopless directed P-graph of diameter k. Distinguish three
cases:

I. The diameter k = 1. Then every P-graph is a complete graph and the assertion
holds.

II. The diameter k of G is finite, k =2. Let G have at least two blocks. Let B be
a block and B’ be a block which meets B at a cutpoint v. We shall prove that B is
a directed cycle. Let w be a vertex of B’ and w ¢ B (see Fig. 1). By Propositions
3 and 4 every directed edge in B lies in exactly one directed cycle C with <k +1
edges. We assert that | E(C)| <k for every Cc B. Let |E(C)| =k +1; then there
exists a vertex x € C and a path P from v to x, |E(P)| =k, P=P[v, y]+ P[y, x]
(see Fig. 1). Further, there exists a path P’ from w to x, P’ =P'[w, v]+ P'[v, x],
|E(P'[v, x])| <k. Evidently, P+ P’[v, x] and this is a contradiction to the defini-
tion of a P-graph (there are two distinct paths from v to x of length < k). Hence
|[E(C)|<k.

Evidently, there is a cycle of B which contains v ; let C be such a cycle. Suppose
that there exists a vertex u of B that does not lie in C. As B is a block, there exists
(see e.g. [6, Theorem 3.3]) a semipath

[uo, 1, Uy, ..., u,=u, ..., e, U],
where s=2, 1<r<s—1, uo and u, are in C, uo# u, but u,, u,, ..., u,_, are not in
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C. By the preceding, each e, i€{1,2,...,s} lies in a cycle C of B, where
|[E(C)|<k (see Fig. 2).

Put C,= C. We obtained a sequence S ={C,, C,, ..., C.} of cycles. Now we shall
prove that S has the following properties:

(i) For every pair of adjacent cycles C,, Ci., € S either V(V,)nV(C..\) = {u}
forie{0,1,...,s—1} and V(C)nV(C,)) = {u}, or C,=C,., forie{l, 2, ...,
s—1}.

Fig 1 Fg?2

(i) For every pair of nonadjacent cycles C,, C, € S either V(C)nV(C) =9 for
i#jand i, je{0,1, ..., s}, or C,=C =C, for every k with i <k <j.

Proof. (i) It is obvious that V(Co))nV(C.)={u} and V(Co)nV(C\)={u,)}.
Let G# C... and V(C)nV(C,.\) o {u}. Let e,., be the first edge of the cycle C, .,
and x be the first vertex of C,.,, which is in C; too, and x# u,. Then there exist
distinct u, — x paths of length < k. One of them is contain d in C and the other in
C.... This is a contradiction to the definition of a P-graph.

(ii) Obviously from C, —C, |i—j|>1 it follows that C;=C =C, for every
integer k with i <k <j. Otherwise, there is at least one edge, which is contained in
two cycles of length <k. One cycle is C, — C, and the other is
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K=C,-[u,-, u,_|]+C,- l[u; 1s u,‘—z]+...+
+Ci+1[ui+|, u.‘]-

This is a contradiction to the Proposition 4.

Now let C;# C, |i— j|=r>1, V(C)n V(C;)# 9 and r be the least number with
this property. Let ¢; be the first edge of the cycle C; and y be the last vertex of C
which is in G, too. Then there is at least one edge which is contained in two cycles
of length <k. One cycle is C; and the other is

K= C,[y, u,~_|]+ C,'-][u,'_l, u, 2]+ . G[u,—, y].

This is a contradiction to the Proposition 4 and the assertions (i), (ii) are proved.
Now according to (i) and (ii) there are two paths from u, to u, of the length <k
(see Fig. 2). The first path is inside C and the other is

P= C][u(), u|] + Cz[ul, uz] +...+ Cs[us_., us] .
The length of P must be <k since otherwise a cycle
C*=Clv, uo]+ P+ Clu,, v]

would have the length >k and this is a contradiction, as for any cycle C in B,
|E(C)|< k. But the existence of two such u,— u, paths is a contradiction to the
definition of a P-graph. Hence B must be a cycle.

III. The diameter k is infinite. Let B be a block of G and C be a cycle contained
in B. Suppose that there exists a vertex v of B that does not lie in C. As B is
a block, there exists a semipath [uo, e, ui, ..., u,=v, ..., e, u;], where s=2,
1<r<s-1, uo,and u, are in C, but u,, u,, ..., u,_, are not in C. As in the case II
we can construct two distinct paths from u, to u, of length < k. However, this is

a contradiction to the definition of a P-graph.
Q.E.D.

