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Math. Slovaca 34,1984, No. 3, 281—294 

ON QUASIIDENTITIES 
OF TRANSITIVE QUASIGROUPS 

J A N DUPLAK 

It is well known that a quasigroup (Q, •) is an isotope of an abelian group iff 
(Q, •) satisfies the condition of T h o m s e n ab = de and a-c = fe implies 
dc = fb and (Q, •) is an isotope of a group iff (Q, •) satisfies the condition of 
R e i d e m e i s t e r a o = c d , a-e = cf and xb = yd implies x-e = yf. Similar to 
these conditions are the necessary and sufficient conditions we give for a quasig
roup (O, •) in order that the quasigroup be quasilinear. Such quasigroups are 
generalizations of linear ones (and also T-quasigroups) that were studied by 
J. J ezek and T. K e p k a in [6] (P. N e m e c and T. K e p k a in [8, 10]). 

This work was inspired by [4] where the author studied invariants of an isotopy 
(a , j3, 1) of a group, where at least one a or j3 is a quasiautomorphism of the group. 

1. Notations and preliminaries 

If (Q, •) ( = 0 if it does not lead to misunderstanding) is a quasigroup, then 
define a\b = c iff a = c • b iff c\a = b. Then (Q, / ) , (Q, \) are called the inverse 
quasigroups to (Q, •). For any a e Q, La, Ra, Ta will be the translations by a, i.e. 

Lax = a • x, Rax = xa, Tax = x\a for all x in Q. 
Then 

La
1x = a\x, R~1x = x/a, Ta

1x = a/x. 

We shall use the following notations for a quasigroup (Q, • ) : 

«T={L,R, T9L-\R-\ T 1 } * ; 

Q(°X, lX, ..., "X) = {°X« ^ . . . . " X ^ : ax eQ,ie {0, 1, ..., n}} 

for some fixed lXe ?T, ie {0, 1, ..., n} (thus lXai is a translation of Q). 

* The notations Ra,La,Ta, ZT etc. will be used only if the basic operation is written (•). We shall write 
R°, L°, T°a, 3~° etc. when another symbol (say o) is used. 
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Let (O, o) be a group and cp(ip) its automorphism (antiautomorphism). Then we 
shall say that L°cp(L°\p) is a quasiautomorphism (antiquasiautomorphism) of the 
group (Q, o). In [1] it is shown that if y = L°cp is a quasiautomorphism of (Q, o), 
then there exists an automorphism § of (Q, o) such that y = R?§. Analogously, for 
any antiautomorphism %> there exists an antiautomorphism r\ such that L°\p = R°rj. 

Theorem 1.1. Let (Q, o) be a group with the identity e. Let 6, n be fixed 
permutations of Q and let y be an arbitrary element in Q. Then 
(i) R°6 = SR°y (dually L°d = SL°y) implies that r\ is an automorphism and <5 is 

a quasiautomorphism of (Q, o) such that 6 = L°ber\ x; 
(ii) R°yS = dL°y implies that r\ is an antiautomorphism and 6 is an anti

quasiautomorphism of (O, o) such that <5 = R°,erj
_1. 

Proof. By the assumption, dx0y = S(x0r]y) for all x, y in Q. If x = e (e is the 
identity of (Q, o)), then be0y = dny, i.e. L%e = dn, whence 6 = Ller\ \ Further, for 
every x, y, z in Q we have 

d(xon(yoz)) = 6x o(y o z) = (6x o y) o z = 6(xony)oZ = S(xorjyoT]z). 

If again x = e, then n(y0z) = nyonz, i.e. n is an automorphism of (Q, o). (ii) The 
proof is similar. 

Let a group (Q, o), with the identity e, be an isotope of a quasigroup (Q, •) by 
the rule xy = axo^y. It is easy to verify that for every x, y, zeQ, 

(1.1) LX = L^(3, Ry = R%a, Tz = p~lIL0
z *a, IRa = L°^I, 

where the map I: Q^>Q is defined by XoIx = e and z 1 = Iz. 

Definition 1.1. Let (Q, o) be a group and let a, j3 be permutations of Q. 
A quasigroup (Q, •), where 

(1.2) (.) = (0)<-«.<>, 

is called quasilinear if at least one of a, (3, a(3~l, a~l/3 is an quasiautomorphism or 
antiquasiautomorphism of (Q, o). If a(P) is a quasiautomorphism of (Q, ) , then 
(O, ) is called the left-hand (right-hand) linear. A quasigroup that is both, the 
left-hand and the right-hand linear is called linear. If moreover (Q, o) is an abelian 
group, then (Q, •) is called T-quasigroup. 

