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THE INVERSE PROBLEM OF THE CALCULUS 
OF VARIATIONS FOR FINSLER STRUCTURES 

DEMETER KRUPKA, ABDURASOUL EZBEKHOVICH SATTAROV 

1. Introduction 

It is well known that the calculus of variations enables us to characterize many 
interesting properties of various geometrical structures; important examples are 
the variational theory of geodesies of connections in a Riemann or a Finsler space 
[3], [4], the theory of extremals in spaces of supporting vector densities [5], etc. 
With respect to the inverse problem, as to under what conditions the equations of 
geodesies of a given connection can be regarded as the equations of extremals of an 
integral variational functional, it seems that till now no explicit results have been 
obtained. 

The present paper is concerned with the inverse problem for connections on the 
tangent bundle of a differential manifold. It is known that on a Finsler space there 
exists a connection whose geodesies coincide with the extremals of the Finsler 
structure, such that the covariant derivative of the metric tensor relative to this 
connection vanishes (the Cartan connection). Our contribution consists in showing 
that also the converse is true in the sense that if a connection on the tangent bundle 
is metrizable, it is precisely the Cartan connection of a Finsler structure. We also 
show that the equations of geodesies of a linear connection coincide with the 
Euler—Lagrange equations of a lagrangian if and only if the connection is 
metrizable (without positivity assumption). 

2. Connections on the tangent bundle 

Let X be an n -dimensional smooth manifold. Recall the definition of the bundle 
of linear connections over X [1]. Denote by F 2 X the principal L*-bundle of 
2-frames over X. The structure group L\ of this bundle is the group of invertible 
2-jets with source and target at the origin OeRn of the real, n-dimensional 
Euclidean space Rn. If jlaeLl, a—-(a1, a2, ..., an), then the formulas b\(jla) = 
D X a - 1 ) ' ^ ) , b\k(]la) = DiDk(a-x)i(0), l^i,j, k ^ n, j^k, define a global coordi
nate system on L2

n, and we set a\(jla)= b^jla'1) so that a\bk= 8k (the Kronecker 
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symbol). Put Q = Rn®(Rn*ORn*), where Rn is considered with its natural vector 
space structure, Rn* denotes the dual vector space, and O is the symmetrized 
tensor product, and denote by F}ky l ^ i , /, k^n, j^k, the canonical coordinates 
on Q. Writing 

fi
jk=ai

p(bfbr
kr

p
qr+ bp

k) (2.1) 

we obtain a left action of L2
n on Q which defines a fiber bundle with type fiber Q, 

associated with F^X. This fiber bundle is called the bundle of linear connections 
over X, and is denoted by TX. We note that in (2.1) as well as throughout this 
paper, the Einstein summation convention is used. 

Let TX be the tangent bundle of X. By a connection on TX we mean 
a morphism T: TX—>TX over idx. A geodesic of a connection T is a curve in X 
satisfying, in each of the coordinates xl on X, the system of equations 

r + r;fcjt'jt
k = o, (2.2) 

where r\k are the components of T relative to the coordinates x\ and "dot" 
denotes differentiation with respect to parameter. 

Denote by Tr
sX the bundle of tensors over X, contravariant with respect to the 

first r indices, and covariant with respect to the remaining s indices. Given 
a connection T: TX—•TX, the covariant derivative Vrh: TX—>T5

r+iX of 
a morphism h: TX-^Tr

5X is defined in a standard manner. In particular, let g: 
TX-->7^X be a morphism over idx. Then Vg: TX-+TiX is defined, in any 
coordinates JC' on X, by 

9.i. * = fjr " §f* r*kx' - gmn - gimrz (2.3) 

where JC', i ' are the coordinates on TX associated with JC'. 

3. Variationality of a linear connection 

Let r be a linear connection on a manifold X, i.e., a section of the fiber bundle 
TX, r j k the components of T with respect to some coordinates xl on X. Consider 
the equations of geodesies (2.2). For any regular tensor field g of type (0, 2) on X 
whose components with respect to xl are denoted by glh i.e., such that det(g.;) ± 0, 
(2.2) is equivalent with the equations 

-ei = glm(xm + r>;qi
px«) = 0. (3.1) 

We shall say that the linear connection T is variational if there exists a function L: 
TX-+R (a lagrangian for (2.2)) and a regular tensor g such that (3.1) are the 
Euler—Lagrange equations of L. 
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Recall that the expressions e,= £,(*', x\ x') are the Euler—Lagrange ex
pressions of a lagrangian depending, in general, on x\ i ' , x\ if and only if 

3ei 3ek 1 d /3SJ 9cA ft ,~ 9 x 
8jck 9*' 2dt\3xk dx1) ' K } 

Әi 

Эi* ӘJЃ' 
— - ^ J 7 = 0 (3.4) 

(see [2]), [6]). 