Lemma 5. Let G be a directed P-block of diameter k. Then for every
u, v e V(G) such that os(u, v) =k we have:

odu=idv.

Proof. Let[u, e, vy, ..., &, v] be a path of length k from u to v. Let y,, y,, ...,
y. be all the vertices of G different from v, such that there exists an edge directed
from u to each of them. For ie {1, 2, ..., s} we have:

QG(YI" 'U)= k

and no two of the corresponding paths of length k have a vertex different from v in
common. Therefore od u<id v. Analogously, considering the edges directed to v,
the inequality od u =id v can be obtained.

Q.E.D.
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Now, we describe the structure of a P-graph. A similar structure for Moore
graphs is decribed 1n [9].
Let G be a P-graph of a diameter k, and w e V(G). We define (see Fig. 3):

M,(w)—{v|oc(w,v)—i,ve V(G)} for ie{0,1, . k}.
Thus for any we V(G) we h ve:

k

> IM (W) =|V(G)|.

Denote M,(w) {a, a,, .., a,} and then.
A ={v]|os(a,v)—k—1AwéP} for i=1,2, d.
(P is the shorte t path from a. to v.)

We see that for every 1€ {1, 2, ..., k — 1} and an arbitrary vertex v e M (w) there
exists no edge directed from v to u, ue M,(w), je{l, 2, ..., k} with a possible
exception j<i and ueI" '(v) (see Fig.3). In the other case we would have
a contradiction to the definition of a P-graph. The example of a P-grahp G of
diameter 3 and its tructure in such a form are given in Fig 4.

Lemma 6. Let G be a directed P block of diameter k ; then for any w € V(G) we
have:

Mk(W)#@
Proof. Let there be a vertex we V(G) such that M (w)—@. Then A =@
for every ie{l, 2, ., d}. Let k—r be the maximal inde with M, (w)#0.

Denote A ={v|os(a,v) — k—r—1AwéP} for ie{1,2 .., d}. Obviously,
AlcM, (w) Let us con truct the structure of a graph G with we M (w).
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Then there exists no edge directed from a vertex v € A{ to a vertex ue€ A for i#j
(otherwise we have a contradiction to the definition of a P-graph), so there can only
be an edge directed from ve A} to uel(v), 1<js<k-—r—1. Then w is
a cutpoint and this is a contradiction to the definition of a block.

Q.E.D.

Lemma 7. Let G be a directed P-block of diameter k. Then G is either
a directed cycle or for any vertex we V(G) we have:

odw=id w=2.

Proof. By Lemma 3 id w=0d w. Let G be not a directed cycle. Suppose that
there exist vertices w, v € V(G) withid w=0d w=1, id v =0d v=2 and there is

an edge directed from w to v. Let us construct the structure of a graph G in the
preceding form with w € My(w). Then there can only be edges directed fromu e A,
toxel "(u), 1<r<k-—1, and this is a contradiction to the definition of a block
(v is a cutpoint).

Q.E.D.

Lemma 8. Let G be a directed P-block of diameter k. Let we V(G) and
od w=id w = d=3. Then for every vertex v e V(G) we have:

idv=odv=d.
Proof. We will proceed in two steps.
I. Let veI'''(w). By Lemmas 3 and 5 it is sufficient to prove that

M, (v)NnMi(w) # 0. Let u be an element of M,(w) and let [w, e, vy, ..., &, u] be
a path of length k from w to u. Let v, = x,, xa, ..., X4 be all the vertices of G such
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that there is an edge directed from w to each of them. Evidently, for € {2, 3, ..., d}
we have gg(xi, u)=k and no two of the corresponding paths of length k have

a vertex different from u in common. Let y,, ys, ..., Yy be the corresponding
vertices of G with y; e I'"'(u). Evidently, for i€ {2, 3, ..., d}, y: € Mi.(w). For the
vertex v there must exist paths of length <k from v to y; (i=2, 3, ..., d) without

vertices in common and at most one of them has length < k. If d=3, then at least
one of them has length k. Hence M, (v)nM,(w)+0.