2. Quasiidentities of transitive quasigroups 

Definition 2.1. Let m ^ 1 be any integer and let {6}, A0, Au ..., Am be sets of 
mappings. We shall say that sd = (A0, Au ..., Am) has the property 6(n) (or sd is 
S(n)) (l^n^m) if for an arbitrary integer t and for every cpt+0eAt+0, 
cpt+l e At+U ..., cpt+n-\eAt+n-x there exist cpt+n e At+n, ..., cpt+m e At+m (operation + 
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takes mod(ra + l)) such that cp0cp1...cpm = 6. If {6}, A0, Ai, ..., Am, are sets of the 
mappings Q^>Q, then we shall say that the set £ft = Q(A0, Au ..., Am) = 
{cp0cp1...cpm: cpieAh O^i^m} has the property 8(n) (or 2ft is 8(n)) if 
(A0, Ai, ..., Am) has the property 8(n). If si (resp. 2fc) is S(n) and 8 is the identity 
map, then we write si (or 2ft, resp.) is id(n). 

Lemma 2.1. If a set A is 6(n), then s4 is d(s) for any 1 ^ 5 ^ n . 
Proof. Obvious. 

Definition 2.2. Let A be any (non-empty) index set and let {cpr. ieA) be 
a collection of mappings cpt. The collection will be called disjoint if cp{(a) = cpj(a) 
implies i = j . 

Lemma 2.2. Let (Q, •) be a quasigroup, X, Y e ^F and let k be a fixed point in Q. 
Then the following are equivalent 
(i) Q(X, y ) is disjoint; 

(ii) Q(X, y , r U " 1 ) is id(3); 
(iii) Q(X, y ) = {X k y r : rGQ}; 
(iv) Q(X, y ) = { X r y * : r e Q } . 

Proof. (i)—»(ii)—>(iii) and (ii)—>(iv) are obvious, (iii)—>(i). Let XaYbr = XcYdr. 
There exist p,seQ such that Xayb = XkYp and XcYd = XkYs. Then Xfcypr = Xfcy>, 
whence p = s. The proof of (iv)—>(i) is dual. 

Lemma 2.3. Lef 6 be a fixed permutation of a quasigroup (Q, •). Denote 
si = Q(°X,1X, ...,nX) for some 'Xe .T, ie{0, 1,2, . . . , « } , n^2. Then 

(i) si is 6(n) implies that Q('X, ,+1X) is disjoint for all i e {0, 1, 2, ..., n - 1} ; 
(ii) si is id(n) implies that Q('X, r+1X, ..., t+nX) is id(n) for every 

r e { 0 , l , . . . , « } ; 
(iii) si is id(n) implies that Q('X, ,+1X) and Q(i+1X\ 'X"1)** are both disjoint 

for all i e {0, 1, ..., n} (the operation + in the above indices takes mod(n + 

D). 
Proof, (i) Without loss of generality assume i = 0. Let k e Q be fixed. For any a, 

b eQ there exist c2, c3, ..., cn, y e Q such that 
O y 1 y 2 y 3 y n y c O y 1 y 2 y 3 y n y 

y\fl j\b V\c2 J*>C3 • • • -A-Cn O j \ k y \ y -̂ -C2 -̂ -C3 • • • -**-Cn • 

Thus °Xa
 lXb=°Xk

 lXy and according to Lemma 2.2 (iii)-»(i), Q(°X, lX) is 
disjoint, (ii) The statement follows from the equivalency 

O y l y n y -| iff f y r + 1 y f + n y 1 

(iii) Easily follows from (ii) and (i). 

