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ON PARTIALLY DIRECTED P-GRAPHS 

PA VOL HfC 

1. Introduction 

P-graphs (undirected, directed or mixed) have been studied in several papers [1, 
2, 3, 7]. Bosak [3] has proved that every loopless undirected graph G is a P-graph 
if and only if G is a T-graph. In [7] there was found a partially directed P-graph 
which is neither a quasitree, nor a graph similar to a T-graph. In the present paper 
we shall study directed and, more generally, partially directed P-graphs. We show 
that any partially directed P-graph without loops is either a quasitree or 
a homogeneous block with a finite diameter. 

2. Notation and definitions 

Throughout this paper all notions and notations not defined here will be used as 
in [3]. 

The graphs considered in this paper are directed or partially directed. 
For a given graph G, V(G) and E(G) denote its vertex set and edge set, 

respectively. 
Let v be a vertex of a partially directed graph G. Denote by id v [od v] the 

number of edges of G incident with v that are either directed to [from, 
respectively] v, or undirected. G is said to be a homogeneous graph of valency d if 
id v =od v = d for every vertex of G (where d is a cardinal number). 

By a semitrail from u to v in a graph G we mean a finite sequence 

Q = [v0, ei, vu . . , en, vn], 

where n is a non-negative integer (called the length of Q); v0= u, vu v2, ...,vn = v 
are vertices of G; eu e2, ..., en are mutually different edges of G (if n ̂  1) and for 
every i e {1, 2, ..., n}vt-i and vt are the end vertices of e,. If, moreover, every e, is 
either undirected, or directed from vt-i to vi9 then Q is said to be a fraii. A 
semitrail [trail] whose vertices are mutually different is called a semipath [path]. 
A semitrail [trail] from u to v is said to be a semicycle [cyc7e] if its vertices are 
mutually different with the exception of u = v. A segment of Q between the 
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vertices vt=x and v} = y(i^j) will be denoted by Q[x, y]. If P is a path from u to 
v and w eP, then we shall write 

P-P[u, w] + P[w, v]. 

A distance between vertices u and v of G is denoted by pG(u , v) and it is the 
smallest length of a path from u to v, if any; otherwise we put pG(w, u) = <». A 
graph G is said to be connected [strongly connected] if for every ordered pair 
[u, v] of vertices of G there exists a semipath [path] from u to v. The diameter of 
G is defined as sup QG(u, v), where the supremum is taken through all the ordered 
pairs [u, v] of verti e of G. 

A vertex v of a graph G is said to be a cutpoint of G if there exist two d'fferent 
edges e and / of G such that every semitrail containing e and / contains v between 
e and / . A maximal connected subgraph H of G containing no cutpoint of H is 
called a block of G. 

If H is a subgraph of G, then |E(H) | will denote a number of edges of H. If H is 
a path or a cycle, then \E(H)\ will denote its length. 

Let v e V(G). Denote by rn(v)[r n(v)] the set of vertices u e V(G) such that 
there exists a trail from u t o w [from u to t>] of the length n(rx(v) = T(v)). Thus, if 
G has no multiple edges, then | r ( i j ) |=od v, |T x(v)\ = '\d v and r°(L0 = (W-

3. Part'ally d'rected P-graphs 

A partially directed graph G is said to be P-graph if for each ordered pair 
[u, v]oi vertices of G there exists in G exactly one path from u to v of a length not 
greater than the diameter of G. A P-graph, which is a block, is said to be a P-block. 

A graph G is said to be a quasitree if fore each ordered pair [u, v] of vertices of 
G there exists exactly one path from u to v. 

L mma 1 (Bosak [3, Theorem 6]). A graph G is a quasitree if and only if G is 
connected and every block of G is isomorphic to K2, C. or a directed cycle. 

A partially directed graph G is said to be a T-graph if for each ordered pair 
[u, v] of vertices of G there exi ts in G exactly one trail from u to v of a length not 
greater than the diameter of G. 

Let G be a partially directed graph. Denote by G° the loopless graph obtained 
from G by deleting all the loops of G. Denote by G* the directed graph obtained 
from G by replacing each undirected odge by two oppositely directed edges. 

Lemma 2 (Bosak [1, Lemma 1]). 
(i) A graph G is a P-graph if and only if the loopless graph G° is a P-graph. 
(ii) A graph G is a P-graph if and only if the directed graph G* is a P-graph. 
Lemma 2 enables us to restrict ourselves to directed and loopless P-graphs. 
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We obviously have (see Bosak [1, 3]) the following assertions (fc is the diameter 
of G): 

Proposition 1. Let G be a P-graph. Then G has no two edges with the same 
initial and final Vertices. 