Theorem 1. A necessary and sufficient condition that the linear connection r be 
variational is that there exists a regular tensor f of type (0, 2) on X such that in any 
coordinates xl on X, 

Qi} = Qn, (3.5) 

r « _ 1 nim (dQmj , 3Qmk 3 _ _ \ f~ ,v 
r^"2^ te^^'a^J- (3-6) 

Proof. Assume that the equations (2.2), where Vik are components of a linear 
connection, are variational, and take a tensor g such that e, (3.1) is the 
Euler—Lagrange expression of a lagrangian. Then the relations (3.2)—(3.4) hold; 
(3.4) gives 

Qu = Qji, (3.7) 

i.e., g is a symmetric tensor; (3.3) implies 

giirU+gkiru-^r=0 (3.8) 

from which (3.6) follows. It is readily verified that because of these two relations, 
(3.2) is satisfied identically. 

Conversely, if g is symmetric and (3.6) holds, we set 

L^gtix'x1, (3.9) 

which defines a lagrangian for (3.1); that is, (2.2) is variational. This completes the 
proof. 

We note that the lagrangian (3.9) can be obtained from (3.1) by the standard 
Tonti construction in the normal coordinates of g. 
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4. Variationality of a connection on the tangent bundle 

Let us briefly recall the notion and basic properties of the Cartan connection 
associated with a Finsler structure on TX, defined by a metric function L: TX-+R. 
Put in any coordinates x' on X 

1 Э2L2 

' 2 Э І ' Ә І І вч= ïШTi- ( 4 1 ) 

g,j are the components of a morphism g: TX^>T%X over idx which is called the 
metric tensor of L. By the well-known properties of L, det(gl;)=£0, that is, g is 
regular, and 

3 i k " 3 x ' " 9 j £ ' ' dxkX " U " l 4 * Z ; 

Denoting by #° the elements of the inverse matrix of (gti) we further put 

,,i - 1 „«m (d__[_dQ_k dg,k\ (A ~v 

The Euler—Lagrange equations of L are then expressed by 

gtm(xm + Y?qx
pxq) = 0. (4.4) 

The Cartan connection associated with L is a connection T: TX—>TX defined 
by 

rm=<rn,*, (4.5) 

T - n v - - 1 ld9,i v» -I-3** „* dg'k „A r' 
TiJk - g,my,* - (^— y t t + — y , , - — y„J * 

+ i ,,« /9g./ 9g-*, d&* 9g./ dfl*. 9g„\ .„., 
4 y \dxs 9im 9i* 9im 9i* 9im / YpqX x • 

This is a unique connection on TX for which Vrg = 0 (see (2.3)). Moreover, by 
(4.2), 

rp
mi"i' = ymi',i*. (4.6) 

Hence the geodesics.of T are precisely the extremals of the Finsler structure L. 
These remarks serve as a motivation for the following definitions. Let T be 

a connection on TX, x' any coordinates on X, r'ik the components of T with respect 
to these coordinates. We say that T is (locally) variational if the following condition 
holds: there exists a system of functions yj* of x", x" such that 

yikx
ixk = rikx'xk, (4.7) 
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and a regular mapping g: TX—> TiX over idx, whose components are denoted by 
gih such that the functions 

S = -gim(xm + YZxpxq) (4.8) 

are the Euler—Lagrange expressions of a lagrangian L = L(JC', i ' , JC'). We say that 
T is metrizable if there exists a regular, positive-definite mapping g: TX^>T%X 
over idx such that (1) gtj = gjt, (2) {dgnldxk) • i ' = 0, and (3) Vrg = 0. We note that 
the properties of a metrizable connection reflect the properties of the Cartan 
connection. 

Let us denote 

Yi = gjrZxpx*. (4.9) 

Theorem 2. A necessary and sufficient condition that T be variational is that 
there exists a regular mapping g: TX—> T?X over idx such that in any coordinates 
xl on X 

gi,-gn = o, (4.10) 

f f r - f j r = 0, (4.12) 

dxk 3*' 2 3jtmV3ifc 3JC7
 y ' 

Proof. Substituting (3.1) and (4.9) in (3.2)—(3.4) and omitting the dependent 
relations one immediately obtains (4.10)—(4.13). 

Theorem 3. Each metrizable connection is variational. More precisely, 
a metrizable connection is the Cartan connection of a Finsler structure. 

Proof. Let T be a metrizable connection on TX, g: TX-+T2X a morphism 
satisfying the requirements (1)—(3) (see the definition of a metrizable connection). 
Put 

»"5(f?+fM0- «"> 
Using (3) in the form (2.3) we obtain by means of cyclic permutations 

2n* - 2glmrz-^ rrkX- - | g rrlx-+|g rjc=o. (4.15) 

By (2), 
(y..„- gimP^x'x" = 0. (4.16) 

221 



Hence the left hand side expressions of the equations of geodesies of F can be 
expressed in the form 

Ei = -gim(xm + r%kpxq) = -gimxm - Yi,pqx
pxq. (4.17) 

It is readily verified that e, are the Euler—Lagrange expressions of the lagrangian 

L = ~ QijXX'. 
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ОБРАТНАЯ ВАРИАЦИОННАЯ ЗАДАЧА ДЛЯ ПРОСТРАНСТВ ФИНСЛЕРА 

Оетегег Кгирка, АЫигавои1 ЕгЪекгкшсп 8а На го V 

Р е з ю м е 

В работе показывается, что всякая метризуемая связность на касательном пространстве 
является связностью Картана некоторой структуры Финслера и что линейная связность на 
многообразии вариационная тогда и только тогда, когда она метризуемая. 
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