** If , + I X = R, then ,+1X"1 means R~\ etc. 
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Lemma 2.4. Let (Q, •) be a quasigroup and let X, Ye J. Then the following are 
equivalent 

(i) Q(X, Y) is disjoint 
(ii) Q(Y~\ X"1) is disjoint; 

(iii) Q(X~\ X)=Q(Y, Y"1) are disjoint: 
Proof, ( i )^ ( i i ) . By Lemma 2.2, Q(X, Y, Y~\ X~l) is id(3) and by Lem

ma 2.3(H), Q(Y~1, X"1) is disjoint. (ii)-->(iii). Again by Lemma 2.2, Q(Y~l, X~\ 
X, Y) is id(3), hence Q(X~\ X) and Q(Y, Y"1) are disjoint. For any a, b and 
fixed keQ there exists ceQ such that y-lX~lXbYc = 1. Whence X~lXb = YkY7l 

and according to Lemma 2.2(i)->(iii), Q(X~\ X)=Q(Y, Y"1). (iii)—^(i). In the 
equation X~ 1XC = YaY~l three of the indices can be arbitrary, therefore Q(X_ 1 , X, 
Y, Y"1) is id(3), thus Q(X, Y) is disjoint. 

Corollary. If Q(X, Y) is disjoint, then Q(X\ X), Q(X, X~l), Q(Y, Y'1) and 
Q(Y\ Y) are all disjoint. 

Lemma 2.5. Let (Q, •) be a quasigroup. Then the fact that Q(X, Y) and 
Q(Y~l, Z) are disjoint implies that Q(X, Z) is disjoint. 

Proof. By Lemma 2.4, Q(X\ X)= Q(Y, Y"1) and Q(Y, Y"1)= Q(Z, Z 1 ) 
are disjoint, whence Q(X~\ X) = Q(Z, Z"1) are disjoint, therefore by 
Lemma 2.4(iii)—>(i), 0 ( X , Z) is disjoint. 

Corollary 1. Let (Q, •) be a quasigroup. If any two of the conditions 
Q(X, Y) is disjoint; Q(X, Z) is disjoint; Q(Y~\ Z) is disjoint (or Q(X, Y) is 

disjoint; Q(Z, Y) is disjoint; Q(X, Z"1) is disjoint) are satisfied, then they all are 
satisfied. 

Corollary 2. Let (Q, •) be a quasigroup. If Q(X, X, Y~\ X"1) is id(3), then 
Q(Y, X) is disjoint. 

Proof. By Lemmas 2.3 and 2.4, Q(Y, X - 1 ) and Q(X, X) are disjoint, therefore 
by Lemma 2.5, Q(Y, X) is disjoint. 

Lemma 2.6. Let (Q, •) be a quasigroup. If Q(X, Y, X"1) is id(2) forX, Ye J, 
then Q(Y, Y) is disjoint. 

Proof. By Lemma 2.3, Q(Y, X1) and Q(X, Y) are disjoint, hence Q(Y, Y) is 
also disjoint. 

Theorem 2.1. Let (Q, •) be a quasigroup. Then the following are equivalent 
(i) Q is a transitive quasigroup; 

(ii) ab = cd, ae = cf and xb = yd implies x- e = y • / (i.e. the condition of 
R e i d m e i s t e r holds); 

(iii) Q(X~\ X) is disjoint for some XeZT; 
(iv) Q(X~\ X) is disjoint for all xeJ. 
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Proof, ( i )^(i i ) . See Theorem 11.3 in [1]. (ii)-->(iii). Let R^Rba = RjlRea = c, 
i.e. ab = cd, ae = cf. For every xeQ there exists y e Q such that R2lRbX = y, i.e. 
xb = yd. By the condition of R e i d e m e i s t e r xe = yf, i.e. Rj1Rex = y, hence 
Rj1Rex = Rd~

1Rbx for all x e Q. (in)—• (ii) is obvious, (hi)—> (iv). It is known that all 
parastrophic quasigroups of a transitive quasigroup are also transitive. Now apply 
(i)—>(iii) of the theorem and Corollary of Lemma 2.4. (iv)—>(iii) is obvious. 

Theorem 2.2. Let a loop (Q, o) be an isotope of a quasigroup (Q, •) by (1.2). 
Then the following are equivalent 

(i) rba = rdc and x = x-+xba = xdc; 
(ii) Q(R, R) is disjoint; 

(iii) Q(T, L) is disjoint; 
(iv) (O, o) is a group and a is its quasiautomorphism. 