Proposition 2. Every quasitree is a P-graph. 
Proposition 3. Every directed edge of a P-graph G lies in a directed cycle yvith 

^ fc + 1 edges. 
Proposition 4. No directed edge of a P-graph G can be contained in two cycles 

of length ^k + 1. 
Proposition 5. Every block B of a directed P-graph G contains a cycle of length 

^fc + 1. 
Lemma 3. Let G be a P-graph. Then for each veV(G) 

id v = od v. 

Proof. By Propositions 3 and 4 every edge directed from v lies in exactly one 
directed cycle with ^ fc + 1 edges. In each of the cycles there is an edge directed to 
v so that o d v ^ i d u . Analogously, the inequality i d u ^ o d u can be proved. 
Hence id u = od v. 

Q.E.D. 

Lemma 4. Every loopless directed P-graph is either a quasitree or a block with 
a finite diameter. 

Proof. Let G be a loopless directed P-graph of diameter fc. Distinguish three 
cases: 

I. The diameter fc = 1. Then every P-graph is a complete graph and the assertion 
holds. 

II. The diameter fc of G is finite, fc ̂  2. Let G have at least two blocks. Let B be 
a block and B' be a block which meets B at a cutpoint v. We shall prove that B is 
a directed cycle. Let w be a vertex of B' and w£B (see Fig. 1). By Propositions 
3 and 4 every directed edge in B lies in exactly one directed cycle C with ^ fc + 1 
edges. We assert that |E(C)|^fc for every C^B. Let |E(C)| = fc + 1; then there 
exists a vertex xeC and a path P from v to x, |E(P)| = fc, P = P[v, y] + P[y, x] 
(see Fig. 1). Further, there exists a path P' irom w to x, P' = P'[w, v] + P'[v, x], 
\E(P'[v, x])\ < fc. Evidently, P-£P'[v, x] and this is a contradiction to the defini
tion of a P-graph (there are two distinct paths from v to x of length ^ fc). Hence 
\E(C)\^k. 

Evidently, there is a cygle of B which contains v ; let C be such a cycle. Suppose 
that there exists a vertex u of B that does not lie in C. As B is a block, there exists 
(see e.g. [6, Theorem 3.3]) a semipath 

[wo, ei, Mi, ..., ur = u ..., es, u5], 

where s^2, l ^ r ^ s — 1, w0 and us are in G, u0^ us but uu u2, ..., us-i are not in 
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C. By the preceding, each e., i e {1, 2, ..., s} lies in a cycle C of B, where 
| E ( C ) | ^ / c (see Fig. 2). 

Put Co= C. We obtained a sequence S = {C0, C , ..., C } of cycles. Now we shall 
prove that S has the following properties: 

(i) For every pair of adjacent cycles Q, C+, e S either V( V,) n V( C +,) = {u,} 
for ie{0, l , . . . , s - l } and V(C)nV(C 0 ) = {us}, or C = C + , for i e { l , 2, ..,, 
s-1}. 

Fig 1 Fg 2 

(ii) For every pair of nonadjacent cycles C , C, e S either V(C ) n V(C7) = 0 /or 
/-5-=y and / , ; 6 {0, 1, ..., s}, or Q = Q = Q for every k with i<k<j. 

Proof, (i) It is obvious that V(C0)n V(C) = {".} and V(C0)n V ( C ) = {K,} . 
Let Q+ C+i and V(Q)n V(C+ 1 ) ID {u,}. Let e,+, be the first edge of the cycle C, + , 
and x be the first vertex of C+i, which is in Q too, and x=t ut. Then there exist 
distinct u, — x paths of length ^ k. One of them is contain d in C, and the other in 
C+i . This is a contradiction to the definition of a P-graph. 

(ii) Obviously from Q — Q, | i — j \ > 1 it follows that Q = Q = Q for every 
integer k with i<k<j. Otherwise, there is at least one edge, which is contained in 
two cycles of length < k. One cycle is Q — Q and the other is 
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K = Q[ui,u]-[] + Cj X[UJ i , « , - 2 ] + ...+ 

+ G + I[M,- + I, Ui]. 

This is a contradiction to the Proposition 4. 
Now let G * Q, Ii ~ 1I = r > 1, V ( C ) n V(C,) =£ 0 and r be the least number with 

this property. Let e] be the first edge of the cycle Q and y be the last vertex of C, 
which is in G, too. Then there is at least one edge which is contained in two cycles 
of length ^k. One cycle is Q and the other is 

K = Q[y, !!,_-] + C,-i[i/,_„ u} 2] + ... + C[Ui, y]. 

This is a contradiction to the Proposition 4 and the assertions (i), (ii) are proved. 
Now according to (i) and (ii) there are two paths from u0 to us of the length < k 

(see Fig. 2). The first path is inside C and the other is 

P=Ci[Uo, Ux] + C2[ux, U2] + ... + G [ M - - I , US]. 