II. For any v € V(G) there exists a sequence of vertices v =v,, v, ..., UV, =W,
such that there is an edge directed from v; to vis, (i€ {1, 2, ..., n —1}). The proof
follows from step I.

Q.E.D.

Lemma 9. Let G be a directed P-block of diameter k. Then G is a homogeneous
graph.

Proof. Distinguish two cases.

I. If for every vertex ve V(G) id v=o0d d<3, then a proof follows from
Lemma 7.

II. If there exists a vertex v € V(G) such that id v =0d v =d =3, then a proof
follows from Lemma 8.

Q.E.D.
From Lemmas 4 and 9, the following theorem follows:

Theorem 1. Every loopless directed P-graph is either a quasitree or
a homogeneous block with a finite diameter.
From Lemma 2 and Theorem 1 we immediately have:

Corollary 1. Every partially directed P-graph without loops is either a quasitree
or a homogeneous block with a finite diameter.

Corollary 2. Every partially directed P-graph G is either a quasitree or a graph
of a finite diameter such that G° is a homogeneous block.

A homogeneous P-graph of valency d and with a finite diameter k will be called
a graph of the type P(d, k).

From [4, Theorem 4] or [10, Theorem 2] and [3, Proposition 4] it follows:

Corollary 3. For an arbitrary infinite cardinal number d and an arbitrary finite

cardinal number k there exists an undirected [directed, mixed] P-graph of the type
P(d, k).

Theorem 2. Let G be a graph of diameter <2 without loops and oppositely
directed edges. Then G is a P-graph if and only if G is a T-graph.

Proof. 1. If G is a T-graph, then from [1, Theorem 10] it follows that G is
a P-graph.
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2. If G is a P-graph of diameter <2 without loops and oppositely directed
edges, then every trail S of a graph G of length <2 is a path and G is a T-graph.
Q.E.D.
From Theorem 2 and from [1, Theorem 8] it follows:

Corollary 4. Let G be a finite graph of the type P(d, 2). Then G is a totally
homogeneous graph.

A homogeneous graph G is said to be totally homogeneous with a directed
valency z and an undirected valence r if for every vertex v of G exactly z directed
edges going from [to] v and v is incident with exactly r undirected edges.

Problem. For which positive integers d and k does there exist a graph of type
P(d, k)?

Remark. From[1, 3, 7, 8, 10] and this paper it follows that P(d, k)-graphs exist
in the following cases:

(i) d arbitrary, k =1 (complete graphs undirected, directed or mixed).
(i) k=2, d=2, 3, 7 (undirected Moore graphs [8]).
(iii) k=2, d=2 (totally homogeneous prahs (B(d, 1))*, with d=z+r,
r=1[1], [3]).
(iv) k=2, d=4 (a totally homogeneous graph M, with d=z+r, r=3, [1],
[3D.
(v) k=3, d=2 (graphs Z, . [7]).
(vi) k arbitrary, d =1 (directed cycles [10]).
(vii) k arbitrary odd, d =2 (odd undirected cycles [3]).
(viii) k=R,, d an arbitrary finite number.
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0O YACTUYHO OPUEHTUPOBAHHLIX P-TPA®AX
Pavol Hic

Pesome

YactuuHo opueHTHpoBaHHbld rpad G HasbiBacTcs P-rpacom, cciu ans BCIKOW ynopsiioyeHHON
napsl [u v] ero Bepuinx cyuiectByeT B G TOUHO OJIMH U — U MYTb [UIMHbBI, HE NPEBbIMLAOLIEN IHAMETD
rpadba G. I'pad G Ha3sbIBaeTCd OIHOPOAHBIM BAJICHTHOCTH d, €CJIM BHELUHAS W BHYTPEHHSS CTENEHb
BCSIKOH BepLIMHBbI paBHbl d. ['pap G HasbiBaeTcs KBASHAEPEBOM, €CJHU sl BCAKOH YNoOpsitoYeHHOM
napsl [u, v] ero Bepwmn cyiectByeT B G TOYHO OMH u — v nyTh. [Toka3zaHo, 4yTO Besikuii P-rpad
SIBJISIETCS WIN KBA3WAEPEBOM, WIH OXHOPOAHbIM rpachOM KOHEYHOTrO JHaMeTpa.
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