Proof, (i)—>(ii) is obvious, (ii)—^(iv). By Lemma 2.4, (Q, •) is transitive, hence 
(Q, o) is a group. Let b, reQ be fixed. For every a, ceQ there exists uniquely 
determined d such that rba = rdc. Since Q(R, R) is disjoint, RaRb = RcRd and 
according to (1.1) 

RpaaRpba = RpcaRpdCL, 

whence 
Ripcopaa = aRpdoipb* 

If we put Ificofia = x and fidolfib = r\x, then r) is a permutation of Q. Thus for 
every x, R°a = aR%x and according to Theorem 1.1 (i), a is an quasiautomorphism 
of (Q,o). (iii)->(iv). The shortened proof: Q(T, L, L \ T"1) is id(3), thus 
according to (1.1), 

p-1ILoaIopp-1Loa-1L0ip = 1 

(indices are omitted), whence 

p-1IL0aL0L°a-1L0II3 = 1, IL0aL°aiL0I=l, 
L°aI°a-1L0 = 1, L°aL0a~1 = 1, L°a = al°. 

Now, apply Theorem 1.1 (i). (iv) —-> (ii) and (iv) —> (iii) are obvious. 

Corollary. A quasigroup (Q, ) is left-hand linear iff the identity (xy • u)\zy = 
(xsu)\zs holds. 

Similarly we prove the following Theorems 2.3—2.7. 

Theorem 2.3. Lef a loop (Q, o) be an isotope of a quasigroup (Q, •) by 1.2. 
Then the following are equivalent 

(i) xy = rt, xz = ru, ta = ud—>ya = zd; 
(ii) Q(-R, T) is disjoint; 
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(iii) Q(T, L x) is disjoint; 
(iv) (O, o) is a group and aj3_1 is its quasiautomorphism. 

Theorem 2.4. Let a loop (Q, o) be an isotope of a quasigroup (O, ) by 1.2. 
Then the following are equivalent 

(i) arb = crd and x = x —»dx- b = ex- a; 
(ii) Q(R, L) is disjoint; 
(iii) Q(T, R) is disjoint; 
(iv) (O, o) is a group and a is its antiquasiautomorphism. 

Theorem 2.5. Let a loop (Q, o) be an isotope of a quasigroup (Q, ) by 1.2. 
Then the following are equivalent 

(i) as = ct, sb = td, yb = z- d—>a-y = cz\ 
(ii) Q(L, R-1) is disjoint; 
(iii) Q(T, T) is disjoint; 
(iv) (Q, \) is the left-hand linear quasigroup; 
(v) (Q, o) is a group and aj3_1 is its antiquasiautomorphism. 

Theorem 2.6. Let a loop (Q, o) be an isotope of a quasigroup (Q, ) by 1.2. 
Then the following are equivalent 

(i) rs = xy, rt = xz, a- s = c-t—>a-y = d- z\ 
(ii) Q(L, t) is disjoint; 
(iii) Q(T, R'1) is disjoint; 
(iv) Q(L\ R) is disjoint; 
(v) (Q, o) is an abelian group i.e. act -1 = /3j3-1 = 1 is the antiquasiautomorphism of 

( Q , o ) . 

Summarizing results we get 

Theorem 2.7. A quasigroup (Q, •) is quasilinear iff Q(X, Y) is disjoint for some 
X,Ye?T, X-^Y"1 and (X, Y)\ {(R, T'1), (T, R~'), (L,T), ( T " \ L"1), 
( R - \ L ) , ( L - \ R ) } . 

Theorem 2.8. Lef (Q, o) be a group isotopic to a linear quasigroup (Q, •). Then 
the following are equivalent 

(i) Q(Ll, R') is disjoint for some i, j e {1, - 1 } ; 
(ii) (Q, o) is an abelian group; 

(iii) (Q, •) is a T-quasigroup. 
Proof, (i)—>(ii). Since (Q, •) is linear, according to Theorem 2.2(iv)—>(ii) and 

its dual theorem, Q(R, R) and Q(L, L) are disjoint. Further, by Lemma 2.4(i)—> 
(iii), Q(R1,R)=Q(R,R-1) and Q(L\L) = Q(L,L1). Since Q(V,Rj) is 
disjoint, Q(Li,V)=Q(Ri,R-i). Thus Q(R~\ R)= Q(L\ L). Now apply 
Theorem 4 of [4]. (ii)->(i). By Theorem 2.6, Q(L, T) and Q(T, R1) are disjoint, 
thus Q(L, R'1) is disjoint. 
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Corollary. Ler (Q, •) be a quasigroup. Then (Q, •) is a T-quasigroup if and only 
if Q(R, L), Q(L, R) and Q(L\ R) are all disjoint. 

Proof. Use Lemma 2.5 and Theorem 2.8. 

Theorem 2.9. A left-hand linear quasigroup is idempotent if and only if it is 
right-hand distributive. 