The length of P must be < k since otherwise a cycle 

C* = C[v, u0] + P+C[us, v] 

would have the length >k and this is a contradiction, as for any cycle C in B, 

|E(C) |^ fc . But the existence of two such u0— us paths is a contradiction to the 
definition of a P-graph. Hence B must be a cycle. 

III. The diameter k is infinite. Let B be a block of G and C be a cycle contained 
in B. Suppose that there exists a vertex v of B that does not lie in C. As B is 
a block, there exists a semipath [u0, ex, uu ..., ur = v, ..., es, us], where s^2, 
1 ^ r ̂ s — 1, Wo and us are in C, but uu u2, ..., ws_i are not in C. As in the case II 
we can construct two distinct paths from u0 to us of length ^k. However, this is 
a contradiction to the definition of a P-graph. 

Q.E.D. 

Lemma 5. Ler G be a directed P-block of diameter k. Then for every 
u, v e V(G) such that gG(u, v) = k we have: 

od u = id v. 

Proof. Let [u, e{, vu • ., £*, v] be a path of length k from u to v. Let yl9 y2 , . . . , 
ys be all the vertices of G different from Vx such that there exists an edge directed 
from u to each of them. For ie {1, 2, ..., s} we have: 

£G(y., v) = k 

and no two of the corresponding paths of length k have a vertex different from v in 
common. Therefore od u ^ i d v. Analogously, considering the edges directed to v, 
the inequality od i /^ id v can be obtained. 

Q.E.D. 
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Now, we describe the structure of a P-graph. A similar structure for Moore 
graphs is decribed in [9]. 

Let G be a P-graph of a diameter k, and we V(G). We define (see Fig. 3): 

M,(w)-{v\gG(w,v)-i,veV(G)} for i e{0 , 1, . k]. 

Thus for any we V(G) we h ve: 

2|M(w)| = |V(G)|. 
( 

Denote Mi(vv) {au a2, .. , ad} and then. 

A ={v\gG(at, v)~-k-lAwlP} for i = 1, 2, d. 

(P is the shorte t path from a, to v.) 

Mk-1íw) 

Fig.З 

We see that for every ie{l,2,. . . ,fc — 1} and an arbitrary vertex v eM(w) there 
exists no edge directed from v to u, ueM,(w), je{l, 2, ..., k} with a possible 
exception j<i and ueP~l(v) (see Fig. 3). In the other case we would have 
a contradiction to the definition of a P-graph. The example of a P-grahp G of 
diameter 3 and its tructure in such a form are given in Fig 4. 

Lemma 6. Let Gbea directed P block of diameter k ; then for any w eV(G) we 
have: 

Mk(w)±0. 

Proof. Let there be a vertex vveV(G) such that M(w)-0. Then A =0 
for every ie{l, 2, . , d}. Let k - r be the maximal inde with Mk (w)-£0. 
Denote A; = {u \gG(a,, v) - k- r- 1 A W <£P} for / e {I, 2 . . , d}. Obviously, 
A;<=M,v r(w) Let us con truct the structure of a graph G with vveM(vv). 
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Then there exists no edge directed from a vertex u e A J t o a vertex ueA) for i + j 
(otherwise we have a contradiction to the definition of a P-graph), so there can only 
be an edge directed from veA' to ueT~j(v)9 l^j^k — r— 1. Then w is 
a cutpoint and this is a contradiction to the definition of a block. 

Q.E.D. 

Lemma 7. Ler G be a directed P-block of diameter k. Then G is either 
a directed cycle or for any vertex w e V(G) we have: 

od w = id w^2. 

Proof. By Lemma 3 id w = od w. Let G be not a directed cycle. Suppose that 
there exist vertices w, v e V(G) with id w = od w = 1, id v =od v ^ 2 and there is 

MQ(W) 

M^w) 

M2(w) 

M3(w) 

Fig.4 

an edge directed from w to v. Let us construct the structure of a graph G in the 
preceding form with w e M0(w). Then there can only be edges directed from ueA{ 

to xeT r(u), l^r^k-1, and this is a contradiction to the definition of a block 
(v is a cutpoint). 

Q.E.D. 

Lemma 8. Let G be a directed P-block of diameter k. Let weV(G) and 
o d w = idw = d^3. Then for every vertex v eV(G) we have: 

id v = od v = d. 

Proof. We will proceed in two steps. 
I. Let v e T~l(w). By Lemmas 3 and 5 it is sufficient to prove that 

Mk(v)nMk(w) + 0. Let u be an element of Mk(w) and let [w, eu vu ..., ek, u] be 
a path of length k from w to u. Let V\ = xu x2, ..., xd be all the vertices of G such 
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that there is an edge directed from w to each of them. Evidently, for e {2, 3, ..., d} 
we have QG(xi, u) = k and no two of the corresponding paths of length k have 
a vertex different from u in common. Let y2, y3, ..., yd be the corresponding 
vertices of G with y, e r~\u). Evidently, for / e {2, 3, ..., d}, y, e Mk(w). For the 
vertex v there must exist paths of length ^ k from v to y, (i = 2, 3, ..., d) without 
vertices in common and at most one of them has length < k. If d ^ 3, then at least 
one of them has length k. Hence Mk(v)nMk(w)±0. 

II. For any v e V(G) there exists a sequence of vertices v = u,, t>2, ..., vn = w, 
such that there is an edge directed from vt to vi+i (i e {1, 2, ..., n - 1}). The proof 
follows from step I. 

Q.E.D. 

Lemma 9. Let Gbe a directed P-block of diameter k. Then G is a homogeneous 
graph. 

Proof. Distinguish two cases. 
I. If for every vertex veV(G) i d u = o d d < 3 , then a proof follows from 

Lemma 7. 
II. If there exists a vertex v e V(G) such that idt>=odt> = d ^ 3 , then a proof 

follows from Lemma 8. 
Q.E.D. 

From Lemmas 4 and 9, the following theorem follows: 

Theorem 1. Every loopless directed P-graph is either a quasitree or 
a homogeneous block with a finite diameter. 

From Lemma 2 and Theorem 1 we immediately have: 

Corollary 1. Every partially directed P-graph without loops is either a quasitree 
or a homogeneous block with a finite diameter. 

Corollary 2. Every partially directed P-graph G is either a quasitree or a graph 
of a finite diameter such that G° is a homogeneous block. 

A homogeneous P-graph of valency d and with a finite diameter k will be called 
a graph of the type P(d, k). 

From [4, Theorem 4] or [10, Theorem 2] and [3, Proposition 4] it follows: 

Corollary 3. For an arbitrary infinite cardinal number d and an arbitrary finite 
cardinal number k there exists an undirected [directed, mixed] P-graph of the type 
P(d, k). 

Theorem 2. Let G be a graph of diameter ^ 2 without loops and oppositely 
directed edges. Then G is a P-graph if and only if G is a T-graph. 

Proof. 1. If G is a T-graph, then from [1, Theorem 10] it follows that G is 
a P-graph. 
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2. If G is a P-graph of diameter ^ 2 without loops and oppositely directed 
edges, then every trail S of a graph G of length ^ 2 is a path and G is a T-graph. 

Q.E.D. 
From Theorem 2 and from [1, Theorem 8] it follows: 

Corollary 4. Let G be a finite graph of the type P(d, 2). Then G is a totally 
homogeneous graph. 

A homogeneous graph G is said to be totally homogeneous with a directed 
valency z and an undirected valence r if for every vertex v of G exactly z directed 
edges going from [to] v and v is incident with exactly r undirected edges. 

Problem. For which positive integers d and k does there exist a graph of type 
P(d,k)? 

R e m a r k . From [1, 3, 7, 8, 10] and this paper it follows that P(d, k)-graphs exist 
in the following cases: 

(i) d arbitrary, fc = 1 (complete graphs undirected, directed or mixed), 
(ii) fc = 2, d = 2, 3, 7 (undirected Moore graphs [8]). 

(iii) fc = 2, d^2 (totally homogeneous prahs (B(d, 1))+, with d = z-\-r, 
r = l [ l ] , [3]). 

(iv) fc = 2, d = A (a totally homogeneous graph M, with d = z~\-r, r = 3, [1], 
[3]). 

(v) fc^3, d = 2 (graphs ZXd [7]). 
(vi) fc arbitrary, d = \ (directed cycles [10]). 

(vii) fc arbitrary odd, d = 2 (odd undirected cycles [3]). 
(viii) fc^Ko, d an arbitrary finite number. 
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О ЧАСТИЧНО ОРИЕНТИРОВАННЫХ Р-ГРАФАХ 

Рауо! Н1С 

Р е з ю м е 

Частично ориентированный граф С называется Р-графом, если для всякой упорядоченной 
пары [и V] его вершин существует в С точно один и — V путь длины, не превышающей диаметр 
графа О. Граф С называется однородным валентности с1, если внешняя и внутренняя степень 
всякой вершины равны с1. Граф С называется кваъидеревом, если для всякой упорядоченной 
пары [м, V] его вершин существует в С точно один и — I» путь. Показано, что всякий Р-граф 
является или квазидеревом, или однородным графом конечного диаметра. 
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