Proof. Let (Q, •) be a left-hand linear quasigroup. For arbitrary x, y, r, de Q 
there exists c such that ryx = rdc and so zy • x = zd • c for all z in Q. In particular, 
yy • JC = yd c and if (Q, •) is idempotent, then VJC yjc = y d c and zxyx = zdc, 
therefore zy x = zxyx. The converse is obvious. 

Corollary 1. A quasigroup is an idempotent left-hand linear quasigroup if and 
only if it is a transitive right-hand distributive quasigroup. 

Proof. Let (Q, •) be a transitive right-hand distributive quasigroup. Then for 
every JC, y, z, jcy -z = xz-yz, i.e. R^^yz = RyR7\ whence Q(R~\ R)= Q(R, R'1). 
According to Theorem 2.1 (i)->(iv), Q(R~\ R) and Q(R, R'1) are disjoint. Thus 
by Lemma 2.4 (hi)—* (i), Q(R, R) is disjoint. 

Recall that a quasigroup is called medial if it satisfies the identity jcy • zt = xz • yt. 

Corollary 2. An idempotent quasigroup is linear iff it is medial. 

Theorem 2.10. Lef (Q, •) be a quasigroup. Then the following are equivalent 
(i) (Q, •) is medial; 

(ii) arb = crd and x = x-+axb = cxd\ 
(iii) there exist an abelian group (Q, +) , its commuting automorphisms cp, \p and 

feQ such that for all JC, y e Q 

(2.1) xy = cpx + \py + f. 

Proof, (i)—>(ii). Let arb = crd. There exists m such that b = md. Then 
ar • md = crd i.e. am rd = crd hence am = c. Thus ar • md = am • rd and also 
axmd = amxd for all JC e Q i.e. axb = cxd. (ii)—>(iii). Obviously, (ii) is 
equivalent to the condition Q(R~1, L"1, R, L) is id(3). By Lemma 2.3(iii), 
Q(L, R), Q(R, L) and Q(L~\ R) are all disjoint. By Corollary of Theorem 2.8, 
(Q, •) is a T-quasigroup, therefore there exist an abelian group (Q, +), its 
automorphisms cp, tp and fe Q such that (2.1) holds. If the equation axb = cxd, 
is rewritten with + operation, then 

cp2a + cpf + \pb + cptpx = cpc + ty2d + xpf + xpcpx. 

If we put jc = e (e is the identity of +), then cp2a + cpf+ilfb = q)c + ip2d + il)f, 
therefore cptyx = xpcpx. (iii)—>(i) is easy. The proof is finished. 

It is well known that (i)<->(iii) is Toyoda's theorem. There are many other proofs 
of the theorem, for example in [1], [3], [4]. 
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Theorem 2.11. Let (Q, •) be a quasigroup. Then the following are equivalent 
(i) rab = crd and x = x-^xab = ex- d; 

(ii) cfr = grh and x = x^>cfx = gxh; 
(iii) rab = g-rh and x = x-*xa-b = g • xh; 
(iv) cfr = cr-d and x = x—>e-fx = cx-d; 
(v) (Q, •) is a commutative medial quasigroup. 

Proof, (i)—>(v). Obviously (i) is equivalent to the statement Q(R, R, L1, R l) 
is id(3). By Corollary 2 of Lemma 2.5, Q(L, R) is disjoint. By Lemma 2.3, 
Q(R, R), Q(R, L1) and Q(R, L) are all disjoint. If we now apply Corollary of 
Theorem 2.8, we get, ( 0 , •) is a T-quasigroup. Thus (2.1) holds. Obviously 
rab = crb implies xa = ex for all x e Q. If the last equality is rewriten with the + 
operation, then cpx + xpa = epe + tyx. Put x = e (the identity of + ) ; then ^pa = q?c, 
hence cp = ^p. (v)—>(i). Use the commutativity of (•) and Theorem 2.10 (i)—>(ii). 
(ii) <-> (iii). The proof is dual to (i) <--> (iii). By analogy we do the rest of the proof. 

3. Varietes of ^-quasigroups 

Definition 3.1. Let M be a non-empty subset of the set {Q(X, Y, Z, U): 
X, Y, Z, U e 3~). A quasigroup (Q, •) is called tM-quasigroup if every s e M has 
the property id (3). 

Lemma 3.1. Let a quasigroup (P, o) be a homomorphic image of a quasigroup 
(Q, •). If (Q, •) is a tM-quasigroup, then (P, o) is also tM-quasigroup. 

Proof. Let cp be a homomorphism of Q onto P. From cp(x-y) = cpxocpy we have 
X%a = cpXaCp-1 for every Xe :T . Let Q(X, Y, Z, U) be id(3). Then 1 = XaYbZcUd, 
where three of the indices can be arbitrary. Obviously also 

l = cpXacp~1cpYbcp-1cpZccp-1cpUdCp-1 = X%aYltZ%cU%d, 

where every three of the indices cpa, cpb, cpc, cpd can be arbitrary. Thus 
P(X°, Y°, Z°, U°) is id (3). The proof is finished. 

A condition Q(X, Y, Z , U) is id(3) can be expressed as the quasiidentity in 
a quasigroup Q. For example Q(R, R, R~\ R'1) is id(3) is equivalent (see 
Lemma 2.2) to the following quasiidentity: rab = rc d and x = x implies xab = 
xc- d. Thus a class of all tM-quasigroups is a quasivariety. It is known (see [9]) that 
a class of an algebraic system R, that is quasivariety, is a variety if and only if every 
homomorphic image of an JR-system is an R -system. As an immediate consequ
ence of this statement and Lemma 3.1 we have 

Theorem 3.1. The class of all tM-quasigroups is a variety. 

Theorem 3.2. The variety of all tM-quasigroups possesses a basic which consists 
of a finite number of identities. 
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Proof. It is known (see [9]) that every variety possessing a basis which consists 
of a finite number of quasiidentities has a finite generating set of identities. 

4. Some classes of quasilinear quasigroups 

A quasigroup word is a formal expression consisting of variables and some of the 
three binary operation symbols •, \, /. 

Throughout this section we shall use the following notations 

(Q, ) — quasigroup; 
V = {JC,: ie A} is a set of variables xi9 A is an index set; 
Wi, w2, ... are quasigroup words; 
V(wt) is the set of all variables occurring in wi9 V(wi)cz V; 
W,(JC) is a word w, in which exactly one variable symbol JC7 is replaced by the 

variable JC, for example, if w, = JCI/(JC2-JC3JCI), then W,(JC)G {JC/(JC2JC3JCI), XI-

l(xx2xi)9 . . . } ; 
w,(jc)~w7(y) means that if JC in W,(JC) is replaced by y9 then we get wy(y). 

Theorem 4.1. Let (Q, •) be a quasigroup that satisfies the following identity 

Wi • ( w 2 • JC) = w 3 • ( w 4 • JC). 

Let {ii, i2, i3} <={1, 2, 3, 4}. If there exists a solution of simultaneous equations 
wir = ar, re {1, 2, 3} for arbitrary a-, a2, a3 e Q, then (Q, •) is a right-hand linear 
quasigroup. 

Proof. Obviously Q(L, L) is disjoint. 
A quasigroup (Q, •) is called Bi-quasigroup (see [8]) if it satisfies the identity 

x-yz = yxz. The following theorem shows that the converse of Theorem 4.1 is 
false. 

Theorem 4.2. Let (Q, •) be a quasigroup. Then the following are equivalent 
(i) (Q, •) is a B^quasigroup; 

(ii) there exist an abelian group (Q, +) and a permutation aofQ such that for all 
x, y eQ, xy = ax + y. 

Proof. See Theorem 13 of [7]. 
A quasigroup (Q, •) is called left-hand transitive if it satisfies the identity 

xyxz = yz (see [2]). The following theorem shows that there exists a right-hand 
linear quasigroup satisfying an identity different from the one in Theorem 4.1. 

Theorem 4.3. Let (Q, •) be a quasigroup. Then the following are equivalent 
(i) (Q, •) is left transitive; 

(ii) there exist a group (Q, o), its automorphism t// and keQ such that for all x, 
y eQ, xy = II/JJC otpyok, where Ix = x~1 in the group. 
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Proof, (i)—•(h). From the identity we have RxzLxR~x = l for all x, ze Q. Hence 
Q(R,L,R~1) is id(2). If we apply Lemmas 2.3, 2.6, the dual theorem of 
Theorem 2.2, Theorem 2.4, we have x • y = cpxo \py o k for an antiautomorphism cp 
and an automorphism \p of a group (Q, o). If the identity xyxz = yz is rewritten 
with o operation, then 

cp(cpXo\pyok)o\p(cpXo\pzok)ok = cpy0\pzok, 

cpk o cp\py o cp2x o \pcpx o \p2z o \pk = cpyo\pz', 

if x = y = z = e (e is the identity of (Q, o)), then cpko\pk = e\ if y = z = e, then 
cpkoCp2Xo\pcpxo\pk = e, whence cp2Xo\pcpx = e, cpxo\px = e i.e. cp = I\p. The con
verse is easy. 

Let us note that Theorem 4.2 can also be proved in a similar way. 

Theorem 4.5. Let (Q, •) be an elastic quasigroup (such quasigroups satisfy the 
identity x • yx = xy • x) in which the map x •—-> JC • x is Q onto Q. Then the following 
are equivalent 
(i) Q is a B\-quasigroup; 

(ii) Q is left-hand transitive; 
Proof. Use Theorems 4.2 and 4.3. 
Other properties of left-hand transitive quasigroups are in [5]. 

Definition 4.1. Let wt, i = 1, 2, 3, 4 be quasigroup words and let A, B e {R, L} . 
A quasigroup (Q, •) is called a h-quasigroup if it satisfies the identity 

(h) Axwt(z) - Byw2(t) = Axw3(t) • By w4(z). 

If H>I(Z)~ w3(f)> Wi(t)~w4(z), then Q is called a t2-quasigroup. If, moreover, 
A=L, B = R (A = R, B = L, respectively) and 

Wi(z) = A„1A„2...AXn_1(z), w2(t) = BXnBXn+l...BX2n 2(t), 

then Q is called an an (a (3n, respectively)-quasigroup. 
Thus h, t2-quasigroups are generalizations of an, fin-quasigroups that were 

studied by P. N e m e c and T. K e p k a in [8], [10]. 

Theorem 4.6. Let A, B, C, D e {R, L} and let a quasigroup (Q, •) satisfy the 
identity 

(i) Axw1(z)'Byw2(t) = Cxw3(t) Dyw4(z). 

Then Q is a T-quasigroup. If A±C or B±D, then Q is a commutative 
11-quasigroup. 

Proof. Let in (i) all variables, besides x, y, z, t, be replaced by fixed elements of 
Q. Then 

(ii) Axa(z) - Byl3(t) = Cxy(t) • Dyd(z) 
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for all x, v, z, t e Q and certain permutations a, 0, y, 6 of Q. If (ii) is rewritten 
with translations of Q, then 

RByPtfA^) = RDy6(z)C'y(t), 

LAxa(Z)B'p(t) = LCxy(t) • D's(Z), 
RByP(t)Axa = LCxY(t)Dyd, 
LAxa(z)Byp = RDy6(z)Cxy, 

for all x, y, z, te Q where A' is the dual symbol of A, etc. These equations are 
equivalent, respectively, with the following ones 

(iiO (C'y(t))~ Rhyd(z)RByP(t)A'a(z)=l, 

(iv) (D'&(Z))- LclY(t)LAxa(z)B'p(t)= 1, 

(v) Dy1Lcly(t)RBym)Ax = 6a'\ 

(vi) C^RhU^L^^By = rp-1. 

Obviously, every three of the four indices in each of the above equations can be 
arbitrary, therefore we can use Lemma 2.3. Then from (iii) and (vi) it follows, 
respectively, that Q((C')_1, R'1), Q(C\ R1) are disjoint. Since Re{C',C}, 
both Q(.R-1, R'1) and Q(R, R) are disjoint. Similarly, from (iv) and (v) we get 
that Q(L, L) is disjoint, hence Q is a linear quasigroup. From (v) it follows that 
Q^'1, R) is disjoint, therefore by Theorem 2.8, (Q, •) is a T-quasigroup. Thus 
there exist an abelian group (Q, +) , its automorphism q>, ^p such that for all x, 
y and some k e Q 

(4.1) xy = q)x + tyy + k. 

Now let A =L, C = R. If in (i) all variables, besides x, are replaced by e — the 
identity of (Q, +) and then (i) rewritten with + operation we get 

q>(q>x + ^pa + k) + ^pb + k = q)(q>c + tyx + k) + tyd + k 

for some a, b, c, d. Put x = e, then 

cpi/;a + q)k + ^pb + k = q>2c + cpk + ^pd + k, 

therefore cp2jc = <pi/;jc for all x, hence q) = ^p. 

Corollary. Every h-quasigroup is a T-quasigroup. 

Theorem 4.7. Let (Q, ) be a quasigroup. Then the following identities are 
equivalent 
(i) Axw1(z)'ByW2(t) = AxWi(t)'Byw2(z), where Wi(z)~Wi(t), w2(t)~w2(z) and 

V(w1)=V(w2) = {x1}; 
(ii) Axw3(z)'Byw4(t) = Axw3(t)'Byw4(z), where w3(z), w4(t), w3(t) and w4(z) are 
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such words that if all their variables, besides t, z, are replaced by xx, then we 
get Wi(z), w2(t), Wi(t) and w2(z), respectively, and w3(z)~ w3(0, vv4(l)~ 
w4(z). 

Proof. A quasigroup (Q, •) that satisfies (i) or (ii) is a Ti-quasigroup, hence Q 
is a T-quasigroup. (i)-->(ii). If (i), rewritten with + operation (see 4.1), then all 
variables, besides t, z, will be absent. Thus these variables can be replaced in the 
same position in words wx(z) and W\(t), etc. by arbitrary variables from V. The 
converse is obvious. 

Theorem 4.8. Ler (Q, +) be a loop isotopic to a quasigroup (Q, •). Then the 
following are equivalent 
(i) (Q, •) is t2-quasigroup; 

(ii) (Q, +) is an abelian group and there exist its automorphisms cp, ^p and a, (3 in 
the group generated by the set {I, cp, ̂ p} such that cpa = ^p|5 and (4.1) holds. 

Proof, (i)—»(ii). Obviously, (Q, •) is a T-quasigroup, hence (4.1) holds. If in 
the identity (ti) of Definition 4.1 all variables, besides t, z, are replaced by 
elements of Q, then we get 

(iii) A,* 1Xai --^...'XarizyBt,'Ybl
 2T*../Y*.(f) = 

= Aoo Xa i Xa2...
rXar(t)

mBb0 Ybx Yb2... Ybs(z) 

for appropriate a0, b0, ..., ar, bs e Q, *X, lY, ..., rX, sYe .Tand for all t, z e Q. It is 
an easy task to show that Ljai/> = ipLt. According to (1.1) 

A^ Xa. Xa2... Xar = La &, Bb0 Y^ Yb2... Ybs = LbP 

where a, /3 are products of cp, ip9 I. Thus from (iii) we have 

L:a(z)Ltp(t) = L:a(t)Ltp(z). 

If we rewrite this equation with + operation, then 

cpa + cpa(z) +tyb + V&(t) + k = cpa + cpa(t) + tyb + ^pP(z) + k, 
cpa(z) + vP(t) = cpa(t) + ^pP(z), 

and if z = e (the identity of +) , then cpa = ^p|3. (ii)-->(i). If 

a = cph^pi\..cpim^pimI=cpil^piK..cpim^pim~lcp(cp-l^pI)^ 

then we put 

Sa = RxR
iJ-1Li

l}...Ri
l?L'?-1RuTu. 

Similarly we get Sp. It is not difficult to show that 

Sa(z)'S,(t) = Sa(t)Sp(z), 

for all z, t, hence (Q, •) is a ^-quasigroup. 
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Corollary 1. Let (Q, + ) be an abelian group. If cp, \p are its automorphisms of 
finite orders, then a quasigroup (Q, ), defined by (4.1), is a t2-quasigroup. 

Proof. If m, n are the orders of cp, \p respectively, then cpcpm~l = i/;^""1 = 1. 

Corollary 2. Every finite T-quasigroup is a t2-quasigroup. 
E x a m p l e 4.1. Let (C, + ) be the group of complex numbers and let cpx = —x, 

\px = ix. Then cp2 = \p*=l. The quasigroup (C, •), defined by (4.1), satisfies the 
identity 

zx • y(u • ut) = tx • y(u • uz) 

that is equivalent to the identity 

zx • y(u • vt) = tx • y(u • vz). 
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O KBAЗИTOЖДECTBAX TPAHЗИTИBHЫX KBAЗИГPУПП 

Ján D u p l á k 

P e з ю м e 

B paбoтe дaнa xapaктepиcтикa нeкoтopыx мнoгooбpaзий тpaнзитивныx квaзигpyпп c пoмoщью 
квaзитoждecтв. Пoлyчeнныe peзyльтaты иcпoльзoвaны для изyчeния нeкoтopыx cвoйcтв линeй-
ныx квaзигpyпп. 
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